/* * Driver for MT9P031 CMOS Image Sensor from Aptina * * Copyright (C) 2011, Laurent Pinchart <laurent.pinchart@ideasonboard.com> * Copyright (C) 2011, Javier Martin <javier.martin@vista-silicon.com> * Copyright (C) 2011, Guennadi Liakhovetski <g.liakhovetski@gmx.de> * * Based on the MT9V032 driver and Bastian Hecht's code. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/delay.h> #include <linux/device.h> #include <linux/module.h> #include <linux/i2c.h> #include <linux/log2.h> #include <linux/pm.h> #include <linux/slab.h> #include <linux/videodev2.h> #include <media/mt9p031.h> #include <media/v4l2-chip-ident.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-device.h> #include <media/v4l2-subdev.h> #include "aptina-pll.h" #define MT9P031_PIXEL_ARRAY_WIDTH 2752 #define MT9P031_PIXEL_ARRAY_HEIGHT 2004 #define MT9P031_CHIP_VERSION 0x00 #define MT9P031_CHIP_VERSION_VALUE 0x1801 #define MT9P031_ROW_START 0x01 #define MT9P031_ROW_START_MIN 0 #define MT9P031_ROW_START_MAX 2004 #define MT9P031_ROW_START_DEF 54 #define MT9P031_COLUMN_START 0x02 #define MT9P031_COLUMN_START_MIN 0 #define MT9P031_COLUMN_START_MAX 2750 #define MT9P031_COLUMN_START_DEF 16 #define MT9P031_WINDOW_HEIGHT 0x03 #define MT9P031_WINDOW_HEIGHT_MIN 2 #define MT9P031_WINDOW_HEIGHT_MAX 2006 #define MT9P031_WINDOW_HEIGHT_DEF 1944 #define MT9P031_WINDOW_WIDTH 0x04 #define MT9P031_WINDOW_WIDTH_MIN 2 #define MT9P031_WINDOW_WIDTH_MAX 2752 #define MT9P031_WINDOW_WIDTH_DEF 2592 #define MT9P031_HORIZONTAL_BLANK 0x05 #define MT9P031_HORIZONTAL_BLANK_MIN 0 #define MT9P031_HORIZONTAL_BLANK_MAX 4095 #define MT9P031_VERTICAL_BLANK 0x06 #define MT9P031_VERTICAL_BLANK_MIN 0 #define MT9P031_VERTICAL_BLANK_MAX 4095 #define MT9P031_VERTICAL_BLANK_DEF 25 #define MT9P031_OUTPUT_CONTROL 0x07 #define MT9P031_OUTPUT_CONTROL_CEN 2 #define MT9P031_OUTPUT_CONTROL_SYN 1 #define MT9P031_OUTPUT_CONTROL_DEF 0x1f82 #define MT9P031_SHUTTER_WIDTH_UPPER 0x08 #define MT9P031_SHUTTER_WIDTH_LOWER 0x09 #define MT9P031_SHUTTER_WIDTH_MIN 1 #define MT9P031_SHUTTER_WIDTH_MAX 1048575 #define MT9P031_SHUTTER_WIDTH_DEF 1943 #define MT9P031_PLL_CONTROL 0x10 #define MT9P031_PLL_CONTROL_PWROFF 0x0050 #define MT9P031_PLL_CONTROL_PWRON 0x0051 #define MT9P031_PLL_CONTROL_USEPLL 0x0052 #define MT9P031_PLL_CONFIG_1 0x11 #define MT9P031_PLL_CONFIG_2 0x12 #define MT9P031_PIXEL_CLOCK_CONTROL 0x0a #define MT9P031_FRAME_RESTART 0x0b #define MT9P031_SHUTTER_DELAY 0x0c #define MT9P031_RST 0x0d #define MT9P031_RST_ENABLE 1 #define MT9P031_RST_DISABLE 0 #define MT9P031_READ_MODE_1 0x1e #define MT9P031_READ_MODE_2 0x20 #define MT9P031_READ_MODE_2_ROW_MIR (1 << 15) #define MT9P031_READ_MODE_2_COL_MIR (1 << 14) #define MT9P031_READ_MODE_2_ROW_BLC (1 << 6) #define MT9P031_ROW_ADDRESS_MODE 0x22 #define MT9P031_COLUMN_ADDRESS_MODE 0x23 #define MT9P031_GLOBAL_GAIN 0x35 #define MT9P031_GLOBAL_GAIN_MIN 8 #define MT9P031_GLOBAL_GAIN_MAX 1024 #define MT9P031_GLOBAL_GAIN_DEF 8 #define MT9P031_GLOBAL_GAIN_MULT (1 << 6) #define MT9P031_ROW_BLACK_DEF_OFFSET 0x4b #define MT9P031_TEST_PATTERN 0xa0 #define MT9P031_TEST_PATTERN_SHIFT 3 #define MT9P031_TEST_PATTERN_ENABLE (1 << 0) #define MT9P031_TEST_PATTERN_DISABLE (0 << 0) #define MT9P031_TEST_PATTERN_GREEN 0xa1 #define MT9P031_TEST_PATTERN_RED 0xa2 #define MT9P031_TEST_PATTERN_BLUE 0xa3 struct mt9p031 { struct v4l2_subdev subdev; struct media_pad pad; struct v4l2_rect crop; /* Sensor window */ struct v4l2_mbus_framefmt format; struct v4l2_ctrl_handler ctrls; struct mt9p031_platform_data *pdata; struct mutex power_lock; /* lock to protect power_count */ int power_count; struct aptina_pll pll; /* Registers cache */ u16 output_control; u16 mode2; }; static struct mt9p031 *to_mt9p031(struct v4l2_subdev *sd) { return container_of(sd, struct mt9p031, subdev); } static int mt9p031_read(struct i2c_client *client, u8 reg) { return i2c_smbus_read_word_swapped(client, reg); } static int mt9p031_write(struct i2c_client *client, u8 reg, u16 data) { return i2c_smbus_write_word_swapped(client, reg, data); } static int mt9p031_set_output_control(struct mt9p031 *mt9p031, u16 clear, u16 set) { struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev); u16 value = (mt9p031->output_control & ~clear) | set; int ret; ret = mt9p031_write(client, MT9P031_OUTPUT_CONTROL, value); if (ret < 0) return ret; mt9p031->output_control = value; return 0; } static int mt9p031_set_mode2(struct mt9p031 *mt9p031, u16 clear, u16 set) { struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev); u16 value = (mt9p031->mode2 & ~clear) | set; int ret; ret = mt9p031_write(client, MT9P031_READ_MODE_2, value); if (ret < 0) return ret; mt9p031->mode2 = value; return 0; } static int mt9p031_reset(struct mt9p031 *mt9p031) { struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev); int ret; /* Disable chip output, synchronous option update */ ret = mt9p031_write(client, MT9P031_RST, MT9P031_RST_ENABLE); if (ret < 0) return ret; ret = mt9p031_write(client, MT9P031_RST, MT9P031_RST_DISABLE); if (ret < 0) return ret; return mt9p031_set_output_control(mt9p031, MT9P031_OUTPUT_CONTROL_CEN, 0); } static int mt9p031_pll_setup(struct mt9p031 *mt9p031) { static const struct aptina_pll_limits limits = { .ext_clock_min = 6000000, .ext_clock_max = 27000000, .int_clock_min = 2000000, .int_clock_max = 13500000, .out_clock_min = 180000000, .out_clock_max = 360000000, .pix_clock_max = 96000000, .n_min = 1, .n_max = 64, .m_min = 16, .m_max = 255, .p1_min = 1, .p1_max = 128, }; struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev); struct mt9p031_platform_data *pdata = mt9p031->pdata; mt9p031->pll.ext_clock = pdata->ext_freq; mt9p031->pll.pix_clock = pdata->target_freq; return aptina_pll_calculate(&client->dev, &limits, &mt9p031->pll); } static int mt9p031_pll_enable(struct mt9p031 *mt9p031) { struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev); int ret; ret = mt9p031_write(client, MT9P031_PLL_CONTROL, MT9P031_PLL_CONTROL_PWRON); if (ret < 0) return ret; ret = mt9p031_write(client, MT9P031_PLL_CONFIG_1, (mt9p031->pll.m << 8) | (mt9p031->pll.n - 1)); if (ret < 0) return ret; ret = mt9p031_write(client, MT9P031_PLL_CONFIG_2, mt9p031->pll.p1 - 1); if (ret < 0) return ret; usleep_range(1000, 2000); ret = mt9p031_write(client, MT9P031_PLL_CONTROL, MT9P031_PLL_CONTROL_PWRON | MT9P031_PLL_CONTROL_USEPLL); return ret; } static inline int mt9p031_pll_disable(struct mt9p031 *mt9p031) { struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev); return mt9p031_write(client, MT9P031_PLL_CONTROL, MT9P031_PLL_CONTROL_PWROFF); } static int mt9p031_power_on(struct mt9p031 *mt9p031) { /* Ensure RESET_BAR is low */ if (mt9p031->pdata->reset) { mt9p031->pdata->reset(&mt9p031->subdev, 1); usleep_range(1000, 2000); } /* Emable clock */ if (mt9p031->pdata->set_xclk) mt9p031->pdata->set_xclk(&mt9p031->subdev, mt9p031->pdata->ext_freq); /* Now RESET_BAR must be high */ if (mt9p031->pdata->reset) { mt9p031->pdata->reset(&mt9p031->subdev, 0); usleep_range(1000, 2000); } return 0; } static void mt9p031_power_off(struct mt9p031 *mt9p031) { if (mt9p031->pdata->reset) { mt9p031->pdata->reset(&mt9p031->subdev, 1); usleep_range(1000, 2000); } if (mt9p031->pdata->set_xclk) mt9p031->pdata->set_xclk(&mt9p031->subdev, 0); } static int __mt9p031_set_power(struct mt9p031 *mt9p031, bool on) { struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev); int ret; if (!on) { mt9p031_power_off(mt9p031); return 0; } ret = mt9p031_power_on(mt9p031); if (ret < 0) return ret; ret = mt9p031_reset(mt9p031); if (ret < 0) { dev_err(&client->dev, "Failed to reset the camera\n"); return ret; } return v4l2_ctrl_handler_setup(&mt9p031->ctrls); } /* ----------------------------------------------------------------------------- * V4L2 subdev video operations */ static int mt9p031_set_params(struct mt9p031 *mt9p031) { struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev); struct v4l2_mbus_framefmt *format = &mt9p031->format; const struct v4l2_rect *crop = &mt9p031->crop; unsigned int hblank; unsigned int vblank; unsigned int xskip; unsigned int yskip; unsigned int xbin; unsigned int ybin; int ret; /* Windows position and size. * * TODO: Make sure the start coordinates and window size match the * skipping, binning and mirroring (see description of registers 2 and 4 * in table 13, and Binning section on page 41). */ ret = mt9p031_write(client, MT9P031_COLUMN_START, crop->left); if (ret < 0) return ret; ret = mt9p031_write(client, MT9P031_ROW_START, crop->top); if (ret < 0) return ret; ret = mt9p031_write(client, MT9P031_WINDOW_WIDTH, crop->width - 1); if (ret < 0) return ret; ret = mt9p031_write(client, MT9P031_WINDOW_HEIGHT, crop->height - 1); if (ret < 0) return ret; /* Row and column binning and skipping. Use the maximum binning value * compatible with the skipping settings. */ xskip = DIV_ROUND_CLOSEST(crop->width, format->width); yskip = DIV_ROUND_CLOSEST(crop->height, format->height); xbin = 1 << (ffs(xskip) - 1); ybin = 1 << (ffs(yskip) - 1); ret = mt9p031_write(client, MT9P031_COLUMN_ADDRESS_MODE, ((xbin - 1) << 4) | (xskip - 1)); if (ret < 0) return ret; ret = mt9p031_write(client, MT9P031_ROW_ADDRESS_MODE, ((ybin - 1) << 4) | (yskip - 1)); if (ret < 0) return ret; /* Blanking - use minimum value for horizontal blanking and default * value for vertical blanking. */ hblank = 346 * ybin + 64 + (80 >> max_t(unsigned int, xbin, 3)); vblank = MT9P031_VERTICAL_BLANK_DEF; ret = mt9p031_write(client, MT9P031_HORIZONTAL_BLANK, hblank); if (ret < 0) return ret; ret = mt9p031_write(client, MT9P031_VERTICAL_BLANK, vblank); if (ret < 0) return ret; return ret; } static int mt9p031_s_stream(struct v4l2_subdev *subdev, int enable) { struct mt9p031 *mt9p031 = to_mt9p031(subdev); int ret; if (!enable) { /* Stop sensor readout */ ret = mt9p031_set_output_control(mt9p031, MT9P031_OUTPUT_CONTROL_CEN, 0); if (ret < 0) return ret; return mt9p031_pll_disable(mt9p031); } ret = mt9p031_set_params(mt9p031); if (ret < 0) return ret; /* Switch to master "normal" mode */ ret = mt9p031_set_output_control(mt9p031, 0, MT9P031_OUTPUT_CONTROL_CEN); if (ret < 0) return ret; return mt9p031_pll_enable(mt9p031); } static int mt9p031_enum_mbus_code(struct v4l2_subdev *subdev, struct v4l2_subdev_fh *fh, struct v4l2_subdev_mbus_code_enum *code) { struct mt9p031 *mt9p031 = to_mt9p031(subdev); if (code->pad || code->index) return -EINVAL; code->code = mt9p031->format.code; return 0; } static int mt9p031_enum_frame_size(struct v4l2_subdev *subdev, struct v4l2_subdev_fh *fh, struct v4l2_subdev_frame_size_enum *fse) { struct mt9p031 *mt9p031 = to_mt9p031(subdev); if (fse->index >= 8 || fse->code != mt9p031->format.code) return -EINVAL; fse->min_width = MT9P031_WINDOW_WIDTH_DEF / min_t(unsigned int, 7, fse->index + 1); fse->max_width = fse->min_width; fse->min_height = MT9P031_WINDOW_HEIGHT_DEF / (fse->index + 1); fse->max_height = fse->min_height; return 0; } static struct v4l2_mbus_framefmt * __mt9p031_get_pad_format(struct mt9p031 *mt9p031, struct v4l2_subdev_fh *fh, unsigned int pad, u32 which) { switch (which) { case V4L2_SUBDEV_FORMAT_TRY: return v4l2_subdev_get_try_format(fh, pad); case V4L2_SUBDEV_FORMAT_ACTIVE: return &mt9p031->format; default: return NULL; } } static struct v4l2_rect * __mt9p031_get_pad_crop(struct mt9p031 *mt9p031, struct v4l2_subdev_fh *fh, unsigned int pad, u32 which) { switch (which) { case V4L2_SUBDEV_FORMAT_TRY: return v4l2_subdev_get_try_crop(fh, pad); case V4L2_SUBDEV_FORMAT_ACTIVE: return &mt9p031->crop; default: return NULL; } } static int mt9p031_get_format(struct v4l2_subdev *subdev, struct v4l2_subdev_fh *fh, struct v4l2_subdev_format *fmt) { struct mt9p031 *mt9p031 = to_mt9p031(subdev); fmt->format = *__mt9p031_get_pad_format(mt9p031, fh, fmt->pad, fmt->which); return 0; } static int mt9p031_set_format(struct v4l2_subdev *subdev, struct v4l2_subdev_fh *fh, struct v4l2_subdev_format *format) { struct mt9p031 *mt9p031 = to_mt9p031(subdev); struct v4l2_mbus_framefmt *__format; struct v4l2_rect *__crop; unsigned int width; unsigned int height; unsigned int hratio; unsigned int vratio; __crop = __mt9p031_get_pad_crop(mt9p031, fh, format->pad, format->which); /* Clamp the width and height to avoid dividing by zero. */ width = clamp_t(unsigned int, ALIGN(format->format.width, 2), max(__crop->width / 7, MT9P031_WINDOW_WIDTH_MIN), __crop->width); height = clamp_t(unsigned int, ALIGN(format->format.height, 2), max(__crop->height / 8, MT9P031_WINDOW_HEIGHT_MIN), __crop->height); hratio = DIV_ROUND_CLOSEST(__crop->width, width); vratio = DIV_ROUND_CLOSEST(__crop->height, height); __format = __mt9p031_get_pad_format(mt9p031, fh, format->pad, format->which); __format->width = __crop->width / hratio; __format->height = __crop->height / vratio; format->format = *__format; return 0; } static int mt9p031_get_crop(struct v4l2_subdev *subdev, struct v4l2_subdev_fh *fh, struct v4l2_subdev_crop *crop) { struct mt9p031 *mt9p031 = to_mt9p031(subdev); crop->rect = *__mt9p031_get_pad_crop(mt9p031, fh, crop->pad, crop->which); return 0; } static int mt9p031_set_crop(struct v4l2_subdev *subdev, struct v4l2_subdev_fh *fh, struct v4l2_subdev_crop *crop) { struct mt9p031 *mt9p031 = to_mt9p031(subdev); struct v4l2_mbus_framefmt *__format; struct v4l2_rect *__crop; struct v4l2_rect rect; /* Clamp the crop rectangle boundaries and align them to a multiple of 2 * pixels to ensure a GRBG Bayer pattern. */ rect.left = clamp(ALIGN(crop->rect.left, 2), MT9P031_COLUMN_START_MIN, MT9P031_COLUMN_START_MAX); rect.top = clamp(ALIGN(crop->rect.top, 2), MT9P031_ROW_START_MIN, MT9P031_ROW_START_MAX); rect.width = clamp(ALIGN(crop->rect.width, 2), MT9P031_WINDOW_WIDTH_MIN, MT9P031_WINDOW_WIDTH_MAX); rect.height = clamp(ALIGN(crop->rect.height, 2), MT9P031_WINDOW_HEIGHT_MIN, MT9P031_WINDOW_HEIGHT_MAX); rect.width = min(rect.width, MT9P031_PIXEL_ARRAY_WIDTH - rect.left); rect.height = min(rect.height, MT9P031_PIXEL_ARRAY_HEIGHT - rect.top); __crop = __mt9p031_get_pad_crop(mt9p031, fh, crop->pad, crop->which); if (rect.width != __crop->width || rect.height != __crop->height) { /* Reset the output image size if the crop rectangle size has * been modified. */ __format = __mt9p031_get_pad_format(mt9p031, fh, crop->pad, crop->which); __format->width = rect.width; __format->height = rect.height; } *__crop = rect; crop->rect = rect; return 0; } /* ----------------------------------------------------------------------------- * V4L2 subdev control operations */ #define V4L2_CID_TEST_PATTERN (V4L2_CID_USER_BASE | 0x1001) static int mt9p031_s_ctrl(struct v4l2_ctrl *ctrl) { struct mt9p031 *mt9p031 = container_of(ctrl->handler, struct mt9p031, ctrls); struct i2c_client *client = v4l2_get_subdevdata(&mt9p031->subdev); u16 data; int ret; switch (ctrl->id) { case V4L2_CID_EXPOSURE: ret = mt9p031_write(client, MT9P031_SHUTTER_WIDTH_UPPER, (ctrl->val >> 16) & 0xffff); if (ret < 0) return ret; return mt9p031_write(client, MT9P031_SHUTTER_WIDTH_LOWER, ctrl->val & 0xffff); case V4L2_CID_GAIN: /* Gain is controlled by 2 analog stages and a digital stage. * Valid values for the 3 stages are * * Stage Min Max Step * ------------------------------------------ * First analog stage x1 x2 1 * Second analog stage x1 x4 0.125 * Digital stage x1 x16 0.125 * * To minimize noise, the gain stages should be used in the * second analog stage, first analog stage, digital stage order. * Gain from a previous stage should be pushed to its maximum * value before the next stage is used. */ if (ctrl->val <= 32) { data = ctrl->val; } else if (ctrl->val <= 64) { ctrl->val &= ~1; data = (1 << 6) | (ctrl->val >> 1); } else { ctrl->val &= ~7; data = ((ctrl->val - 64) << 5) | (1 << 6) | 32; } return mt9p031_write(client, MT9P031_GLOBAL_GAIN, data); case V4L2_CID_HFLIP: if (ctrl->val) return mt9p031_set_mode2(mt9p031, 0, MT9P031_READ_MODE_2_COL_MIR); else return mt9p031_set_mode2(mt9p031, MT9P031_READ_MODE_2_COL_MIR, 0); case V4L2_CID_VFLIP: if (ctrl->val) return mt9p031_set_mode2(mt9p031, 0, MT9P031_READ_MODE_2_ROW_MIR); else return mt9p031_set_mode2(mt9p031, MT9P031_READ_MODE_2_ROW_MIR, 0); case V4L2_CID_TEST_PATTERN: if (!ctrl->val) { ret = mt9p031_set_mode2(mt9p031, 0, MT9P031_READ_MODE_2_ROW_BLC); if (ret < 0) return ret; return mt9p031_write(client, MT9P031_TEST_PATTERN, MT9P031_TEST_PATTERN_DISABLE); } ret = mt9p031_write(client, MT9P031_TEST_PATTERN_GREEN, 0x05a0); if (ret < 0) return ret; ret = mt9p031_write(client, MT9P031_TEST_PATTERN_RED, 0x0a50); if (ret < 0) return ret; ret = mt9p031_write(client, MT9P031_TEST_PATTERN_BLUE, 0x0aa0); if (ret < 0) return ret; ret = mt9p031_set_mode2(mt9p031, MT9P031_READ_MODE_2_ROW_BLC, 0); if (ret < 0) return ret; ret = mt9p031_write(client, MT9P031_ROW_BLACK_DEF_OFFSET, 0); if (ret < 0) return ret; return mt9p031_write(client, MT9P031_TEST_PATTERN, ((ctrl->val - 1) << MT9P031_TEST_PATTERN_SHIFT) | MT9P031_TEST_PATTERN_ENABLE); } return 0; } static struct v4l2_ctrl_ops mt9p031_ctrl_ops = { .s_ctrl = mt9p031_s_ctrl, }; static const char * const mt9p031_test_pattern_menu[] = { "Disabled", "Color Field", "Horizontal Gradient", "Vertical Gradient", "Diagonal Gradient", "Classic Test Pattern", "Walking 1s", "Monochrome Horizontal Bars", "Monochrome Vertical Bars", "Vertical Color Bars", }; static const struct v4l2_ctrl_config mt9p031_ctrls[] = { { .ops = &mt9p031_ctrl_ops, .id = V4L2_CID_TEST_PATTERN, .type = V4L2_CTRL_TYPE_MENU, .name = "Test Pattern", .min = 0, .max = ARRAY_SIZE(mt9p031_test_pattern_menu) - 1, .step = 0, .def = 0, .flags = 0, .menu_skip_mask = 0, .qmenu = mt9p031_test_pattern_menu, } }; /* ----------------------------------------------------------------------------- * V4L2 subdev core operations */ static int mt9p031_set_power(struct v4l2_subdev *subdev, int on) { struct mt9p031 *mt9p031 = to_mt9p031(subdev); int ret = 0; mutex_lock(&mt9p031->power_lock); /* If the power count is modified from 0 to != 0 or from != 0 to 0, * update the power state. */ if (mt9p031->power_count == !on) { ret = __mt9p031_set_power(mt9p031, !!on); if (ret < 0) goto out; } /* Update the power count. */ mt9p031->power_count += on ? 1 : -1; WARN_ON(mt9p031->power_count < 0); out: mutex_unlock(&mt9p031->power_lock); return ret; } /* ----------------------------------------------------------------------------- * V4L2 subdev internal operations */ static int mt9p031_registered(struct v4l2_subdev *subdev) { struct i2c_client *client = v4l2_get_subdevdata(subdev); struct mt9p031 *mt9p031 = to_mt9p031(subdev); s32 data; int ret; ret = mt9p031_power_on(mt9p031); if (ret < 0) { dev_err(&client->dev, "MT9P031 power up failed\n"); return ret; } /* Read out the chip version register */ data = mt9p031_read(client, MT9P031_CHIP_VERSION); if (data != MT9P031_CHIP_VERSION_VALUE) { dev_err(&client->dev, "MT9P031 not detected, wrong version " "0x%04x\n", data); return -ENODEV; } mt9p031_power_off(mt9p031); dev_info(&client->dev, "MT9P031 detected at address 0x%02x\n", client->addr); return ret; } static int mt9p031_open(struct v4l2_subdev *subdev, struct v4l2_subdev_fh *fh) { struct mt9p031 *mt9p031 = to_mt9p031(subdev); struct v4l2_mbus_framefmt *format; struct v4l2_rect *crop; crop = v4l2_subdev_get_try_crop(fh, 0); crop->left = MT9P031_COLUMN_START_DEF; crop->top = MT9P031_ROW_START_DEF; crop->width = MT9P031_WINDOW_WIDTH_DEF; crop->height = MT9P031_WINDOW_HEIGHT_DEF; format = v4l2_subdev_get_try_format(fh, 0); if (mt9p031->pdata->version == MT9P031_MONOCHROME_VERSION) format->code = V4L2_MBUS_FMT_Y12_1X12; else format->code = V4L2_MBUS_FMT_SGRBG12_1X12; format->width = MT9P031_WINDOW_WIDTH_DEF; format->height = MT9P031_WINDOW_HEIGHT_DEF; format->field = V4L2_FIELD_NONE; format->colorspace = V4L2_COLORSPACE_SRGB; return mt9p031_set_power(subdev, 1); } static int mt9p031_close(struct v4l2_subdev *subdev, struct v4l2_subdev_fh *fh) { return mt9p031_set_power(subdev, 0); } static struct v4l2_subdev_core_ops mt9p031_subdev_core_ops = { .s_power = mt9p031_set_power, }; static struct v4l2_subdev_video_ops mt9p031_subdev_video_ops = { .s_stream = mt9p031_s_stream, }; static struct v4l2_subdev_pad_ops mt9p031_subdev_pad_ops = { .enum_mbus_code = mt9p031_enum_mbus_code, .enum_frame_size = mt9p031_enum_frame_size, .get_fmt = mt9p031_get_format, .set_fmt = mt9p031_set_format, .get_crop = mt9p031_get_crop, .set_crop = mt9p031_set_crop, }; static struct v4l2_subdev_ops mt9p031_subdev_ops = { .core = &mt9p031_subdev_core_ops, .video = &mt9p031_subdev_video_ops, .pad = &mt9p031_subdev_pad_ops, }; static const struct v4l2_subdev_internal_ops mt9p031_subdev_internal_ops = { .registered = mt9p031_registered, .open = mt9p031_open, .close = mt9p031_close, }; /* ----------------------------------------------------------------------------- * Driver initialization and probing */ static int mt9p031_probe(struct i2c_client *client, const struct i2c_device_id *did) { struct mt9p031_platform_data *pdata = client->dev.platform_data; struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent); struct mt9p031 *mt9p031; unsigned int i; int ret; if (pdata == NULL) { dev_err(&client->dev, "No platform data\n"); return -EINVAL; } if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA)) { dev_warn(&client->dev, "I2C-Adapter doesn't support I2C_FUNC_SMBUS_WORD\n"); return -EIO; } mt9p031 = kzalloc(sizeof(*mt9p031), GFP_KERNEL); if (mt9p031 == NULL) return -ENOMEM; mt9p031->pdata = pdata; mt9p031->output_control = MT9P031_OUTPUT_CONTROL_DEF; mt9p031->mode2 = MT9P031_READ_MODE_2_ROW_BLC; v4l2_ctrl_handler_init(&mt9p031->ctrls, ARRAY_SIZE(mt9p031_ctrls) + 4); v4l2_ctrl_new_std(&mt9p031->ctrls, &mt9p031_ctrl_ops, V4L2_CID_EXPOSURE, MT9P031_SHUTTER_WIDTH_MIN, MT9P031_SHUTTER_WIDTH_MAX, 1, MT9P031_SHUTTER_WIDTH_DEF); v4l2_ctrl_new_std(&mt9p031->ctrls, &mt9p031_ctrl_ops, V4L2_CID_GAIN, MT9P031_GLOBAL_GAIN_MIN, MT9P031_GLOBAL_GAIN_MAX, 1, MT9P031_GLOBAL_GAIN_DEF); v4l2_ctrl_new_std(&mt9p031->ctrls, &mt9p031_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, 0); v4l2_ctrl_new_std(&mt9p031->ctrls, &mt9p031_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0); for (i = 0; i < ARRAY_SIZE(mt9p031_ctrls); ++i) v4l2_ctrl_new_custom(&mt9p031->ctrls, &mt9p031_ctrls[i], NULL); mt9p031->subdev.ctrl_handler = &mt9p031->ctrls; if (mt9p031->ctrls.error) printk(KERN_INFO "%s: control initialization error %d\n", __func__, mt9p031->ctrls.error); mutex_init(&mt9p031->power_lock); v4l2_i2c_subdev_init(&mt9p031->subdev, client, &mt9p031_subdev_ops); mt9p031->subdev.internal_ops = &mt9p031_subdev_internal_ops; mt9p031->pad.flags = MEDIA_PAD_FL_SOURCE; ret = media_entity_init(&mt9p031->subdev.entity, 1, &mt9p031->pad, 0); if (ret < 0) goto done; mt9p031->subdev.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; mt9p031->crop.width = MT9P031_WINDOW_WIDTH_DEF; mt9p031->crop.height = MT9P031_WINDOW_HEIGHT_DEF; mt9p031->crop.left = MT9P031_COLUMN_START_DEF; mt9p031->crop.top = MT9P031_ROW_START_DEF; if (mt9p031->pdata->version == MT9P031_MONOCHROME_VERSION) mt9p031->format.code = V4L2_MBUS_FMT_Y12_1X12; else mt9p031->format.code = V4L2_MBUS_FMT_SGRBG12_1X12; mt9p031->format.width = MT9P031_WINDOW_WIDTH_DEF; mt9p031->format.height = MT9P031_WINDOW_HEIGHT_DEF; mt9p031->format.field = V4L2_FIELD_NONE; mt9p031->format.colorspace = V4L2_COLORSPACE_SRGB; ret = mt9p031_pll_setup(mt9p031); done: if (ret < 0) { v4l2_ctrl_handler_free(&mt9p031->ctrls); media_entity_cleanup(&mt9p031->subdev.entity); kfree(mt9p031); } return ret; } static int mt9p031_remove(struct i2c_client *client) { struct v4l2_subdev *subdev = i2c_get_clientdata(client); struct mt9p031 *mt9p031 = to_mt9p031(subdev); v4l2_ctrl_handler_free(&mt9p031->ctrls); v4l2_device_unregister_subdev(subdev); media_entity_cleanup(&subdev->entity); kfree(mt9p031); return 0; } static const struct i2c_device_id mt9p031_id[] = { { "mt9p031", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, mt9p031_id); static struct i2c_driver mt9p031_i2c_driver = { .driver = { .name = "mt9p031", }, .probe = mt9p031_probe, .remove = mt9p031_remove, .id_table = mt9p031_id, }; module_i2c_driver(mt9p031_i2c_driver); MODULE_DESCRIPTION("Aptina MT9P031 Camera driver"); MODULE_AUTHOR("Bastian Hecht <hechtb@gmail.com>"); MODULE_LICENSE("GPL v2");