/* * * hfcpci.c low level driver for CCD's hfc-pci based cards * * Author Werner Cornelius (werner@isdn4linux.de) * based on existing driver for CCD hfc ISA cards * type approval valid for HFC-S PCI A based card * * Copyright 1999 by Werner Cornelius (werner@isdn-development.de) * Copyright 2008 by Karsten Keil <kkeil@novell.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Module options: * * debug: * NOTE: only one poll value must be given for all cards * See hfc_pci.h for debug flags. * * poll: * NOTE: only one poll value must be given for all cards * Give the number of samples for each fifo process. * By default 128 is used. Decrease to reduce delay, increase to * reduce cpu load. If unsure, don't mess with it! * A value of 128 will use controller's interrupt. Other values will * use kernel timer, because the controller will not allow lower values * than 128. * Also note that the value depends on the kernel timer frequency. * If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible. * If the kernel uses 100 Hz, steps of 80 samples are possible. * If the kernel uses 300 Hz, steps of about 26 samples are possible. * */ #include <linux/interrupt.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/mISDNhw.h> #include <linux/slab.h> #include "hfc_pci.h" static const char *hfcpci_revision = "2.0"; static int HFC_cnt; static uint debug; static uint poll, tics; static struct timer_list hfc_tl; static unsigned long hfc_jiffies; MODULE_AUTHOR("Karsten Keil"); MODULE_LICENSE("GPL"); module_param(debug, uint, S_IRUGO | S_IWUSR); module_param(poll, uint, S_IRUGO | S_IWUSR); enum { HFC_CCD_2BD0, HFC_CCD_B000, HFC_CCD_B006, HFC_CCD_B007, HFC_CCD_B008, HFC_CCD_B009, HFC_CCD_B00A, HFC_CCD_B00B, HFC_CCD_B00C, HFC_CCD_B100, HFC_CCD_B700, HFC_CCD_B701, HFC_ASUS_0675, HFC_BERKOM_A1T, HFC_BERKOM_TCONCEPT, HFC_ANIGMA_MC145575, HFC_ZOLTRIX_2BD0, HFC_DIGI_DF_M_IOM2_E, HFC_DIGI_DF_M_E, HFC_DIGI_DF_M_IOM2_A, HFC_DIGI_DF_M_A, HFC_ABOCOM_2BD1, HFC_SITECOM_DC105V2, }; struct hfcPCI_hw { unsigned char cirm; unsigned char ctmt; unsigned char clkdel; unsigned char states; unsigned char conn; unsigned char mst_m; unsigned char int_m1; unsigned char int_m2; unsigned char sctrl; unsigned char sctrl_r; unsigned char sctrl_e; unsigned char trm; unsigned char fifo_en; unsigned char bswapped; unsigned char protocol; int nt_timer; unsigned char __iomem *pci_io; /* start of PCI IO memory */ dma_addr_t dmahandle; void *fifos; /* FIFO memory */ int last_bfifo_cnt[2]; /* marker saving last b-fifo frame count */ struct timer_list timer; }; #define HFC_CFG_MASTER 1 #define HFC_CFG_SLAVE 2 #define HFC_CFG_PCM 3 #define HFC_CFG_2HFC 4 #define HFC_CFG_SLAVEHFC 5 #define HFC_CFG_NEG_F0 6 #define HFC_CFG_SW_DD_DU 7 #define FLG_HFC_TIMER_T1 16 #define FLG_HFC_TIMER_T3 17 #define NT_T1_COUNT 1120 /* number of 3.125ms interrupts (3.5s) */ #define NT_T3_COUNT 31 /* number of 3.125ms interrupts (97 ms) */ #define CLKDEL_TE 0x0e /* CLKDEL in TE mode */ #define CLKDEL_NT 0x6c /* CLKDEL in NT mode */ struct hfc_pci { u_char subtype; u_char chanlimit; u_char initdone; u_long cfg; u_int irq; u_int irqcnt; struct pci_dev *pdev; struct hfcPCI_hw hw; spinlock_t lock; /* card lock */ struct dchannel dch; struct bchannel bch[2]; }; /* Interface functions */ static void enable_hwirq(struct hfc_pci *hc) { hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE; Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2); } static void disable_hwirq(struct hfc_pci *hc) { hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE); Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2); } /* * free hardware resources used by driver */ static void release_io_hfcpci(struct hfc_pci *hc) { /* disable memory mapped ports + busmaster */ pci_write_config_word(hc->pdev, PCI_COMMAND, 0); del_timer(&hc->hw.timer); pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle); iounmap(hc->hw.pci_io); } /* * set mode (NT or TE) */ static void hfcpci_setmode(struct hfc_pci *hc) { if (hc->hw.protocol == ISDN_P_NT_S0) { hc->hw.clkdel = CLKDEL_NT; /* ST-Bit delay for NT-Mode */ hc->hw.sctrl |= SCTRL_MODE_NT; /* NT-MODE */ hc->hw.states = 1; /* G1 */ } else { hc->hw.clkdel = CLKDEL_TE; /* ST-Bit delay for TE-Mode */ hc->hw.sctrl &= ~SCTRL_MODE_NT; /* TE-MODE */ hc->hw.states = 2; /* F2 */ } Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel); Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states); udelay(10); Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */ Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl); } /* * function called to reset the HFC PCI chip. A complete software reset of chip * and fifos is done. */ static void reset_hfcpci(struct hfc_pci *hc) { u_char val; int cnt = 0; printk(KERN_DEBUG "reset_hfcpci: entered\n"); val = Read_hfc(hc, HFCPCI_CHIP_ID); printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val); /* enable memory mapped ports, disable busmaster */ pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO); disable_hwirq(hc); /* enable memory ports + busmaster */ pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO + PCI_ENA_MASTER); val = Read_hfc(hc, HFCPCI_STATUS); printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val); hc->hw.cirm = HFCPCI_RESET; /* Reset On */ Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm); set_current_state(TASK_UNINTERRUPTIBLE); mdelay(10); /* Timeout 10ms */ hc->hw.cirm = 0; /* Reset Off */ Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm); val = Read_hfc(hc, HFCPCI_STATUS); printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val); while (cnt < 50000) { /* max 50000 us */ udelay(5); cnt += 5; val = Read_hfc(hc, HFCPCI_STATUS); if (!(val & 2)) break; } printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt); hc->hw.fifo_en = 0x30; /* only D fifos enabled */ hc->hw.bswapped = 0; /* no exchange */ hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER; hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */ hc->hw.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */ hc->hw.sctrl_r = 0; hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE; /* S/T Auto awake */ hc->hw.mst_m = 0; if (test_bit(HFC_CFG_MASTER, &hc->cfg)) hc->hw.mst_m |= HFCPCI_MASTER; /* HFC Master Mode */ if (test_bit(HFC_CFG_NEG_F0, &hc->cfg)) hc->hw.mst_m |= HFCPCI_F0_NEGATIV; Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); Write_hfc(hc, HFCPCI_TRM, hc->hw.trm); Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e); Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt); hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC | HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER; Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); /* Clear already pending ints */ val = Read_hfc(hc, HFCPCI_INT_S1); /* set NT/TE mode */ hfcpci_setmode(hc); Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r); /* * Init GCI/IOM2 in master mode * Slots 0 and 1 are set for B-chan 1 and 2 * D- and monitor/CI channel are not enabled * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC * STIO2 is used as data input, B1+B2 from IOM->ST * ST B-channel send disabled -> continuous 1s * The IOM slots are always enabled */ if (test_bit(HFC_CFG_PCM, &hc->cfg)) { /* set data flow directions: connect B1,B2: HFC to/from PCM */ hc->hw.conn = 0x09; } else { hc->hw.conn = 0x36; /* set data flow directions */ if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) { Write_hfc(hc, HFCPCI_B1_SSL, 0xC0); Write_hfc(hc, HFCPCI_B2_SSL, 0xC1); Write_hfc(hc, HFCPCI_B1_RSL, 0xC0); Write_hfc(hc, HFCPCI_B2_RSL, 0xC1); } else { Write_hfc(hc, HFCPCI_B1_SSL, 0x80); Write_hfc(hc, HFCPCI_B2_SSL, 0x81); Write_hfc(hc, HFCPCI_B1_RSL, 0x80); Write_hfc(hc, HFCPCI_B2_RSL, 0x81); } } Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); val = Read_hfc(hc, HFCPCI_INT_S2); } /* * Timer function called when kernel timer expires */ static void hfcpci_Timer(struct hfc_pci *hc) { hc->hw.timer.expires = jiffies + 75; /* WD RESET */ /* * WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80); * add_timer(&hc->hw.timer); */ } /* * select a b-channel entry matching and active */ static struct bchannel * Sel_BCS(struct hfc_pci *hc, int channel) { if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) && (hc->bch[0].nr & channel)) return &hc->bch[0]; else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) && (hc->bch[1].nr & channel)) return &hc->bch[1]; else return NULL; } /* * clear the desired B-channel rx fifo */ static void hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo) { u_char fifo_state; struct bzfifo *bzr; if (fifo) { bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2; fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX; } else { bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1; fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX; } if (fifo_state) hc->hw.fifo_en ^= fifo_state; Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); hc->hw.last_bfifo_cnt[fifo] = 0; bzr->f1 = MAX_B_FRAMES; bzr->f2 = bzr->f1; /* init F pointers to remain constant */ bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1); bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16( le16_to_cpu(bzr->za[MAX_B_FRAMES].z1)); if (fifo_state) hc->hw.fifo_en |= fifo_state; Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); } /* * clear the desired B-channel tx fifo */ static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo) { u_char fifo_state; struct bzfifo *bzt; if (fifo) { bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2; fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX; } else { bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1; fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX; } if (fifo_state) hc->hw.fifo_en ^= fifo_state; Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL) printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) " "z1(%x) z2(%x) state(%x)\n", fifo, bzt->f1, bzt->f2, le16_to_cpu(bzt->za[MAX_B_FRAMES].z1), le16_to_cpu(bzt->za[MAX_B_FRAMES].z2), fifo_state); bzt->f2 = MAX_B_FRAMES; bzt->f1 = bzt->f2; /* init F pointers to remain constant */ bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1); bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2); if (fifo_state) hc->hw.fifo_en |= fifo_state; Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL) printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n", fifo, bzt->f1, bzt->f2, le16_to_cpu(bzt->za[MAX_B_FRAMES].z1), le16_to_cpu(bzt->za[MAX_B_FRAMES].z2)); } /* * read a complete B-frame out of the buffer */ static void hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz, u_char *bdata, int count) { u_char *ptr, *ptr1, new_f2; int maxlen, new_z2; struct zt *zp; if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO)) printk(KERN_DEBUG "hfcpci_empty_fifo\n"); zp = &bz->za[bz->f2]; /* point to Z-Regs */ new_z2 = le16_to_cpu(zp->z2) + count; /* new position in fifo */ if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL)) new_z2 -= B_FIFO_SIZE; /* buffer wrap */ new_f2 = (bz->f2 + 1) & MAX_B_FRAMES; if ((count > MAX_DATA_SIZE + 3) || (count < 4) || (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) { if (bch->debug & DEBUG_HW) printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet " "invalid length %d or crc\n", count); #ifdef ERROR_STATISTIC bch->err_inv++; #endif bz->za[new_f2].z2 = cpu_to_le16(new_z2); bz->f2 = new_f2; /* next buffer */ } else { bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC); if (!bch->rx_skb) { printk(KERN_WARNING "HFCPCI: receive out of memory\n"); return; } count -= 3; ptr = skb_put(bch->rx_skb, count); if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL) maxlen = count; /* complete transfer */ else maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(zp->z2); /* maximum */ ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL); /* start of data */ memcpy(ptr, ptr1, maxlen); /* copy data */ count -= maxlen; if (count) { /* rest remaining */ ptr += maxlen; ptr1 = bdata; /* start of buffer */ memcpy(ptr, ptr1, count); /* rest */ } bz->za[new_f2].z2 = cpu_to_le16(new_z2); bz->f2 = new_f2; /* next buffer */ recv_Bchannel(bch, MISDN_ID_ANY); } } /* * D-channel receive procedure */ static int receive_dmsg(struct hfc_pci *hc) { struct dchannel *dch = &hc->dch; int maxlen; int rcnt, total; int count = 5; u_char *ptr, *ptr1; struct dfifo *df; struct zt *zp; df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx; while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) { zp = &df->za[df->f2 & D_FREG_MASK]; rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2); if (rcnt < 0) rcnt += D_FIFO_SIZE; rcnt++; if (dch->debug & DEBUG_HW_DCHANNEL) printk(KERN_DEBUG "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n", df->f1, df->f2, le16_to_cpu(zp->z1), le16_to_cpu(zp->z2), rcnt); if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) || (df->data[le16_to_cpu(zp->z1)])) { if (dch->debug & DEBUG_HW) printk(KERN_DEBUG "empty_fifo hfcpci paket inv. len " "%d or crc %d\n", rcnt, df->data[le16_to_cpu(zp->z1)]); #ifdef ERROR_STATISTIC cs->err_rx++; #endif df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1); /* next buffer */ df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) & (D_FIFO_SIZE - 1)); } else { dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC); if (!dch->rx_skb) { printk(KERN_WARNING "HFC-PCI: D receive out of memory\n"); break; } total = rcnt; rcnt -= 3; ptr = skb_put(dch->rx_skb, rcnt); if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE) maxlen = rcnt; /* complete transfer */ else maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2); /* maximum */ ptr1 = df->data + le16_to_cpu(zp->z2); /* start of data */ memcpy(ptr, ptr1, maxlen); /* copy data */ rcnt -= maxlen; if (rcnt) { /* rest remaining */ ptr += maxlen; ptr1 = df->data; /* start of buffer */ memcpy(ptr, ptr1, rcnt); /* rest */ } df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1); /* next buffer */ df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16(( le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1)); recv_Dchannel(dch); } } return 1; } /* * check for transparent receive data and read max one 'poll' size if avail */ static void hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz, struct bzfifo *txbz, u_char *bdata) { __le16 *z1r, *z2r, *z1t, *z2t; int new_z2, fcnt_rx, fcnt_tx, maxlen; u_char *ptr, *ptr1; z1r = &rxbz->za[MAX_B_FRAMES].z1; /* pointer to z reg */ z2r = z1r + 1; z1t = &txbz->za[MAX_B_FRAMES].z1; z2t = z1t + 1; fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r); if (!fcnt_rx) return; /* no data avail */ if (fcnt_rx <= 0) fcnt_rx += B_FIFO_SIZE; /* bytes actually buffered */ new_z2 = le16_to_cpu(*z2r) + fcnt_rx; /* new position in fifo */ if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL)) new_z2 -= B_FIFO_SIZE; /* buffer wrap */ if (fcnt_rx > MAX_DATA_SIZE) { /* flush, if oversized */ *z2r = cpu_to_le16(new_z2); /* new position */ return; } fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t); if (fcnt_tx <= 0) fcnt_tx += B_FIFO_SIZE; /* fcnt_tx contains available bytes in tx-fifo */ fcnt_tx = B_FIFO_SIZE - fcnt_tx; /* remaining bytes to send (bytes in tx-fifo) */ bch->rx_skb = mI_alloc_skb(fcnt_rx, GFP_ATOMIC); if (bch->rx_skb) { ptr = skb_put(bch->rx_skb, fcnt_rx); if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL) maxlen = fcnt_rx; /* complete transfer */ else maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r); /* maximum */ ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL); /* start of data */ memcpy(ptr, ptr1, maxlen); /* copy data */ fcnt_rx -= maxlen; if (fcnt_rx) { /* rest remaining */ ptr += maxlen; ptr1 = bdata; /* start of buffer */ memcpy(ptr, ptr1, fcnt_rx); /* rest */ } recv_Bchannel(bch, fcnt_tx); /* bch, id */ } else printk(KERN_WARNING "HFCPCI: receive out of memory\n"); *z2r = cpu_to_le16(new_z2); /* new position */ } /* * B-channel main receive routine */ static void main_rec_hfcpci(struct bchannel *bch) { struct hfc_pci *hc = bch->hw; int rcnt, real_fifo; int receive = 0, count = 5; struct bzfifo *txbz, *rxbz; u_char *bdata; struct zt *zp; if ((bch->nr & 2) && (!hc->hw.bswapped)) { rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2; txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2; bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2; real_fifo = 1; } else { rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1; txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1; bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1; real_fifo = 0; } Begin: count--; if (rxbz->f1 != rxbz->f2) { if (bch->debug & DEBUG_HW_BCHANNEL) printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n", bch->nr, rxbz->f1, rxbz->f2); zp = &rxbz->za[rxbz->f2]; rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2); if (rcnt < 0) rcnt += B_FIFO_SIZE; rcnt++; if (bch->debug & DEBUG_HW_BCHANNEL) printk(KERN_DEBUG "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n", bch->nr, le16_to_cpu(zp->z1), le16_to_cpu(zp->z2), rcnt); hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt); rcnt = rxbz->f1 - rxbz->f2; if (rcnt < 0) rcnt += MAX_B_FRAMES + 1; if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) { rcnt = 0; hfcpci_clear_fifo_rx(hc, real_fifo); } hc->hw.last_bfifo_cnt[real_fifo] = rcnt; if (rcnt > 1) receive = 1; else receive = 0; } else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) { hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata); return; } else receive = 0; if (count && receive) goto Begin; } /* * D-channel send routine */ static void hfcpci_fill_dfifo(struct hfc_pci *hc) { struct dchannel *dch = &hc->dch; int fcnt; int count, new_z1, maxlen; struct dfifo *df; u_char *src, *dst, new_f1; if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO)) printk(KERN_DEBUG "%s\n", __func__); if (!dch->tx_skb) return; count = dch->tx_skb->len - dch->tx_idx; if (count <= 0) return; df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx; if (dch->debug & DEBUG_HW_DFIFO) printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__, df->f1, df->f2, le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1)); fcnt = df->f1 - df->f2; /* frame count actually buffered */ if (fcnt < 0) fcnt += (MAX_D_FRAMES + 1); /* if wrap around */ if (fcnt > (MAX_D_FRAMES - 1)) { if (dch->debug & DEBUG_HW_DCHANNEL) printk(KERN_DEBUG "hfcpci_fill_Dfifo more as 14 frames\n"); #ifdef ERROR_STATISTIC cs->err_tx++; #endif return; } /* now determine free bytes in FIFO buffer */ maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1; if (maxlen <= 0) maxlen += D_FIFO_SIZE; /* count now contains available bytes */ if (dch->debug & DEBUG_HW_DCHANNEL) printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n", count, maxlen); if (count > maxlen) { if (dch->debug & DEBUG_HW_DCHANNEL) printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n"); return; } new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) & (D_FIFO_SIZE - 1); new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1); src = dch->tx_skb->data + dch->tx_idx; /* source pointer */ dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1); maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1); /* end fifo */ if (maxlen > count) maxlen = count; /* limit size */ memcpy(dst, src, maxlen); /* first copy */ count -= maxlen; /* remaining bytes */ if (count) { dst = df->data; /* start of buffer */ src += maxlen; /* new position */ memcpy(dst, src, count); } df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1); /* for next buffer */ df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1); /* new pos actual buffer */ df->f1 = new_f1; /* next frame */ dch->tx_idx = dch->tx_skb->len; } /* * B-channel send routine */ static void hfcpci_fill_fifo(struct bchannel *bch) { struct hfc_pci *hc = bch->hw; int maxlen, fcnt; int count, new_z1; struct bzfifo *bz; u_char *bdata; u_char new_f1, *src, *dst; __le16 *z1t, *z2t; if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO)) printk(KERN_DEBUG "%s\n", __func__); if ((!bch->tx_skb) || bch->tx_skb->len <= 0) return; count = bch->tx_skb->len - bch->tx_idx; if ((bch->nr & 2) && (!hc->hw.bswapped)) { bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2; bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2; } else { bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1; bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1; } if (test_bit(FLG_TRANSPARENT, &bch->Flags)) { z1t = &bz->za[MAX_B_FRAMES].z1; z2t = z1t + 1; if (bch->debug & DEBUG_HW_BCHANNEL) printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) " "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count, le16_to_cpu(*z1t), le16_to_cpu(*z2t)); fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t); if (fcnt <= 0) fcnt += B_FIFO_SIZE; /* fcnt contains available bytes in fifo */ fcnt = B_FIFO_SIZE - fcnt; /* remaining bytes to send (bytes in fifo) */ /* "fill fifo if empty" feature */ if (test_bit(FLG_FILLEMPTY, &bch->Flags) && !fcnt) { /* printk(KERN_DEBUG "%s: buffer empty, so we have " "underrun\n", __func__); */ /* fill buffer, to prevent future underrun */ count = HFCPCI_FILLEMPTY; new_z1 = le16_to_cpu(*z1t) + count; /* new buffer Position */ if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL)) new_z1 -= B_FIFO_SIZE; /* buffer wrap */ dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL); maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t); /* end of fifo */ if (bch->debug & DEBUG_HW_BFIFO) printk(KERN_DEBUG "hfcpci_FFt fillempty " "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n", fcnt, maxlen, new_z1, dst); fcnt += count; if (maxlen > count) maxlen = count; /* limit size */ memset(dst, 0x2a, maxlen); /* first copy */ count -= maxlen; /* remaining bytes */ if (count) { dst = bdata; /* start of buffer */ memset(dst, 0x2a, count); } *z1t = cpu_to_le16(new_z1); /* now send data */ } next_t_frame: count = bch->tx_skb->len - bch->tx_idx; /* maximum fill shall be poll*2 */ if (count > (poll << 1) - fcnt) count = (poll << 1) - fcnt; if (count <= 0) return; /* data is suitable for fifo */ new_z1 = le16_to_cpu(*z1t) + count; /* new buffer Position */ if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL)) new_z1 -= B_FIFO_SIZE; /* buffer wrap */ src = bch->tx_skb->data + bch->tx_idx; /* source pointer */ dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL); maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t); /* end of fifo */ if (bch->debug & DEBUG_HW_BFIFO) printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) " "maxl(%d) nz1(%x) dst(%p)\n", fcnt, maxlen, new_z1, dst); fcnt += count; bch->tx_idx += count; if (maxlen > count) maxlen = count; /* limit size */ memcpy(dst, src, maxlen); /* first copy */ count -= maxlen; /* remaining bytes */ if (count) { dst = bdata; /* start of buffer */ src += maxlen; /* new position */ memcpy(dst, src, count); } *z1t = cpu_to_le16(new_z1); /* now send data */ if (bch->tx_idx < bch->tx_skb->len) return; /* send confirm, on trans, free on hdlc. */ if (test_bit(FLG_TRANSPARENT, &bch->Flags)) confirm_Bsend(bch); dev_kfree_skb(bch->tx_skb); if (get_next_bframe(bch)) goto next_t_frame; return; } if (bch->debug & DEBUG_HW_BCHANNEL) printk(KERN_DEBUG "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n", __func__, bch->nr, bz->f1, bz->f2, bz->za[bz->f1].z1); fcnt = bz->f1 - bz->f2; /* frame count actually buffered */ if (fcnt < 0) fcnt += (MAX_B_FRAMES + 1); /* if wrap around */ if (fcnt > (MAX_B_FRAMES - 1)) { if (bch->debug & DEBUG_HW_BCHANNEL) printk(KERN_DEBUG "hfcpci_fill_Bfifo more as 14 frames\n"); return; } /* now determine free bytes in FIFO buffer */ maxlen = le16_to_cpu(bz->za[bz->f2].z2) - le16_to_cpu(bz->za[bz->f1].z1) - 1; if (maxlen <= 0) maxlen += B_FIFO_SIZE; /* count now contains available bytes */ if (bch->debug & DEBUG_HW_BCHANNEL) printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n", bch->nr, count, maxlen); if (maxlen < count) { if (bch->debug & DEBUG_HW_BCHANNEL) printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n"); return; } new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count; /* new buffer Position */ if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL)) new_z1 -= B_FIFO_SIZE; /* buffer wrap */ new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES); src = bch->tx_skb->data + bch->tx_idx; /* source pointer */ dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL); maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1); /* end fifo */ if (maxlen > count) maxlen = count; /* limit size */ memcpy(dst, src, maxlen); /* first copy */ count -= maxlen; /* remaining bytes */ if (count) { dst = bdata; /* start of buffer */ src += maxlen; /* new position */ memcpy(dst, src, count); } bz->za[new_f1].z1 = cpu_to_le16(new_z1); /* for next buffer */ bz->f1 = new_f1; /* next frame */ dev_kfree_skb(bch->tx_skb); get_next_bframe(bch); } /* * handle L1 state changes TE */ static void ph_state_te(struct dchannel *dch) { if (dch->debug) printk(KERN_DEBUG "%s: TE newstate %x\n", __func__, dch->state); switch (dch->state) { case 0: l1_event(dch->l1, HW_RESET_IND); break; case 3: l1_event(dch->l1, HW_DEACT_IND); break; case 5: case 8: l1_event(dch->l1, ANYSIGNAL); break; case 6: l1_event(dch->l1, INFO2); break; case 7: l1_event(dch->l1, INFO4_P8); break; } } /* * handle L1 state changes NT */ static void handle_nt_timer3(struct dchannel *dch) { struct hfc_pci *hc = dch->hw; test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); hc->hw.nt_timer = 0; test_and_set_bit(FLG_ACTIVE, &dch->Flags); if (test_bit(HFC_CFG_MASTER, &hc->cfg)) hc->hw.mst_m |= HFCPCI_MASTER; Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); } static void ph_state_nt(struct dchannel *dch) { struct hfc_pci *hc = dch->hw; if (dch->debug) printk(KERN_DEBUG "%s: NT newstate %x\n", __func__, dch->state); switch (dch->state) { case 2: if (hc->hw.nt_timer < 0) { hc->hw.nt_timer = 0; test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags); hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); /* Clear already pending ints */ (void) Read_hfc(hc, HFCPCI_INT_S1); Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE); udelay(10); Write_hfc(hc, HFCPCI_STATES, 4); dch->state = 4; } else if (hc->hw.nt_timer == 0) { hc->hw.int_m1 |= HFCPCI_INTS_TIMER; Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); hc->hw.nt_timer = NT_T1_COUNT; hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER; hc->hw.ctmt |= HFCPCI_TIM3_125; Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER); test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags); /* allow G2 -> G3 transition */ Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3); } else { Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3); } break; case 1: hc->hw.nt_timer = 0; test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags); hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); test_and_clear_bit(FLG_ACTIVE, &dch->Flags); hc->hw.mst_m &= ~HFCPCI_MASTER; Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); _queue_data(&dch->dev.D, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); break; case 4: hc->hw.nt_timer = 0; test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags); hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); break; case 3: if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) { if (!test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags)) { handle_nt_timer3(dch); break; } test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags); hc->hw.int_m1 |= HFCPCI_INTS_TIMER; Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); hc->hw.nt_timer = NT_T3_COUNT; hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER; hc->hw.ctmt |= HFCPCI_TIM3_125; Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER); } break; } } static void ph_state(struct dchannel *dch) { struct hfc_pci *hc = dch->hw; if (hc->hw.protocol == ISDN_P_NT_S0) { if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) && hc->hw.nt_timer < 0) handle_nt_timer3(dch); else ph_state_nt(dch); } else ph_state_te(dch); } /* * Layer 1 callback function */ static int hfc_l1callback(struct dchannel *dch, u_int cmd) { struct hfc_pci *hc = dch->hw; switch (cmd) { case INFO3_P8: case INFO3_P10: if (test_bit(HFC_CFG_MASTER, &hc->cfg)) hc->hw.mst_m |= HFCPCI_MASTER; Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); break; case HW_RESET_REQ: Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3); /* HFC ST 3 */ udelay(6); Write_hfc(hc, HFCPCI_STATES, 3); /* HFC ST 2 */ if (test_bit(HFC_CFG_MASTER, &hc->cfg)) hc->hw.mst_m |= HFCPCI_MASTER; Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE | HFCPCI_DO_ACTION); l1_event(dch->l1, HW_POWERUP_IND); break; case HW_DEACT_REQ: hc->hw.mst_m &= ~HFCPCI_MASTER; Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); skb_queue_purge(&dch->squeue); if (dch->tx_skb) { dev_kfree_skb(dch->tx_skb); dch->tx_skb = NULL; } dch->tx_idx = 0; if (dch->rx_skb) { dev_kfree_skb(dch->rx_skb); dch->rx_skb = NULL; } test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags)) del_timer(&dch->timer); break; case HW_POWERUP_REQ: Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION); break; case PH_ACTIVATE_IND: test_and_set_bit(FLG_ACTIVE, &dch->Flags); _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); break; case PH_DEACTIVATE_IND: test_and_clear_bit(FLG_ACTIVE, &dch->Flags); _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); break; default: if (dch->debug & DEBUG_HW) printk(KERN_DEBUG "%s: unknown command %x\n", __func__, cmd); return -1; } return 0; } /* * Interrupt handler */ static inline void tx_birq(struct bchannel *bch) { if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len) hfcpci_fill_fifo(bch); else { if (bch->tx_skb) dev_kfree_skb(bch->tx_skb); if (get_next_bframe(bch)) hfcpci_fill_fifo(bch); } } static inline void tx_dirq(struct dchannel *dch) { if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len) hfcpci_fill_dfifo(dch->hw); else { if (dch->tx_skb) dev_kfree_skb(dch->tx_skb); if (get_next_dframe(dch)) hfcpci_fill_dfifo(dch->hw); } } static irqreturn_t hfcpci_int(int intno, void *dev_id) { struct hfc_pci *hc = dev_id; u_char exval; struct bchannel *bch; u_char val, stat; spin_lock(&hc->lock); if (!(hc->hw.int_m2 & 0x08)) { spin_unlock(&hc->lock); return IRQ_NONE; /* not initialised */ } stat = Read_hfc(hc, HFCPCI_STATUS); if (HFCPCI_ANYINT & stat) { val = Read_hfc(hc, HFCPCI_INT_S1); if (hc->dch.debug & DEBUG_HW_DCHANNEL) printk(KERN_DEBUG "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val); } else { /* shared */ spin_unlock(&hc->lock); return IRQ_NONE; } hc->irqcnt++; if (hc->dch.debug & DEBUG_HW_DCHANNEL) printk(KERN_DEBUG "HFC-PCI irq %x\n", val); val &= hc->hw.int_m1; if (val & 0x40) { /* state machine irq */ exval = Read_hfc(hc, HFCPCI_STATES) & 0xf; if (hc->dch.debug & DEBUG_HW_DCHANNEL) printk(KERN_DEBUG "ph_state chg %d->%d\n", hc->dch.state, exval); hc->dch.state = exval; schedule_event(&hc->dch, FLG_PHCHANGE); val &= ~0x40; } if (val & 0x80) { /* timer irq */ if (hc->hw.protocol == ISDN_P_NT_S0) { if ((--hc->hw.nt_timer) < 0) schedule_event(&hc->dch, FLG_PHCHANGE); } val &= ~0x80; Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER); } if (val & 0x08) { /* B1 rx */ bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1); if (bch) main_rec_hfcpci(bch); else if (hc->dch.debug) printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n"); } if (val & 0x10) { /* B2 rx */ bch = Sel_BCS(hc, 2); if (bch) main_rec_hfcpci(bch); else if (hc->dch.debug) printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n"); } if (val & 0x01) { /* B1 tx */ bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1); if (bch) tx_birq(bch); else if (hc->dch.debug) printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n"); } if (val & 0x02) { /* B2 tx */ bch = Sel_BCS(hc, 2); if (bch) tx_birq(bch); else if (hc->dch.debug) printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n"); } if (val & 0x20) /* D rx */ receive_dmsg(hc); if (val & 0x04) { /* D tx */ if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags)) del_timer(&hc->dch.timer); tx_dirq(&hc->dch); } spin_unlock(&hc->lock); return IRQ_HANDLED; } /* * timer callback for D-chan busy resolution. Currently no function */ static void hfcpci_dbusy_timer(struct hfc_pci *hc) { } /* * activate/deactivate hardware for selected channels and mode */ static int mode_hfcpci(struct bchannel *bch, int bc, int protocol) { struct hfc_pci *hc = bch->hw; int fifo2; u_char rx_slot = 0, tx_slot = 0, pcm_mode; if (bch->debug & DEBUG_HW_BCHANNEL) printk(KERN_DEBUG "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n", bch->state, protocol, bch->nr, bc); fifo2 = bc; pcm_mode = (bc >> 24) & 0xff; if (pcm_mode) { /* PCM SLOT USE */ if (!test_bit(HFC_CFG_PCM, &hc->cfg)) printk(KERN_WARNING "%s: pcm channel id without HFC_CFG_PCM\n", __func__); rx_slot = (bc >> 8) & 0xff; tx_slot = (bc >> 16) & 0xff; bc = bc & 0xff; } else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE)) printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n", __func__); if (hc->chanlimit > 1) { hc->hw.bswapped = 0; /* B1 and B2 normal mode */ hc->hw.sctrl_e &= ~0x80; } else { if (bc & 2) { if (protocol != ISDN_P_NONE) { hc->hw.bswapped = 1; /* B1 and B2 exchanged */ hc->hw.sctrl_e |= 0x80; } else { hc->hw.bswapped = 0; /* B1 and B2 normal mode */ hc->hw.sctrl_e &= ~0x80; } fifo2 = 1; } else { hc->hw.bswapped = 0; /* B1 and B2 normal mode */ hc->hw.sctrl_e &= ~0x80; } } switch (protocol) { case (-1): /* used for init */ bch->state = -1; bch->nr = bc; case (ISDN_P_NONE): if (bch->state == ISDN_P_NONE) return 0; if (bc & 2) { hc->hw.sctrl &= ~SCTRL_B2_ENA; hc->hw.sctrl_r &= ~SCTRL_B2_ENA; } else { hc->hw.sctrl &= ~SCTRL_B1_ENA; hc->hw.sctrl_r &= ~SCTRL_B1_ENA; } if (fifo2 & 2) { hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2; hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC); } else { hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1; hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC); } #ifdef REVERSE_BITORDER if (bch->nr & 2) hc->hw.cirm &= 0x7f; else hc->hw.cirm &= 0xbf; #endif bch->state = ISDN_P_NONE; bch->nr = bc; test_and_clear_bit(FLG_HDLC, &bch->Flags); test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags); break; case (ISDN_P_B_RAW): bch->state = protocol; bch->nr = bc; hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0); hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0); if (bc & 2) { hc->hw.sctrl |= SCTRL_B2_ENA; hc->hw.sctrl_r |= SCTRL_B2_ENA; #ifdef REVERSE_BITORDER hc->hw.cirm |= 0x80; #endif } else { hc->hw.sctrl |= SCTRL_B1_ENA; hc->hw.sctrl_r |= SCTRL_B1_ENA; #ifdef REVERSE_BITORDER hc->hw.cirm |= 0x40; #endif } if (fifo2 & 2) { hc->hw.fifo_en |= HFCPCI_FIFOEN_B2; if (!tics) hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC); hc->hw.ctmt |= 2; hc->hw.conn &= ~0x18; } else { hc->hw.fifo_en |= HFCPCI_FIFOEN_B1; if (!tics) hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC); hc->hw.ctmt |= 1; hc->hw.conn &= ~0x03; } test_and_set_bit(FLG_TRANSPARENT, &bch->Flags); break; case (ISDN_P_B_HDLC): bch->state = protocol; bch->nr = bc; hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0); hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0); if (bc & 2) { hc->hw.sctrl |= SCTRL_B2_ENA; hc->hw.sctrl_r |= SCTRL_B2_ENA; } else { hc->hw.sctrl |= SCTRL_B1_ENA; hc->hw.sctrl_r |= SCTRL_B1_ENA; } if (fifo2 & 2) { hc->hw.last_bfifo_cnt[1] = 0; hc->hw.fifo_en |= HFCPCI_FIFOEN_B2; hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC); hc->hw.ctmt &= ~2; hc->hw.conn &= ~0x18; } else { hc->hw.last_bfifo_cnt[0] = 0; hc->hw.fifo_en |= HFCPCI_FIFOEN_B1; hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC); hc->hw.ctmt &= ~1; hc->hw.conn &= ~0x03; } test_and_set_bit(FLG_HDLC, &bch->Flags); break; default: printk(KERN_DEBUG "prot not known %x\n", protocol); return -ENOPROTOOPT; } if (test_bit(HFC_CFG_PCM, &hc->cfg)) { if ((protocol == ISDN_P_NONE) || (protocol == -1)) { /* init case */ rx_slot = 0; tx_slot = 0; } else { if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) { rx_slot |= 0xC0; tx_slot |= 0xC0; } else { rx_slot |= 0x80; tx_slot |= 0x80; } } if (bc & 2) { hc->hw.conn &= 0xc7; hc->hw.conn |= 0x08; printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n", __func__, tx_slot); printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n", __func__, rx_slot); Write_hfc(hc, HFCPCI_B2_SSL, tx_slot); Write_hfc(hc, HFCPCI_B2_RSL, rx_slot); } else { hc->hw.conn &= 0xf8; hc->hw.conn |= 0x01; printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n", __func__, tx_slot); printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n", __func__, rx_slot); Write_hfc(hc, HFCPCI_B1_SSL, tx_slot); Write_hfc(hc, HFCPCI_B1_RSL, rx_slot); } } Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e); Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl); Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r); Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt); Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); #ifdef REVERSE_BITORDER Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm); #endif return 0; } static int set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan) { struct hfc_pci *hc = bch->hw; if (bch->debug & DEBUG_HW_BCHANNEL) printk(KERN_DEBUG "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n", bch->state, protocol, bch->nr, chan); if (bch->nr != chan) { printk(KERN_DEBUG "HFCPCI rxtest wrong channel parameter %x/%x\n", bch->nr, chan); return -EINVAL; } switch (protocol) { case (ISDN_P_B_RAW): bch->state = protocol; hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0); if (chan & 2) { hc->hw.sctrl_r |= SCTRL_B2_ENA; hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX; if (!tics) hc->hw.int_m1 |= HFCPCI_INTS_B2REC; hc->hw.ctmt |= 2; hc->hw.conn &= ~0x18; #ifdef REVERSE_BITORDER hc->hw.cirm |= 0x80; #endif } else { hc->hw.sctrl_r |= SCTRL_B1_ENA; hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX; if (!tics) hc->hw.int_m1 |= HFCPCI_INTS_B1REC; hc->hw.ctmt |= 1; hc->hw.conn &= ~0x03; #ifdef REVERSE_BITORDER hc->hw.cirm |= 0x40; #endif } break; case (ISDN_P_B_HDLC): bch->state = protocol; hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0); if (chan & 2) { hc->hw.sctrl_r |= SCTRL_B2_ENA; hc->hw.last_bfifo_cnt[1] = 0; hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX; hc->hw.int_m1 |= HFCPCI_INTS_B2REC; hc->hw.ctmt &= ~2; hc->hw.conn &= ~0x18; } else { hc->hw.sctrl_r |= SCTRL_B1_ENA; hc->hw.last_bfifo_cnt[0] = 0; hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX; hc->hw.int_m1 |= HFCPCI_INTS_B1REC; hc->hw.ctmt &= ~1; hc->hw.conn &= ~0x03; } break; default: printk(KERN_DEBUG "prot not known %x\n", protocol); return -ENOPROTOOPT; } Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r); Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt); Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); #ifdef REVERSE_BITORDER Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm); #endif return 0; } static void deactivate_bchannel(struct bchannel *bch) { struct hfc_pci *hc = bch->hw; u_long flags; spin_lock_irqsave(&hc->lock, flags); mISDN_clear_bchannel(bch); mode_hfcpci(bch, bch->nr, ISDN_P_NONE); spin_unlock_irqrestore(&hc->lock, flags); } /* * Layer 1 B-channel hardware access */ static int channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq) { int ret = 0; switch (cq->op) { case MISDN_CTRL_GETOP: cq->op = MISDN_CTRL_FILL_EMPTY; break; case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */ test_and_set_bit(FLG_FILLEMPTY, &bch->Flags); if (debug & DEBUG_HW_OPEN) printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d " "off=%d)\n", __func__, bch->nr, !!cq->p1); break; default: printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op); ret = -EINVAL; break; } return ret; } static int hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg) { struct bchannel *bch = container_of(ch, struct bchannel, ch); struct hfc_pci *hc = bch->hw; int ret = -EINVAL; u_long flags; if (bch->debug & DEBUG_HW) printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg); switch (cmd) { case HW_TESTRX_RAW: spin_lock_irqsave(&hc->lock, flags); ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg); spin_unlock_irqrestore(&hc->lock, flags); break; case HW_TESTRX_HDLC: spin_lock_irqsave(&hc->lock, flags); ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg); spin_unlock_irqrestore(&hc->lock, flags); break; case HW_TESTRX_OFF: spin_lock_irqsave(&hc->lock, flags); mode_hfcpci(bch, bch->nr, ISDN_P_NONE); spin_unlock_irqrestore(&hc->lock, flags); ret = 0; break; case CLOSE_CHANNEL: test_and_clear_bit(FLG_OPEN, &bch->Flags); if (test_bit(FLG_ACTIVE, &bch->Flags)) deactivate_bchannel(bch); ch->protocol = ISDN_P_NONE; ch->peer = NULL; module_put(THIS_MODULE); ret = 0; break; case CONTROL_CHANNEL: ret = channel_bctrl(bch, arg); break; default: printk(KERN_WARNING "%s: unknown prim(%x)\n", __func__, cmd); } return ret; } /* * Layer2 -> Layer 1 Dchannel data */ static int hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb) { struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); struct dchannel *dch = container_of(dev, struct dchannel, dev); struct hfc_pci *hc = dch->hw; int ret = -EINVAL; struct mISDNhead *hh = mISDN_HEAD_P(skb); unsigned int id; u_long flags; switch (hh->prim) { case PH_DATA_REQ: spin_lock_irqsave(&hc->lock, flags); ret = dchannel_senddata(dch, skb); if (ret > 0) { /* direct TX */ id = hh->id; /* skb can be freed */ hfcpci_fill_dfifo(dch->hw); ret = 0; spin_unlock_irqrestore(&hc->lock, flags); queue_ch_frame(ch, PH_DATA_CNF, id, NULL); } else spin_unlock_irqrestore(&hc->lock, flags); return ret; case PH_ACTIVATE_REQ: spin_lock_irqsave(&hc->lock, flags); if (hc->hw.protocol == ISDN_P_NT_S0) { ret = 0; if (test_bit(HFC_CFG_MASTER, &hc->cfg)) hc->hw.mst_m |= HFCPCI_MASTER; Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); if (test_bit(FLG_ACTIVE, &dch->Flags)) { spin_unlock_irqrestore(&hc->lock, flags); _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); break; } test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags); Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE | HFCPCI_DO_ACTION | 1); } else ret = l1_event(dch->l1, hh->prim); spin_unlock_irqrestore(&hc->lock, flags); break; case PH_DEACTIVATE_REQ: test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); spin_lock_irqsave(&hc->lock, flags); if (hc->hw.protocol == ISDN_P_NT_S0) { /* prepare deactivation */ Write_hfc(hc, HFCPCI_STATES, 0x40); skb_queue_purge(&dch->squeue); if (dch->tx_skb) { dev_kfree_skb(dch->tx_skb); dch->tx_skb = NULL; } dch->tx_idx = 0; if (dch->rx_skb) { dev_kfree_skb(dch->rx_skb); dch->rx_skb = NULL; } test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags)) del_timer(&dch->timer); #ifdef FIXME if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags)) dchannel_sched_event(&hc->dch, D_CLEARBUSY); #endif hc->hw.mst_m &= ~HFCPCI_MASTER; Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); ret = 0; } else { ret = l1_event(dch->l1, hh->prim); } spin_unlock_irqrestore(&hc->lock, flags); break; } if (!ret) dev_kfree_skb(skb); return ret; } /* * Layer2 -> Layer 1 Bchannel data */ static int hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb) { struct bchannel *bch = container_of(ch, struct bchannel, ch); struct hfc_pci *hc = bch->hw; int ret = -EINVAL; struct mISDNhead *hh = mISDN_HEAD_P(skb); unsigned int id; u_long flags; switch (hh->prim) { case PH_DATA_REQ: spin_lock_irqsave(&hc->lock, flags); ret = bchannel_senddata(bch, skb); if (ret > 0) { /* direct TX */ id = hh->id; /* skb can be freed */ hfcpci_fill_fifo(bch); ret = 0; spin_unlock_irqrestore(&hc->lock, flags); if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) queue_ch_frame(ch, PH_DATA_CNF, id, NULL); } else spin_unlock_irqrestore(&hc->lock, flags); return ret; case PH_ACTIVATE_REQ: spin_lock_irqsave(&hc->lock, flags); if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) ret = mode_hfcpci(bch, bch->nr, ch->protocol); else ret = 0; spin_unlock_irqrestore(&hc->lock, flags); if (!ret) _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_KERNEL); break; case PH_DEACTIVATE_REQ: deactivate_bchannel(bch); _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_KERNEL); ret = 0; break; } if (!ret) dev_kfree_skb(skb); return ret; } /* * called for card init message */ static void inithfcpci(struct hfc_pci *hc) { printk(KERN_DEBUG "inithfcpci: entered\n"); hc->dch.timer.function = (void *) hfcpci_dbusy_timer; hc->dch.timer.data = (long) &hc->dch; init_timer(&hc->dch.timer); hc->chanlimit = 2; mode_hfcpci(&hc->bch[0], 1, -1); mode_hfcpci(&hc->bch[1], 2, -1); } static int init_card(struct hfc_pci *hc) { int cnt = 3; u_long flags; printk(KERN_DEBUG "init_card: entered\n"); spin_lock_irqsave(&hc->lock, flags); disable_hwirq(hc); spin_unlock_irqrestore(&hc->lock, flags); if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) { printk(KERN_WARNING "mISDN: couldn't get interrupt %d\n", hc->irq); return -EIO; } spin_lock_irqsave(&hc->lock, flags); reset_hfcpci(hc); while (cnt) { inithfcpci(hc); /* * Finally enable IRQ output * this is only allowed, if an IRQ routine is already * established for this HFC, so don't do that earlier */ enable_hwirq(hc); spin_unlock_irqrestore(&hc->lock, flags); /* Timeout 80ms */ current->state = TASK_UNINTERRUPTIBLE; schedule_timeout((80 * HZ) / 1000); printk(KERN_INFO "HFC PCI: IRQ %d count %d\n", hc->irq, hc->irqcnt); /* now switch timer interrupt off */ spin_lock_irqsave(&hc->lock, flags); hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); /* reinit mode reg */ Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); if (!hc->irqcnt) { printk(KERN_WARNING "HFC PCI: IRQ(%d) getting no interrupts " "during init %d\n", hc->irq, 4 - cnt); if (cnt == 1) break; else { reset_hfcpci(hc); cnt--; } } else { spin_unlock_irqrestore(&hc->lock, flags); hc->initdone = 1; return 0; } } disable_hwirq(hc); spin_unlock_irqrestore(&hc->lock, flags); free_irq(hc->irq, hc); return -EIO; } static int channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq) { int ret = 0; u_char slot; switch (cq->op) { case MISDN_CTRL_GETOP: cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT | MISDN_CTRL_DISCONNECT; break; case MISDN_CTRL_LOOP: /* channel 0 disabled loop */ if (cq->channel < 0 || cq->channel > 2) { ret = -EINVAL; break; } if (cq->channel & 1) { if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) slot = 0xC0; else slot = 0x80; printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n", __func__, slot); Write_hfc(hc, HFCPCI_B1_SSL, slot); Write_hfc(hc, HFCPCI_B1_RSL, slot); hc->hw.conn = (hc->hw.conn & ~7) | 6; Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); } if (cq->channel & 2) { if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) slot = 0xC1; else slot = 0x81; printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n", __func__, slot); Write_hfc(hc, HFCPCI_B2_SSL, slot); Write_hfc(hc, HFCPCI_B2_RSL, slot); hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30; Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); } if (cq->channel & 3) hc->hw.trm |= 0x80; /* enable IOM-loop */ else { hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09; Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); hc->hw.trm &= 0x7f; /* disable IOM-loop */ } Write_hfc(hc, HFCPCI_TRM, hc->hw.trm); break; case MISDN_CTRL_CONNECT: if (cq->channel == cq->p1) { ret = -EINVAL; break; } if (cq->channel < 1 || cq->channel > 2 || cq->p1 < 1 || cq->p1 > 2) { ret = -EINVAL; break; } if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) slot = 0xC0; else slot = 0x80; printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n", __func__, slot); Write_hfc(hc, HFCPCI_B1_SSL, slot); Write_hfc(hc, HFCPCI_B2_RSL, slot); if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) slot = 0xC1; else slot = 0x81; printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n", __func__, slot); Write_hfc(hc, HFCPCI_B2_SSL, slot); Write_hfc(hc, HFCPCI_B1_RSL, slot); hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36; Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); hc->hw.trm |= 0x80; Write_hfc(hc, HFCPCI_TRM, hc->hw.trm); break; case MISDN_CTRL_DISCONNECT: hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09; Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); hc->hw.trm &= 0x7f; /* disable IOM-loop */ break; default: printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op); ret = -EINVAL; break; } return ret; } static int open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch, struct channel_req *rq) { int err = 0; if (debug & DEBUG_HW_OPEN) printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__, hc->dch.dev.id, __builtin_return_address(0)); if (rq->protocol == ISDN_P_NONE) return -EINVAL; if (rq->adr.channel == 1) { /* TODO: E-Channel */ return -EINVAL; } if (!hc->initdone) { if (rq->protocol == ISDN_P_TE_S0) { err = create_l1(&hc->dch, hfc_l1callback); if (err) return err; } hc->hw.protocol = rq->protocol; ch->protocol = rq->protocol; err = init_card(hc); if (err) return err; } else { if (rq->protocol != ch->protocol) { if (hc->hw.protocol == ISDN_P_TE_S0) l1_event(hc->dch.l1, CLOSE_CHANNEL); if (rq->protocol == ISDN_P_TE_S0) { err = create_l1(&hc->dch, hfc_l1callback); if (err) return err; } hc->hw.protocol = rq->protocol; ch->protocol = rq->protocol; hfcpci_setmode(hc); } } if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) || ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) { _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, GFP_KERNEL); } rq->ch = ch; if (!try_module_get(THIS_MODULE)) printk(KERN_WARNING "%s:cannot get module\n", __func__); return 0; } static int open_bchannel(struct hfc_pci *hc, struct channel_req *rq) { struct bchannel *bch; if (rq->adr.channel == 0 || rq->adr.channel > 2) return -EINVAL; if (rq->protocol == ISDN_P_NONE) return -EINVAL; bch = &hc->bch[rq->adr.channel - 1]; if (test_and_set_bit(FLG_OPEN, &bch->Flags)) return -EBUSY; /* b-channel can be only open once */ test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags); bch->ch.protocol = rq->protocol; rq->ch = &bch->ch; /* TODO: E-channel */ if (!try_module_get(THIS_MODULE)) printk(KERN_WARNING "%s:cannot get module\n", __func__); return 0; } /* * device control function */ static int hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg) { struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); struct dchannel *dch = container_of(dev, struct dchannel, dev); struct hfc_pci *hc = dch->hw; struct channel_req *rq; int err = 0; if (dch->debug & DEBUG_HW) printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg); switch (cmd) { case OPEN_CHANNEL: rq = arg; if ((rq->protocol == ISDN_P_TE_S0) || (rq->protocol == ISDN_P_NT_S0)) err = open_dchannel(hc, ch, rq); else err = open_bchannel(hc, rq); break; case CLOSE_CHANNEL: if (debug & DEBUG_HW_OPEN) printk(KERN_DEBUG "%s: dev(%d) close from %p\n", __func__, hc->dch.dev.id, __builtin_return_address(0)); module_put(THIS_MODULE); break; case CONTROL_CHANNEL: err = channel_ctrl(hc, arg); break; default: if (dch->debug & DEBUG_HW) printk(KERN_DEBUG "%s: unknown command %x\n", __func__, cmd); return -EINVAL; } return err; } static int setup_hw(struct hfc_pci *hc) { void *buffer; printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision); hc->hw.cirm = 0; hc->dch.state = 0; pci_set_master(hc->pdev); if (!hc->irq) { printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n"); return 1; } hc->hw.pci_io = (char __iomem *)(unsigned long)hc->pdev->resource[1].start; if (!hc->hw.pci_io) { printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n"); return 1; } /* Allocate memory for FIFOS */ /* the memory needs to be on a 32k boundary within the first 4G */ pci_set_dma_mask(hc->pdev, 0xFFFF8000); buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle); /* We silently assume the address is okay if nonzero */ if (!buffer) { printk(KERN_WARNING "HFC-PCI: Error allocating memory for FIFO!\n"); return 1; } hc->hw.fifos = buffer; pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle); hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256); printk(KERN_INFO "HFC-PCI: defined at mem %#lx fifo %#lx(%#lx) IRQ %d HZ %d\n", (u_long) hc->hw.pci_io, (u_long) hc->hw.fifos, (u_long) hc->hw.dmahandle, hc->irq, HZ); /* enable memory mapped ports, disable busmaster */ pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO); hc->hw.int_m2 = 0; disable_hwirq(hc); hc->hw.int_m1 = 0; Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); /* At this point the needed PCI config is done */ /* fifos are still not enabled */ hc->hw.timer.function = (void *) hfcpci_Timer; hc->hw.timer.data = (long) hc; init_timer(&hc->hw.timer); /* default PCM master */ test_and_set_bit(HFC_CFG_MASTER, &hc->cfg); return 0; } static void release_card(struct hfc_pci *hc) { u_long flags; spin_lock_irqsave(&hc->lock, flags); hc->hw.int_m2 = 0; /* interrupt output off ! */ disable_hwirq(hc); mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE); mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE); if (hc->dch.timer.function != NULL) { del_timer(&hc->dch.timer); hc->dch.timer.function = NULL; } spin_unlock_irqrestore(&hc->lock, flags); if (hc->hw.protocol == ISDN_P_TE_S0) l1_event(hc->dch.l1, CLOSE_CHANNEL); if (hc->initdone) free_irq(hc->irq, hc); release_io_hfcpci(hc); /* must release after free_irq! */ mISDN_unregister_device(&hc->dch.dev); mISDN_freebchannel(&hc->bch[1]); mISDN_freebchannel(&hc->bch[0]); mISDN_freedchannel(&hc->dch); pci_set_drvdata(hc->pdev, NULL); kfree(hc); } static int setup_card(struct hfc_pci *card) { int err = -EINVAL; u_int i; char name[MISDN_MAX_IDLEN]; card->dch.debug = debug; spin_lock_init(&card->lock); mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state); card->dch.hw = card; card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0); card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) | (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK)); card->dch.dev.D.send = hfcpci_l2l1D; card->dch.dev.D.ctrl = hfc_dctrl; card->dch.dev.nrbchan = 2; for (i = 0; i < 2; i++) { card->bch[i].nr = i + 1; set_channelmap(i + 1, card->dch.dev.channelmap); card->bch[i].debug = debug; mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM); card->bch[i].hw = card; card->bch[i].ch.send = hfcpci_l2l1B; card->bch[i].ch.ctrl = hfc_bctrl; card->bch[i].ch.nr = i + 1; list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels); } err = setup_hw(card); if (err) goto error; snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1); err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name); if (err) goto error; HFC_cnt++; printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt); return 0; error: mISDN_freebchannel(&card->bch[1]); mISDN_freebchannel(&card->bch[0]); mISDN_freedchannel(&card->dch); kfree(card); return err; } /* private data in the PCI devices list */ struct _hfc_map { u_int subtype; u_int flag; char *name; }; static const struct _hfc_map hfc_map[] = { {HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"}, {HFC_CCD_B000, 0, "Billion B000"}, {HFC_CCD_B006, 0, "Billion B006"}, {HFC_CCD_B007, 0, "Billion B007"}, {HFC_CCD_B008, 0, "Billion B008"}, {HFC_CCD_B009, 0, "Billion B009"}, {HFC_CCD_B00A, 0, "Billion B00A"}, {HFC_CCD_B00B, 0, "Billion B00B"}, {HFC_CCD_B00C, 0, "Billion B00C"}, {HFC_CCD_B100, 0, "Seyeon B100"}, {HFC_CCD_B700, 0, "Primux II S0 B700"}, {HFC_CCD_B701, 0, "Primux II S0 NT B701"}, {HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"}, {HFC_ASUS_0675, 0, "Asuscom/Askey 675"}, {HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"}, {HFC_BERKOM_A1T, 0, "German telekom A1T"}, {HFC_ANIGMA_MC145575, 0, "Motorola MC145575"}, {HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"}, {HFC_DIGI_DF_M_IOM2_E, 0, "Digi International DataFire Micro V IOM2 (Europe)"}, {HFC_DIGI_DF_M_E, 0, "Digi International DataFire Micro V (Europe)"}, {HFC_DIGI_DF_M_IOM2_A, 0, "Digi International DataFire Micro V IOM2 (North America)"}, {HFC_DIGI_DF_M_A, 0, "Digi International DataFire Micro V (North America)"}, {HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"}, {}, }; static struct pci_device_id hfc_ids[] = { { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0), (unsigned long) &hfc_map[0] }, { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000), (unsigned long) &hfc_map[1] }, { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006), (unsigned long) &hfc_map[2] }, { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007), (unsigned long) &hfc_map[3] }, { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008), (unsigned long) &hfc_map[4] }, { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009), (unsigned long) &hfc_map[5] }, { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A), (unsigned long) &hfc_map[6] }, { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B), (unsigned long) &hfc_map[7] }, { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C), (unsigned long) &hfc_map[8] }, { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100), (unsigned long) &hfc_map[9] }, { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700), (unsigned long) &hfc_map[10] }, { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701), (unsigned long) &hfc_map[11] }, { PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1), (unsigned long) &hfc_map[12] }, { PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675), (unsigned long) &hfc_map[13] }, { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT), (unsigned long) &hfc_map[14] }, { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T), (unsigned long) &hfc_map[15] }, { PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575), (unsigned long) &hfc_map[16] }, { PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0), (unsigned long) &hfc_map[17] }, { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E), (unsigned long) &hfc_map[18] }, { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E), (unsigned long) &hfc_map[19] }, { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A), (unsigned long) &hfc_map[20] }, { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A), (unsigned long) &hfc_map[21] }, { PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2), (unsigned long) &hfc_map[22] }, {}, }; static int __devinit hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int err = -ENOMEM; struct hfc_pci *card; struct _hfc_map *m = (struct _hfc_map *)ent->driver_data; card = kzalloc(sizeof(struct hfc_pci), GFP_ATOMIC); if (!card) { printk(KERN_ERR "No kmem for HFC card\n"); return err; } card->pdev = pdev; card->subtype = m->subtype; err = pci_enable_device(pdev); if (err) { kfree(card); return err; } printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n", m->name, pci_name(pdev)); card->irq = pdev->irq; pci_set_drvdata(pdev, card); err = setup_card(card); if (err) pci_set_drvdata(pdev, NULL); return err; } static void __devexit hfc_remove_pci(struct pci_dev *pdev) { struct hfc_pci *card = pci_get_drvdata(pdev); if (card) release_card(card); else if (debug) printk(KERN_DEBUG "%s: drvdata already removed\n", __func__); } static struct pci_driver hfc_driver = { .name = "hfcpci", .probe = hfc_probe, .remove = __devexit_p(hfc_remove_pci), .id_table = hfc_ids, }; static int _hfcpci_softirq(struct device *dev, void *arg) { struct hfc_pci *hc = dev_get_drvdata(dev); struct bchannel *bch; if (hc == NULL) return 0; if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) { spin_lock(&hc->lock); bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1); if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */ main_rec_hfcpci(bch); tx_birq(bch); } bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2); if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */ main_rec_hfcpci(bch); tx_birq(bch); } spin_unlock(&hc->lock); } return 0; } static void hfcpci_softirq(void *arg) { (void) driver_for_each_device(&hfc_driver.driver, NULL, arg, _hfcpci_softirq); /* if next event would be in the past ... */ if ((s32)(hfc_jiffies + tics - jiffies) <= 0) hfc_jiffies = jiffies + 1; else hfc_jiffies += tics; hfc_tl.expires = hfc_jiffies; add_timer(&hfc_tl); } static int __init HFC_init(void) { int err; if (!poll) poll = HFCPCI_BTRANS_THRESHOLD; if (poll != HFCPCI_BTRANS_THRESHOLD) { tics = (poll * HZ) / 8000; if (tics < 1) tics = 1; poll = (tics * 8000) / HZ; if (poll > 256 || poll < 8) { printk(KERN_ERR "%s: Wrong poll value %d not in range " "of 8..256.\n", __func__, poll); err = -EINVAL; return err; } } if (poll != HFCPCI_BTRANS_THRESHOLD) { printk(KERN_INFO "%s: Using alternative poll value of %d\n", __func__, poll); hfc_tl.function = (void *)hfcpci_softirq; hfc_tl.data = 0; init_timer(&hfc_tl); hfc_tl.expires = jiffies + tics; hfc_jiffies = hfc_tl.expires; add_timer(&hfc_tl); } else tics = 0; /* indicate the use of controller's timer */ err = pci_register_driver(&hfc_driver); if (err) { if (timer_pending(&hfc_tl)) del_timer(&hfc_tl); } return err; } static void __exit HFC_cleanup(void) { if (timer_pending(&hfc_tl)) del_timer(&hfc_tl); pci_unregister_driver(&hfc_driver); } module_init(HFC_init); module_exit(HFC_cleanup); MODULE_DEVICE_TABLE(pci, hfc_ids);