/* handle em28xx IR remotes via linux kernel input layer. Copyright (C) 2005 Ludovico Cavedon <cavedon@sssup.it> Markus Rechberger <mrechberger@gmail.com> Mauro Carvalho Chehab <mchehab@infradead.org> Sascha Sommer <saschasommer@freenet.de> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/module.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/usb.h> #include <linux/slab.h> #include "em28xx.h" #define EM28XX_SNAPSHOT_KEY KEY_CAMERA #define EM28XX_SBUTTON_QUERY_INTERVAL 500 #define EM28XX_R0C_USBSUSP_SNAPSHOT 0x20 static unsigned int ir_debug; module_param(ir_debug, int, 0644); MODULE_PARM_DESC(ir_debug, "enable debug messages [IR]"); #define MODULE_NAME "em28xx" #define i2cdprintk(fmt, arg...) \ if (ir_debug) { \ printk(KERN_DEBUG "%s/ir: " fmt, ir->name , ## arg); \ } #define dprintk(fmt, arg...) \ if (ir_debug) { \ printk(KERN_DEBUG "%s/ir: " fmt, ir->name , ## arg); \ } /********************************************************** Polling structure used by em28xx IR's **********************************************************/ struct em28xx_ir_poll_result { unsigned int toggle_bit:1; unsigned int read_count:7; u8 rc_address; u8 rc_data[4]; /* 1 byte on em2860/2880, 4 on em2874 */ }; struct em28xx_IR { struct em28xx *dev; struct rc_dev *rc; char name[32]; char phys[32]; /* poll external decoder */ int polling; struct delayed_work work; unsigned int full_code:1; unsigned int last_readcount; int (*get_key)(struct em28xx_IR *, struct em28xx_ir_poll_result *); }; /********************************************************** I2C IR based get keycodes - should be used with ir-kbd-i2c **********************************************************/ int em28xx_get_key_terratec(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw) { unsigned char b; /* poll IR chip */ if (1 != i2c_master_recv(ir->c, &b, 1)) { i2cdprintk("read error\n"); return -EIO; } /* it seems that 0xFE indicates that a button is still hold down, while 0xff indicates that no button is hold down. 0xfe sequences are sometimes interrupted by 0xFF */ i2cdprintk("key %02x\n", b); if (b == 0xff) return 0; if (b == 0xfe) /* keep old data */ return 1; *ir_key = b; *ir_raw = b; return 1; } int em28xx_get_key_em_haup(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw) { unsigned char buf[2]; u16 code; int size; /* poll IR chip */ size = i2c_master_recv(ir->c, buf, sizeof(buf)); if (size != 2) return -EIO; /* Does eliminate repeated parity code */ if (buf[1] == 0xff) return 0; ir->old = buf[1]; /* * Rearranges bits to the right order. * The bit order were determined experimentally by using * The original Hauppauge Grey IR and another RC5 that uses addr=0x08 * The RC5 code has 14 bits, but we've experimentally determined * the meaning for only 11 bits. * So, the code translation is not complete. Yet, it is enough to * work with the provided RC5 IR. */ code = ((buf[0] & 0x01) ? 0x0020 : 0) | /* 0010 0000 */ ((buf[0] & 0x02) ? 0x0010 : 0) | /* 0001 0000 */ ((buf[0] & 0x04) ? 0x0008 : 0) | /* 0000 1000 */ ((buf[0] & 0x08) ? 0x0004 : 0) | /* 0000 0100 */ ((buf[0] & 0x10) ? 0x0002 : 0) | /* 0000 0010 */ ((buf[0] & 0x20) ? 0x0001 : 0) | /* 0000 0001 */ ((buf[1] & 0x08) ? 0x1000 : 0) | /* 0001 0000 */ ((buf[1] & 0x10) ? 0x0800 : 0) | /* 0000 1000 */ ((buf[1] & 0x20) ? 0x0400 : 0) | /* 0000 0100 */ ((buf[1] & 0x40) ? 0x0200 : 0) | /* 0000 0010 */ ((buf[1] & 0x80) ? 0x0100 : 0); /* 0000 0001 */ i2cdprintk("ir hauppauge (em2840): code=0x%02x (rcv=0x%02x%02x)\n", code, buf[1], buf[0]); /* return key */ *ir_key = code; *ir_raw = code; return 1; } int em28xx_get_key_pinnacle_usb_grey(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw) { unsigned char buf[3]; /* poll IR chip */ if (3 != i2c_master_recv(ir->c, buf, 3)) { i2cdprintk("read error\n"); return -EIO; } i2cdprintk("key %02x\n", buf[2]&0x3f); if (buf[0] != 0x00) return 0; *ir_key = buf[2]&0x3f; *ir_raw = buf[2]&0x3f; return 1; } int em28xx_get_key_winfast_usbii_deluxe(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw) { unsigned char subaddr, keydetect, key; struct i2c_msg msg[] = { { .addr = ir->c->addr, .flags = 0, .buf = &subaddr, .len = 1}, { .addr = ir->c->addr, .flags = I2C_M_RD, .buf = &keydetect, .len = 1} }; subaddr = 0x10; if (2 != i2c_transfer(ir->c->adapter, msg, 2)) { i2cdprintk("read error\n"); return -EIO; } if (keydetect == 0x00) return 0; subaddr = 0x00; msg[1].buf = &key; if (2 != i2c_transfer(ir->c->adapter, msg, 2)) { i2cdprintk("read error\n"); return -EIO; } if (key == 0x00) return 0; *ir_key = key; *ir_raw = key; return 1; } /********************************************************** Poll based get keycode functions **********************************************************/ /* This is for the em2860/em2880 */ static int default_polling_getkey(struct em28xx_IR *ir, struct em28xx_ir_poll_result *poll_result) { struct em28xx *dev = ir->dev; int rc; u8 msg[3] = { 0, 0, 0 }; /* Read key toggle, brand, and key code on registers 0x45, 0x46 and 0x47 */ rc = dev->em28xx_read_reg_req_len(dev, 0, EM28XX_R45_IR, msg, sizeof(msg)); if (rc < 0) return rc; /* Infrared toggle (Reg 0x45[7]) */ poll_result->toggle_bit = (msg[0] >> 7); /* Infrared read count (Reg 0x45[6:0] */ poll_result->read_count = (msg[0] & 0x7f); /* Remote Control Address (Reg 0x46) */ poll_result->rc_address = msg[1]; /* Remote Control Data (Reg 0x47) */ poll_result->rc_data[0] = msg[2]; return 0; } static int em2874_polling_getkey(struct em28xx_IR *ir, struct em28xx_ir_poll_result *poll_result) { struct em28xx *dev = ir->dev; int rc; u8 msg[5] = { 0, 0, 0, 0, 0 }; /* Read key toggle, brand, and key code on registers 0x51-55 */ rc = dev->em28xx_read_reg_req_len(dev, 0, EM2874_R51_IR, msg, sizeof(msg)); if (rc < 0) return rc; /* Infrared toggle (Reg 0x51[7]) */ poll_result->toggle_bit = (msg[0] >> 7); /* Infrared read count (Reg 0x51[6:0] */ poll_result->read_count = (msg[0] & 0x7f); /* Remote Control Address (Reg 0x52) */ poll_result->rc_address = msg[1]; /* Remote Control Data (Reg 0x53-55) */ poll_result->rc_data[0] = msg[2]; poll_result->rc_data[1] = msg[3]; poll_result->rc_data[2] = msg[4]; return 0; } /********************************************************** Polling code for em28xx **********************************************************/ static void em28xx_ir_handle_key(struct em28xx_IR *ir) { int result; struct em28xx_ir_poll_result poll_result; /* read the registers containing the IR status */ result = ir->get_key(ir, &poll_result); if (unlikely(result < 0)) { dprintk("ir->get_key() failed %d\n", result); return; } if (unlikely(poll_result.read_count != ir->last_readcount)) { dprintk("%s: toggle: %d, count: %d, key 0x%02x%02x\n", __func__, poll_result.toggle_bit, poll_result.read_count, poll_result.rc_address, poll_result.rc_data[0]); if (ir->full_code) rc_keydown(ir->rc, poll_result.rc_address << 8 | poll_result.rc_data[0], poll_result.toggle_bit); else rc_keydown(ir->rc, poll_result.rc_data[0], poll_result.toggle_bit); if (ir->dev->chip_id == CHIP_ID_EM2874 || ir->dev->chip_id == CHIP_ID_EM2884) /* The em2874 clears the readcount field every time the register is read. The em2860/2880 datasheet says that it is supposed to clear the readcount, but it doesn't. So with the em2874, we are looking for a non-zero read count as opposed to a readcount that is incrementing */ ir->last_readcount = 0; else ir->last_readcount = poll_result.read_count; } } static void em28xx_ir_work(struct work_struct *work) { struct em28xx_IR *ir = container_of(work, struct em28xx_IR, work.work); em28xx_ir_handle_key(ir); schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling)); } static int em28xx_ir_start(struct rc_dev *rc) { struct em28xx_IR *ir = rc->priv; INIT_DELAYED_WORK(&ir->work, em28xx_ir_work); schedule_delayed_work(&ir->work, 0); return 0; } static void em28xx_ir_stop(struct rc_dev *rc) { struct em28xx_IR *ir = rc->priv; cancel_delayed_work_sync(&ir->work); } int em28xx_ir_change_protocol(struct rc_dev *rc_dev, u64 rc_type) { int rc = 0; struct em28xx_IR *ir = rc_dev->priv; struct em28xx *dev = ir->dev; u8 ir_config = EM2874_IR_RC5; /* Adjust xclk based o IR table for RC5/NEC tables */ if (rc_type == RC_TYPE_RC5) { dev->board.xclk |= EM28XX_XCLK_IR_RC5_MODE; ir->full_code = 1; } else if (rc_type == RC_TYPE_NEC) { dev->board.xclk &= ~EM28XX_XCLK_IR_RC5_MODE; ir_config = EM2874_IR_NEC; ir->full_code = 1; } else if (rc_type != RC_TYPE_UNKNOWN) rc = -EINVAL; em28xx_write_reg_bits(dev, EM28XX_R0F_XCLK, dev->board.xclk, EM28XX_XCLK_IR_RC5_MODE); /* Setup the proper handler based on the chip */ switch (dev->chip_id) { case CHIP_ID_EM2860: case CHIP_ID_EM2883: ir->get_key = default_polling_getkey; break; case CHIP_ID_EM2884: case CHIP_ID_EM2874: case CHIP_ID_EM28174: ir->get_key = em2874_polling_getkey; em28xx_write_regs(dev, EM2874_R50_IR_CONFIG, &ir_config, 1); break; default: printk("Unrecognized em28xx chip id 0x%02x: IR not supported\n", dev->chip_id); rc = -EINVAL; } return rc; } int em28xx_ir_init(struct em28xx *dev) { struct em28xx_IR *ir; struct rc_dev *rc; int err = -ENOMEM; if (dev->board.ir_codes == NULL) { /* No remote control support */ return 0; } ir = kzalloc(sizeof(*ir), GFP_KERNEL); rc = rc_allocate_device(); if (!ir || !rc) goto err_out_free; /* record handles to ourself */ ir->dev = dev; dev->ir = ir; ir->rc = rc; /* * em2874 supports more protocols. For now, let's just announce * the two protocols that were already tested */ rc->allowed_protos = RC_TYPE_RC5 | RC_TYPE_NEC; rc->priv = ir; rc->change_protocol = em28xx_ir_change_protocol; rc->open = em28xx_ir_start; rc->close = em28xx_ir_stop; /* By default, keep protocol field untouched */ err = em28xx_ir_change_protocol(rc, RC_TYPE_UNKNOWN); if (err) goto err_out_free; /* This is how often we ask the chip for IR information */ ir->polling = 100; /* ms */ /* init input device */ snprintf(ir->name, sizeof(ir->name), "em28xx IR (%s)", dev->name); usb_make_path(dev->udev, ir->phys, sizeof(ir->phys)); strlcat(ir->phys, "/input0", sizeof(ir->phys)); rc->input_name = ir->name; rc->input_phys = ir->phys; rc->input_id.bustype = BUS_USB; rc->input_id.version = 1; rc->input_id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor); rc->input_id.product = le16_to_cpu(dev->udev->descriptor.idProduct); rc->dev.parent = &dev->udev->dev; rc->map_name = dev->board.ir_codes; rc->driver_name = MODULE_NAME; /* all done */ err = rc_register_device(rc); if (err) goto err_out_stop; return 0; err_out_stop: dev->ir = NULL; err_out_free: rc_free_device(rc); kfree(ir); return err; } int em28xx_ir_fini(struct em28xx *dev) { struct em28xx_IR *ir = dev->ir; /* skip detach on non attached boards */ if (!ir) return 0; if (ir->rc) rc_unregister_device(ir->rc); /* done */ kfree(ir); dev->ir = NULL; return 0; } /********************************************************** Handle Webcam snapshot button **********************************************************/ static void em28xx_query_sbutton(struct work_struct *work) { /* Poll the register and see if the button is depressed */ struct em28xx *dev = container_of(work, struct em28xx, sbutton_query_work.work); int ret; ret = em28xx_read_reg(dev, EM28XX_R0C_USBSUSP); if (ret & EM28XX_R0C_USBSUSP_SNAPSHOT) { u8 cleared; /* Button is depressed, clear the register */ cleared = ((u8) ret) & ~EM28XX_R0C_USBSUSP_SNAPSHOT; em28xx_write_regs(dev, EM28XX_R0C_USBSUSP, &cleared, 1); /* Not emulate the keypress */ input_report_key(dev->sbutton_input_dev, EM28XX_SNAPSHOT_KEY, 1); /* Now unpress the key */ input_report_key(dev->sbutton_input_dev, EM28XX_SNAPSHOT_KEY, 0); } /* Schedule next poll */ schedule_delayed_work(&dev->sbutton_query_work, msecs_to_jiffies(EM28XX_SBUTTON_QUERY_INTERVAL)); } void em28xx_register_snapshot_button(struct em28xx *dev) { struct input_dev *input_dev; int err; em28xx_info("Registering snapshot button...\n"); input_dev = input_allocate_device(); if (!input_dev) { em28xx_errdev("input_allocate_device failed\n"); return; } usb_make_path(dev->udev, dev->snapshot_button_path, sizeof(dev->snapshot_button_path)); strlcat(dev->snapshot_button_path, "/sbutton", sizeof(dev->snapshot_button_path)); INIT_DELAYED_WORK(&dev->sbutton_query_work, em28xx_query_sbutton); input_dev->name = "em28xx snapshot button"; input_dev->phys = dev->snapshot_button_path; input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP); set_bit(EM28XX_SNAPSHOT_KEY, input_dev->keybit); input_dev->keycodesize = 0; input_dev->keycodemax = 0; input_dev->id.bustype = BUS_USB; input_dev->id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor); input_dev->id.product = le16_to_cpu(dev->udev->descriptor.idProduct); input_dev->id.version = 1; input_dev->dev.parent = &dev->udev->dev; err = input_register_device(input_dev); if (err) { em28xx_errdev("input_register_device failed\n"); input_free_device(input_dev); return; } dev->sbutton_input_dev = input_dev; schedule_delayed_work(&dev->sbutton_query_work, msecs_to_jiffies(EM28XX_SBUTTON_QUERY_INTERVAL)); return; } void em28xx_deregister_snapshot_button(struct em28xx *dev) { if (dev->sbutton_input_dev != NULL) { em28xx_info("Deregistering snapshot button\n"); cancel_delayed_work_sync(&dev->sbutton_query_work); input_unregister_device(dev->sbutton_input_dev); dev->sbutton_input_dev = NULL; } return; }