/* * Keyboard class input driver for the NVIDIA Tegra SoC internal matrix * keyboard controller * * Copyright (c) 2009-2011, NVIDIA Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/input.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/interrupt.h> #include <linux/of.h> #include <linux/clk.h> #include <linux/slab.h> #include <mach/clk.h> #include <mach/kbc.h> #define KBC_MAX_DEBOUNCE_CNT 0x3ffu /* KBC row scan time and delay for beginning the row scan. */ #define KBC_ROW_SCAN_TIME 16 #define KBC_ROW_SCAN_DLY 5 /* KBC uses a 32KHz clock so a cycle = 1/32Khz */ #define KBC_CYCLE_MS 32 /* KBC Registers */ /* KBC Control Register */ #define KBC_CONTROL_0 0x0 #define KBC_FIFO_TH_CNT_SHIFT(cnt) (cnt << 14) #define KBC_DEBOUNCE_CNT_SHIFT(cnt) (cnt << 4) #define KBC_CONTROL_FIFO_CNT_INT_EN (1 << 3) #define KBC_CONTROL_KEYPRESS_INT_EN (1 << 1) #define KBC_CONTROL_KBC_EN (1 << 0) /* KBC Interrupt Register */ #define KBC_INT_0 0x4 #define KBC_INT_FIFO_CNT_INT_STATUS (1 << 2) #define KBC_INT_KEYPRESS_INT_STATUS (1 << 0) #define KBC_ROW_CFG0_0 0x8 #define KBC_COL_CFG0_0 0x18 #define KBC_TO_CNT_0 0x24 #define KBC_INIT_DLY_0 0x28 #define KBC_RPT_DLY_0 0x2c #define KBC_KP_ENT0_0 0x30 #define KBC_KP_ENT1_0 0x34 #define KBC_ROW0_MASK_0 0x38 #define KBC_ROW_SHIFT 3 struct tegra_kbc { void __iomem *mmio; struct input_dev *idev; unsigned int irq; spinlock_t lock; unsigned int repoll_dly; unsigned long cp_dly_jiffies; unsigned int cp_to_wkup_dly; bool use_fn_map; bool use_ghost_filter; bool keypress_caused_wake; const struct tegra_kbc_platform_data *pdata; unsigned short keycode[KBC_MAX_KEY * 2]; unsigned short current_keys[KBC_MAX_KPENT]; unsigned int num_pressed_keys; u32 wakeup_key; struct timer_list timer; struct clk *clk; }; static const u32 tegra_kbc_default_keymap[] __devinitdata = { KEY(0, 2, KEY_W), KEY(0, 3, KEY_S), KEY(0, 4, KEY_A), KEY(0, 5, KEY_Z), KEY(0, 7, KEY_FN), KEY(1, 7, KEY_LEFTMETA), KEY(2, 6, KEY_RIGHTALT), KEY(2, 7, KEY_LEFTALT), KEY(3, 0, KEY_5), KEY(3, 1, KEY_4), KEY(3, 2, KEY_R), KEY(3, 3, KEY_E), KEY(3, 4, KEY_F), KEY(3, 5, KEY_D), KEY(3, 6, KEY_X), KEY(4, 0, KEY_7), KEY(4, 1, KEY_6), KEY(4, 2, KEY_T), KEY(4, 3, KEY_H), KEY(4, 4, KEY_G), KEY(4, 5, KEY_V), KEY(4, 6, KEY_C), KEY(4, 7, KEY_SPACE), KEY(5, 0, KEY_9), KEY(5, 1, KEY_8), KEY(5, 2, KEY_U), KEY(5, 3, KEY_Y), KEY(5, 4, KEY_J), KEY(5, 5, KEY_N), KEY(5, 6, KEY_B), KEY(5, 7, KEY_BACKSLASH), KEY(6, 0, KEY_MINUS), KEY(6, 1, KEY_0), KEY(6, 2, KEY_O), KEY(6, 3, KEY_I), KEY(6, 4, KEY_L), KEY(6, 5, KEY_K), KEY(6, 6, KEY_COMMA), KEY(6, 7, KEY_M), KEY(7, 1, KEY_EQUAL), KEY(7, 2, KEY_RIGHTBRACE), KEY(7, 3, KEY_ENTER), KEY(7, 7, KEY_MENU), KEY(8, 4, KEY_RIGHTSHIFT), KEY(8, 5, KEY_LEFTSHIFT), KEY(9, 5, KEY_RIGHTCTRL), KEY(9, 7, KEY_LEFTCTRL), KEY(11, 0, KEY_LEFTBRACE), KEY(11, 1, KEY_P), KEY(11, 2, KEY_APOSTROPHE), KEY(11, 3, KEY_SEMICOLON), KEY(11, 4, KEY_SLASH), KEY(11, 5, KEY_DOT), KEY(12, 0, KEY_F10), KEY(12, 1, KEY_F9), KEY(12, 2, KEY_BACKSPACE), KEY(12, 3, KEY_3), KEY(12, 4, KEY_2), KEY(12, 5, KEY_UP), KEY(12, 6, KEY_PRINT), KEY(12, 7, KEY_PAUSE), KEY(13, 0, KEY_INSERT), KEY(13, 1, KEY_DELETE), KEY(13, 3, KEY_PAGEUP), KEY(13, 4, KEY_PAGEDOWN), KEY(13, 5, KEY_RIGHT), KEY(13, 6, KEY_DOWN), KEY(13, 7, KEY_LEFT), KEY(14, 0, KEY_F11), KEY(14, 1, KEY_F12), KEY(14, 2, KEY_F8), KEY(14, 3, KEY_Q), KEY(14, 4, KEY_F4), KEY(14, 5, KEY_F3), KEY(14, 6, KEY_1), KEY(14, 7, KEY_F7), KEY(15, 0, KEY_ESC), KEY(15, 1, KEY_GRAVE), KEY(15, 2, KEY_F5), KEY(15, 3, KEY_TAB), KEY(15, 4, KEY_F1), KEY(15, 5, KEY_F2), KEY(15, 6, KEY_CAPSLOCK), KEY(15, 7, KEY_F6), /* Software Handled Function Keys */ KEY(20, 0, KEY_KP7), KEY(21, 0, KEY_KP9), KEY(21, 1, KEY_KP8), KEY(21, 2, KEY_KP4), KEY(21, 4, KEY_KP1), KEY(22, 1, KEY_KPSLASH), KEY(22, 2, KEY_KP6), KEY(22, 3, KEY_KP5), KEY(22, 4, KEY_KP3), KEY(22, 5, KEY_KP2), KEY(22, 7, KEY_KP0), KEY(27, 1, KEY_KPASTERISK), KEY(27, 3, KEY_KPMINUS), KEY(27, 4, KEY_KPPLUS), KEY(27, 5, KEY_KPDOT), KEY(28, 5, KEY_VOLUMEUP), KEY(29, 3, KEY_HOME), KEY(29, 4, KEY_END), KEY(29, 5, KEY_BRIGHTNESSDOWN), KEY(29, 6, KEY_VOLUMEDOWN), KEY(29, 7, KEY_BRIGHTNESSUP), KEY(30, 0, KEY_NUMLOCK), KEY(30, 1, KEY_SCROLLLOCK), KEY(30, 2, KEY_MUTE), KEY(31, 4, KEY_HELP), }; static const struct matrix_keymap_data tegra_kbc_default_keymap_data __devinitdata = { .keymap = tegra_kbc_default_keymap, .keymap_size = ARRAY_SIZE(tegra_kbc_default_keymap), }; static void tegra_kbc_report_released_keys(struct input_dev *input, unsigned short old_keycodes[], unsigned int old_num_keys, unsigned short new_keycodes[], unsigned int new_num_keys) { unsigned int i, j; for (i = 0; i < old_num_keys; i++) { for (j = 0; j < new_num_keys; j++) if (old_keycodes[i] == new_keycodes[j]) break; if (j == new_num_keys) input_report_key(input, old_keycodes[i], 0); } } static void tegra_kbc_report_pressed_keys(struct input_dev *input, unsigned char scancodes[], unsigned short keycodes[], unsigned int num_pressed_keys) { unsigned int i; for (i = 0; i < num_pressed_keys; i++) { input_event(input, EV_MSC, MSC_SCAN, scancodes[i]); input_report_key(input, keycodes[i], 1); } } static void tegra_kbc_report_keys(struct tegra_kbc *kbc) { unsigned char scancodes[KBC_MAX_KPENT]; unsigned short keycodes[KBC_MAX_KPENT]; u32 val = 0; unsigned int i; unsigned int num_down = 0; bool fn_keypress = false; bool key_in_same_row = false; bool key_in_same_col = false; for (i = 0; i < KBC_MAX_KPENT; i++) { if ((i % 4) == 0) val = readl(kbc->mmio + KBC_KP_ENT0_0 + i); if (val & 0x80) { unsigned int col = val & 0x07; unsigned int row = (val >> 3) & 0x0f; unsigned char scancode = MATRIX_SCAN_CODE(row, col, KBC_ROW_SHIFT); scancodes[num_down] = scancode; keycodes[num_down] = kbc->keycode[scancode]; /* If driver uses Fn map, do not report the Fn key. */ if ((keycodes[num_down] == KEY_FN) && kbc->use_fn_map) fn_keypress = true; else num_down++; } val >>= 8; } /* * Matrix keyboard designs are prone to keyboard ghosting. * Ghosting occurs if there are 3 keys such that - * any 2 of the 3 keys share a row, and any 2 of them share a column. * If so ignore the key presses for this iteration. */ if (kbc->use_ghost_filter && num_down >= 3) { for (i = 0; i < num_down; i++) { unsigned int j; u8 curr_col = scancodes[i] & 0x07; u8 curr_row = scancodes[i] >> KBC_ROW_SHIFT; /* * Find 2 keys such that one key is in the same row * and the other is in the same column as the i-th key. */ for (j = i + 1; j < num_down; j++) { u8 col = scancodes[j] & 0x07; u8 row = scancodes[j] >> KBC_ROW_SHIFT; if (col == curr_col) key_in_same_col = true; if (row == curr_row) key_in_same_row = true; } } } /* * If the platform uses Fn keymaps, translate keys on a Fn keypress. * Function keycodes are KBC_MAX_KEY apart from the plain keycodes. */ if (fn_keypress) { for (i = 0; i < num_down; i++) { scancodes[i] += KBC_MAX_KEY; keycodes[i] = kbc->keycode[scancodes[i]]; } } /* Ignore the key presses for this iteration? */ if (key_in_same_col && key_in_same_row) return; tegra_kbc_report_released_keys(kbc->idev, kbc->current_keys, kbc->num_pressed_keys, keycodes, num_down); tegra_kbc_report_pressed_keys(kbc->idev, scancodes, keycodes, num_down); input_sync(kbc->idev); memcpy(kbc->current_keys, keycodes, sizeof(kbc->current_keys)); kbc->num_pressed_keys = num_down; } static void tegra_kbc_set_fifo_interrupt(struct tegra_kbc *kbc, bool enable) { u32 val; val = readl(kbc->mmio + KBC_CONTROL_0); if (enable) val |= KBC_CONTROL_FIFO_CNT_INT_EN; else val &= ~KBC_CONTROL_FIFO_CNT_INT_EN; writel(val, kbc->mmio + KBC_CONTROL_0); } static void tegra_kbc_set_keypress_interrupt(struct tegra_kbc *kbc, bool enable) { u32 val; val = readl(kbc->mmio + KBC_CONTROL_0); if (enable) val |= KBC_CONTROL_KEYPRESS_INT_EN; else val &= ~KBC_CONTROL_KEYPRESS_INT_EN; writel(val, kbc->mmio + KBC_CONTROL_0); } static void tegra_kbc_keypress_timer(unsigned long data) { struct tegra_kbc *kbc = (struct tegra_kbc *)data; unsigned long flags; u32 val; unsigned int i; spin_lock_irqsave(&kbc->lock, flags); val = (readl(kbc->mmio + KBC_INT_0) >> 4) & 0xf; if (val) { unsigned long dly; tegra_kbc_report_keys(kbc); /* * If more than one keys are pressed we need not wait * for the repoll delay. */ dly = (val == 1) ? kbc->repoll_dly : 1; mod_timer(&kbc->timer, jiffies + msecs_to_jiffies(dly)); } else { /* Release any pressed keys and exit the polling loop */ for (i = 0; i < kbc->num_pressed_keys; i++) input_report_key(kbc->idev, kbc->current_keys[i], 0); input_sync(kbc->idev); kbc->num_pressed_keys = 0; /* All keys are released so enable the keypress interrupt */ tegra_kbc_set_fifo_interrupt(kbc, true); } spin_unlock_irqrestore(&kbc->lock, flags); } static irqreturn_t tegra_kbc_isr(int irq, void *args) { struct tegra_kbc *kbc = args; unsigned long flags; u32 val; spin_lock_irqsave(&kbc->lock, flags); /* * Quickly bail out & reenable interrupts if the fifo threshold * count interrupt wasn't the interrupt source */ val = readl(kbc->mmio + KBC_INT_0); writel(val, kbc->mmio + KBC_INT_0); if (val & KBC_INT_FIFO_CNT_INT_STATUS) { /* * Until all keys are released, defer further processing to * the polling loop in tegra_kbc_keypress_timer. */ tegra_kbc_set_fifo_interrupt(kbc, false); mod_timer(&kbc->timer, jiffies + kbc->cp_dly_jiffies); } else if (val & KBC_INT_KEYPRESS_INT_STATUS) { /* We can be here only through system resume path */ kbc->keypress_caused_wake = true; } spin_unlock_irqrestore(&kbc->lock, flags); return IRQ_HANDLED; } static void tegra_kbc_setup_wakekeys(struct tegra_kbc *kbc, bool filter) { const struct tegra_kbc_platform_data *pdata = kbc->pdata; int i; unsigned int rst_val; /* Either mask all keys or none. */ rst_val = (filter && !pdata->wakeup) ? ~0 : 0; for (i = 0; i < KBC_MAX_ROW; i++) writel(rst_val, kbc->mmio + KBC_ROW0_MASK_0 + i * 4); } static void tegra_kbc_config_pins(struct tegra_kbc *kbc) { const struct tegra_kbc_platform_data *pdata = kbc->pdata; int i; for (i = 0; i < KBC_MAX_GPIO; i++) { u32 r_shft = 5 * (i % 6); u32 c_shft = 4 * (i % 8); u32 r_mask = 0x1f << r_shft; u32 c_mask = 0x0f << c_shft; u32 r_offs = (i / 6) * 4 + KBC_ROW_CFG0_0; u32 c_offs = (i / 8) * 4 + KBC_COL_CFG0_0; u32 row_cfg = readl(kbc->mmio + r_offs); u32 col_cfg = readl(kbc->mmio + c_offs); row_cfg &= ~r_mask; col_cfg &= ~c_mask; switch (pdata->pin_cfg[i].type) { case PIN_CFG_ROW: row_cfg |= ((pdata->pin_cfg[i].num << 1) | 1) << r_shft; break; case PIN_CFG_COL: col_cfg |= ((pdata->pin_cfg[i].num << 1) | 1) << c_shft; break; case PIN_CFG_IGNORE: break; } writel(row_cfg, kbc->mmio + r_offs); writel(col_cfg, kbc->mmio + c_offs); } } static int tegra_kbc_start(struct tegra_kbc *kbc) { const struct tegra_kbc_platform_data *pdata = kbc->pdata; unsigned int debounce_cnt; u32 val = 0; clk_enable(kbc->clk); /* Reset the KBC controller to clear all previous status.*/ tegra_periph_reset_assert(kbc->clk); udelay(100); tegra_periph_reset_deassert(kbc->clk); udelay(100); tegra_kbc_config_pins(kbc); tegra_kbc_setup_wakekeys(kbc, false); writel(pdata->repeat_cnt, kbc->mmio + KBC_RPT_DLY_0); /* Keyboard debounce count is maximum of 12 bits. */ debounce_cnt = min(pdata->debounce_cnt, KBC_MAX_DEBOUNCE_CNT); val = KBC_DEBOUNCE_CNT_SHIFT(debounce_cnt); val |= KBC_FIFO_TH_CNT_SHIFT(1); /* set fifo interrupt threshold to 1 */ val |= KBC_CONTROL_FIFO_CNT_INT_EN; /* interrupt on FIFO threshold */ val |= KBC_CONTROL_KBC_EN; /* enable */ writel(val, kbc->mmio + KBC_CONTROL_0); /* * Compute the delay(ns) from interrupt mode to continuous polling * mode so the timer routine is scheduled appropriately. */ val = readl(kbc->mmio + KBC_INIT_DLY_0); kbc->cp_dly_jiffies = usecs_to_jiffies((val & 0xfffff) * 32); kbc->num_pressed_keys = 0; /* * Atomically clear out any remaining entries in the key FIFO * and enable keyboard interrupts. */ while (1) { val = readl(kbc->mmio + KBC_INT_0); val >>= 4; if (!val) break; val = readl(kbc->mmio + KBC_KP_ENT0_0); val = readl(kbc->mmio + KBC_KP_ENT1_0); } writel(0x7, kbc->mmio + KBC_INT_0); enable_irq(kbc->irq); return 0; } static void tegra_kbc_stop(struct tegra_kbc *kbc) { unsigned long flags; u32 val; spin_lock_irqsave(&kbc->lock, flags); val = readl(kbc->mmio + KBC_CONTROL_0); val &= ~1; writel(val, kbc->mmio + KBC_CONTROL_0); spin_unlock_irqrestore(&kbc->lock, flags); disable_irq(kbc->irq); del_timer_sync(&kbc->timer); clk_disable(kbc->clk); } static int tegra_kbc_open(struct input_dev *dev) { struct tegra_kbc *kbc = input_get_drvdata(dev); return tegra_kbc_start(kbc); } static void tegra_kbc_close(struct input_dev *dev) { struct tegra_kbc *kbc = input_get_drvdata(dev); return tegra_kbc_stop(kbc); } static bool __devinit tegra_kbc_check_pin_cfg(const struct tegra_kbc_platform_data *pdata, struct device *dev, unsigned int *num_rows) { int i; *num_rows = 0; for (i = 0; i < KBC_MAX_GPIO; i++) { const struct tegra_kbc_pin_cfg *pin_cfg = &pdata->pin_cfg[i]; switch (pin_cfg->type) { case PIN_CFG_ROW: if (pin_cfg->num >= KBC_MAX_ROW) { dev_err(dev, "pin_cfg[%d]: invalid row number %d\n", i, pin_cfg->num); return false; } (*num_rows)++; break; case PIN_CFG_COL: if (pin_cfg->num >= KBC_MAX_COL) { dev_err(dev, "pin_cfg[%d]: invalid column number %d\n", i, pin_cfg->num); return false; } break; case PIN_CFG_IGNORE: break; default: dev_err(dev, "pin_cfg[%d]: invalid entry type %d\n", pin_cfg->type, pin_cfg->num); return false; } } return true; } #ifdef CONFIG_OF static struct tegra_kbc_platform_data * __devinit tegra_kbc_dt_parse_pdata(struct platform_device *pdev) { struct tegra_kbc_platform_data *pdata; struct device_node *np = pdev->dev.of_node; u32 prop; int i; if (!np) return NULL; pdata = kzalloc(sizeof(*pdata), GFP_KERNEL); if (!pdata) return NULL; if (!of_property_read_u32(np, "nvidia,debounce-delay-ms", &prop)) pdata->debounce_cnt = prop; if (!of_property_read_u32(np, "nvidia,repeat-delay-ms", &prop)) pdata->repeat_cnt = prop; if (of_find_property(np, "nvidia,needs-ghost-filter", NULL)) pdata->use_ghost_filter = true; if (of_find_property(np, "nvidia,wakeup-source", NULL)) pdata->wakeup = true; /* * All currently known keymaps with device tree support use the same * pin_cfg, so set it up here. */ for (i = 0; i < KBC_MAX_ROW; i++) { pdata->pin_cfg[i].num = i; pdata->pin_cfg[i].type = PIN_CFG_ROW; } for (i = 0; i < KBC_MAX_COL; i++) { pdata->pin_cfg[KBC_MAX_ROW + i].num = i; pdata->pin_cfg[KBC_MAX_ROW + i].type = PIN_CFG_COL; } pdata->keymap_data = matrix_keyboard_of_fill_keymap(np, "linux,keymap"); /* FIXME: Add handling of linux,fn-keymap here */ return pdata; } #else static inline struct tegra_kbc_platform_data *tegra_kbc_dt_parse_pdata( struct platform_device *pdev) { return NULL; } #endif static int __devinit tegra_kbc_probe(struct platform_device *pdev) { const struct tegra_kbc_platform_data *pdata = pdev->dev.platform_data; const struct matrix_keymap_data *keymap_data; struct tegra_kbc *kbc; struct input_dev *input_dev; struct resource *res; int irq; int err; int num_rows = 0; unsigned int debounce_cnt; unsigned int scan_time_rows; if (!pdata) pdata = tegra_kbc_dt_parse_pdata(pdev); if (!pdata) return -EINVAL; if (!tegra_kbc_check_pin_cfg(pdata, &pdev->dev, &num_rows)) { err = -EINVAL; goto err_free_pdata; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pdev->dev, "failed to get I/O memory\n"); err = -ENXIO; goto err_free_pdata; } irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "failed to get keyboard IRQ\n"); err = -ENXIO; goto err_free_pdata; } kbc = kzalloc(sizeof(*kbc), GFP_KERNEL); input_dev = input_allocate_device(); if (!kbc || !input_dev) { err = -ENOMEM; goto err_free_mem; } kbc->pdata = pdata; kbc->idev = input_dev; kbc->irq = irq; spin_lock_init(&kbc->lock); setup_timer(&kbc->timer, tegra_kbc_keypress_timer, (unsigned long)kbc); res = request_mem_region(res->start, resource_size(res), pdev->name); if (!res) { dev_err(&pdev->dev, "failed to request I/O memory\n"); err = -EBUSY; goto err_free_mem; } kbc->mmio = ioremap(res->start, resource_size(res)); if (!kbc->mmio) { dev_err(&pdev->dev, "failed to remap I/O memory\n"); err = -ENXIO; goto err_free_mem_region; } kbc->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(kbc->clk)) { dev_err(&pdev->dev, "failed to get keyboard clock\n"); err = PTR_ERR(kbc->clk); goto err_iounmap; } /* * The time delay between two consecutive reads of the FIFO is * the sum of the repeat time and the time taken for scanning * the rows. There is an additional delay before the row scanning * starts. The repoll delay is computed in milliseconds. */ debounce_cnt = min(pdata->debounce_cnt, KBC_MAX_DEBOUNCE_CNT); scan_time_rows = (KBC_ROW_SCAN_TIME + debounce_cnt) * num_rows; kbc->repoll_dly = KBC_ROW_SCAN_DLY + scan_time_rows + pdata->repeat_cnt; kbc->repoll_dly = DIV_ROUND_UP(kbc->repoll_dly, KBC_CYCLE_MS); input_dev->name = pdev->name; input_dev->id.bustype = BUS_HOST; input_dev->dev.parent = &pdev->dev; input_dev->open = tegra_kbc_open; input_dev->close = tegra_kbc_close; input_set_drvdata(input_dev, kbc); input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP); input_set_capability(input_dev, EV_MSC, MSC_SCAN); input_dev->keycode = kbc->keycode; input_dev->keycodesize = sizeof(kbc->keycode[0]); input_dev->keycodemax = KBC_MAX_KEY; if (pdata->use_fn_map) input_dev->keycodemax *= 2; kbc->use_fn_map = pdata->use_fn_map; kbc->use_ghost_filter = pdata->use_ghost_filter; keymap_data = pdata->keymap_data ?: &tegra_kbc_default_keymap_data; matrix_keypad_build_keymap(keymap_data, KBC_ROW_SHIFT, input_dev->keycode, input_dev->keybit); kbc->wakeup_key = pdata->wakeup_key; err = request_irq(kbc->irq, tegra_kbc_isr, IRQF_NO_SUSPEND | IRQF_TRIGGER_HIGH, pdev->name, kbc); if (err) { dev_err(&pdev->dev, "failed to request keyboard IRQ\n"); goto err_put_clk; } disable_irq(kbc->irq); err = input_register_device(kbc->idev); if (err) { dev_err(&pdev->dev, "failed to register input device\n"); goto err_free_irq; } platform_set_drvdata(pdev, kbc); device_init_wakeup(&pdev->dev, pdata->wakeup); if (!pdev->dev.platform_data) matrix_keyboard_of_free_keymap(pdata->keymap_data); return 0; err_free_irq: free_irq(kbc->irq, pdev); err_put_clk: clk_put(kbc->clk); err_iounmap: iounmap(kbc->mmio); err_free_mem_region: release_mem_region(res->start, resource_size(res)); err_free_mem: input_free_device(input_dev); kfree(kbc); err_free_pdata: if (!pdev->dev.platform_data) { matrix_keyboard_of_free_keymap(pdata->keymap_data); kfree(pdata); } return err; } static int __devexit tegra_kbc_remove(struct platform_device *pdev) { struct tegra_kbc *kbc = platform_get_drvdata(pdev); struct resource *res; platform_set_drvdata(pdev, NULL); free_irq(kbc->irq, pdev); clk_put(kbc->clk); input_unregister_device(kbc->idev); iounmap(kbc->mmio); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(res->start, resource_size(res)); /* * If we do not have platform data attached to the device we * allocated it ourselves and thus need to free it. */ if (!pdev->dev.platform_data) kfree(kbc->pdata); kfree(kbc); return 0; } #ifdef CONFIG_PM_SLEEP static int tegra_kbc_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct tegra_kbc *kbc = platform_get_drvdata(pdev); mutex_lock(&kbc->idev->mutex); if (device_may_wakeup(&pdev->dev)) { disable_irq(kbc->irq); del_timer_sync(&kbc->timer); tegra_kbc_set_fifo_interrupt(kbc, false); /* Forcefully clear the interrupt status */ writel(0x7, kbc->mmio + KBC_INT_0); /* * Store the previous resident time of continuous polling mode. * Force the keyboard into interrupt mode. */ kbc->cp_to_wkup_dly = readl(kbc->mmio + KBC_TO_CNT_0); writel(0, kbc->mmio + KBC_TO_CNT_0); tegra_kbc_setup_wakekeys(kbc, true); msleep(30); kbc->keypress_caused_wake = false; /* Enable keypress interrupt before going into suspend. */ tegra_kbc_set_keypress_interrupt(kbc, true); enable_irq(kbc->irq); enable_irq_wake(kbc->irq); } else { if (kbc->idev->users) tegra_kbc_stop(kbc); } mutex_unlock(&kbc->idev->mutex); return 0; } static int tegra_kbc_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct tegra_kbc *kbc = platform_get_drvdata(pdev); int err = 0; mutex_lock(&kbc->idev->mutex); if (device_may_wakeup(&pdev->dev)) { disable_irq_wake(kbc->irq); tegra_kbc_setup_wakekeys(kbc, false); /* We will use fifo interrupts for key detection. */ tegra_kbc_set_keypress_interrupt(kbc, false); /* Restore the resident time of continuous polling mode. */ writel(kbc->cp_to_wkup_dly, kbc->mmio + KBC_TO_CNT_0); tegra_kbc_set_fifo_interrupt(kbc, true); if (kbc->keypress_caused_wake && kbc->wakeup_key) { /* * We can't report events directly from the ISR * because timekeeping is stopped when processing * wakeup request and we get a nasty warning when * we try to call do_gettimeofday() in evdev * handler. */ input_report_key(kbc->idev, kbc->wakeup_key, 1); input_sync(kbc->idev); input_report_key(kbc->idev, kbc->wakeup_key, 0); input_sync(kbc->idev); } } else { if (kbc->idev->users) err = tegra_kbc_start(kbc); } mutex_unlock(&kbc->idev->mutex); return err; } #endif static SIMPLE_DEV_PM_OPS(tegra_kbc_pm_ops, tegra_kbc_suspend, tegra_kbc_resume); static const struct of_device_id tegra_kbc_of_match[] = { { .compatible = "nvidia,tegra20-kbc", }, { }, }; MODULE_DEVICE_TABLE(of, tegra_kbc_of_match); static struct platform_driver tegra_kbc_driver = { .probe = tegra_kbc_probe, .remove = __devexit_p(tegra_kbc_remove), .driver = { .name = "tegra-kbc", .owner = THIS_MODULE, .pm = &tegra_kbc_pm_ops, .of_match_table = tegra_kbc_of_match, }, }; module_platform_driver(tegra_kbc_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Rakesh Iyer <riyer@nvidia.com>"); MODULE_DESCRIPTION("Tegra matrix keyboard controller driver"); MODULE_ALIAS("platform:tegra-kbc");