/* * LPDDR flash memory device operations. This module provides read, write, * erase, lock/unlock support for LPDDR flash memories * (C) 2008 Korolev Alexey <akorolev@infradead.org> * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com> * Many thanks to Roman Borisov for initial enabling * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. * TODO: * Implement VPP management * Implement XIP support * Implement OTP support */ #include <linux/mtd/pfow.h> #include <linux/mtd/qinfo.h> #include <linux/slab.h> #include <linux/module.h> static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len, size_t *retlen, u_char *buf); static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen); static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr); static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, size_t *retlen, void **mtdbuf, resource_size_t *phys); static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len); static int get_chip(struct map_info *map, struct flchip *chip, int mode); static int chip_ready(struct map_info *map, struct flchip *chip, int mode); static void put_chip(struct map_info *map, struct flchip *chip); struct mtd_info *lpddr_cmdset(struct map_info *map) { struct lpddr_private *lpddr = map->fldrv_priv; struct flchip_shared *shared; struct flchip *chip; struct mtd_info *mtd; int numchips; int i, j; mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); if (!mtd) { printk(KERN_ERR "Failed to allocate memory for MTD device\n"); return NULL; } mtd->priv = map; mtd->type = MTD_NORFLASH; /* Fill in the default mtd operations */ mtd->_read = lpddr_read; mtd->type = MTD_NORFLASH; mtd->flags = MTD_CAP_NORFLASH; mtd->flags &= ~MTD_BIT_WRITEABLE; mtd->_erase = lpddr_erase; mtd->_write = lpddr_write_buffers; mtd->_writev = lpddr_writev; mtd->_lock = lpddr_lock; mtd->_unlock = lpddr_unlock; if (map_is_linear(map)) { mtd->_point = lpddr_point; mtd->_unpoint = lpddr_unpoint; } mtd->size = 1 << lpddr->qinfo->DevSizeShift; mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift; mtd->writesize = 1 << lpddr->qinfo->BufSizeShift; shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips, GFP_KERNEL); if (!shared) { kfree(lpddr); kfree(mtd); return NULL; } chip = &lpddr->chips[0]; numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum; for (i = 0; i < numchips; i++) { shared[i].writing = shared[i].erasing = NULL; mutex_init(&shared[i].lock); for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) { *chip = lpddr->chips[i]; chip->start += j << lpddr->chipshift; chip->oldstate = chip->state = FL_READY; chip->priv = &shared[i]; /* those should be reset too since they create memory references. */ init_waitqueue_head(&chip->wq); mutex_init(&chip->mutex); chip++; } } return mtd; } EXPORT_SYMBOL(lpddr_cmdset); static int wait_for_ready(struct map_info *map, struct flchip *chip, unsigned int chip_op_time) { unsigned int timeo, reset_timeo, sleep_time; unsigned int dsr; flstate_t chip_state = chip->state; int ret = 0; /* set our timeout to 8 times the expected delay */ timeo = chip_op_time * 8; if (!timeo) timeo = 500000; reset_timeo = timeo; sleep_time = chip_op_time / 2; for (;;) { dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR)); if (dsr & DSR_READY_STATUS) break; if (!timeo) { printk(KERN_ERR "%s: Flash timeout error state %d \n", map->name, chip_state); ret = -ETIME; break; } /* OK Still waiting. Drop the lock, wait a while and retry. */ mutex_unlock(&chip->mutex); if (sleep_time >= 1000000/HZ) { /* * Half of the normal delay still remaining * can be performed with a sleeping delay instead * of busy waiting. */ msleep(sleep_time/1000); timeo -= sleep_time; sleep_time = 1000000/HZ; } else { udelay(1); cond_resched(); timeo--; } mutex_lock(&chip->mutex); while (chip->state != chip_state) { /* Someone's suspended the operation: sleep */ DECLARE_WAITQUEUE(wait, current); set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&chip->wq, &wait); mutex_unlock(&chip->mutex); schedule(); remove_wait_queue(&chip->wq, &wait); mutex_lock(&chip->mutex); } if (chip->erase_suspended || chip->write_suspended) { /* Suspend has occurred while sleep: reset timeout */ timeo = reset_timeo; chip->erase_suspended = chip->write_suspended = 0; } } /* check status for errors */ if (dsr & DSR_ERR) { /* Clear DSR*/ map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR); printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n", map->name, dsr); print_drs_error(dsr); ret = -EIO; } chip->state = FL_READY; return ret; } static int get_chip(struct map_info *map, struct flchip *chip, int mode) { int ret; DECLARE_WAITQUEUE(wait, current); retry: if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING) && chip->state != FL_SYNCING) { /* * OK. We have possibility for contension on the write/erase * operations which are global to the real chip and not per * partition. So let's fight it over in the partition which * currently has authority on the operation. * * The rules are as follows: * * - any write operation must own shared->writing. * * - any erase operation must own _both_ shared->writing and * shared->erasing. * * - contension arbitration is handled in the owner's context. * * The 'shared' struct can be read and/or written only when * its lock is taken. */ struct flchip_shared *shared = chip->priv; struct flchip *contender; mutex_lock(&shared->lock); contender = shared->writing; if (contender && contender != chip) { /* * The engine to perform desired operation on this * partition is already in use by someone else. * Let's fight over it in the context of the chip * currently using it. If it is possible to suspend, * that other partition will do just that, otherwise * it'll happily send us to sleep. In any case, when * get_chip returns success we're clear to go ahead. */ ret = mutex_trylock(&contender->mutex); mutex_unlock(&shared->lock); if (!ret) goto retry; mutex_unlock(&chip->mutex); ret = chip_ready(map, contender, mode); mutex_lock(&chip->mutex); if (ret == -EAGAIN) { mutex_unlock(&contender->mutex); goto retry; } if (ret) { mutex_unlock(&contender->mutex); return ret; } mutex_lock(&shared->lock); /* We should not own chip if it is already in FL_SYNCING * state. Put contender and retry. */ if (chip->state == FL_SYNCING) { put_chip(map, contender); mutex_unlock(&contender->mutex); goto retry; } mutex_unlock(&contender->mutex); } /* Check if we have suspended erase on this chip. Must sleep in such a case. */ if (mode == FL_ERASING && shared->erasing && shared->erasing->oldstate == FL_ERASING) { mutex_unlock(&shared->lock); set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&chip->wq, &wait); mutex_unlock(&chip->mutex); schedule(); remove_wait_queue(&chip->wq, &wait); mutex_lock(&chip->mutex); goto retry; } /* We now own it */ shared->writing = chip; if (mode == FL_ERASING) shared->erasing = chip; mutex_unlock(&shared->lock); } ret = chip_ready(map, chip, mode); if (ret == -EAGAIN) goto retry; return ret; } static int chip_ready(struct map_info *map, struct flchip *chip, int mode) { struct lpddr_private *lpddr = map->fldrv_priv; int ret = 0; DECLARE_WAITQUEUE(wait, current); /* Prevent setting state FL_SYNCING for chip in suspended state. */ if (FL_SYNCING == mode && FL_READY != chip->oldstate) goto sleep; switch (chip->state) { case FL_READY: case FL_JEDEC_QUERY: return 0; case FL_ERASING: if (!lpddr->qinfo->SuspEraseSupp || !(mode == FL_READY || mode == FL_POINT)) goto sleep; map_write(map, CMD(LPDDR_SUSPEND), map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND); chip->oldstate = FL_ERASING; chip->state = FL_ERASE_SUSPENDING; ret = wait_for_ready(map, chip, 0); if (ret) { /* Oops. something got wrong. */ /* Resume and pretend we weren't here. */ put_chip(map, chip); printk(KERN_ERR "%s: suspend operation failed." "State may be wrong \n", map->name); return -EIO; } chip->erase_suspended = 1; chip->state = FL_READY; return 0; /* Erase suspend */ case FL_POINT: /* Only if there's no operation suspended... */ if (mode == FL_READY && chip->oldstate == FL_READY) return 0; default: sleep: set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&chip->wq, &wait); mutex_unlock(&chip->mutex); schedule(); remove_wait_queue(&chip->wq, &wait); mutex_lock(&chip->mutex); return -EAGAIN; } } static void put_chip(struct map_info *map, struct flchip *chip) { if (chip->priv) { struct flchip_shared *shared = chip->priv; mutex_lock(&shared->lock); if (shared->writing == chip && chip->oldstate == FL_READY) { /* We own the ability to write, but we're done */ shared->writing = shared->erasing; if (shared->writing && shared->writing != chip) { /* give back the ownership */ struct flchip *loaner = shared->writing; mutex_lock(&loaner->mutex); mutex_unlock(&shared->lock); mutex_unlock(&chip->mutex); put_chip(map, loaner); mutex_lock(&chip->mutex); mutex_unlock(&loaner->mutex); wake_up(&chip->wq); return; } shared->erasing = NULL; shared->writing = NULL; } else if (shared->erasing == chip && shared->writing != chip) { /* * We own the ability to erase without the ability * to write, which means the erase was suspended * and some other partition is currently writing. * Don't let the switch below mess things up since * we don't have ownership to resume anything. */ mutex_unlock(&shared->lock); wake_up(&chip->wq); return; } mutex_unlock(&shared->lock); } switch (chip->oldstate) { case FL_ERASING: map_write(map, CMD(LPDDR_RESUME), map->pfow_base + PFOW_COMMAND_CODE); map_write(map, CMD(LPDDR_START_EXECUTION), map->pfow_base + PFOW_COMMAND_EXECUTE); chip->oldstate = FL_READY; chip->state = FL_ERASING; break; case FL_READY: break; default: printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n", map->name, chip->oldstate); } wake_up(&chip->wq); } int do_write_buffer(struct map_info *map, struct flchip *chip, unsigned long adr, const struct kvec **pvec, unsigned long *pvec_seek, int len) { struct lpddr_private *lpddr = map->fldrv_priv; map_word datum; int ret, wbufsize, word_gap, words; const struct kvec *vec; unsigned long vec_seek; unsigned long prog_buf_ofs; wbufsize = 1 << lpddr->qinfo->BufSizeShift; mutex_lock(&chip->mutex); ret = get_chip(map, chip, FL_WRITING); if (ret) { mutex_unlock(&chip->mutex); return ret; } /* Figure out the number of words to write */ word_gap = (-adr & (map_bankwidth(map)-1)); words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map); if (!word_gap) { words--; } else { word_gap = map_bankwidth(map) - word_gap; adr -= word_gap; datum = map_word_ff(map); } /* Write data */ /* Get the program buffer offset from PFOW register data first*/ prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map, map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET)); vec = *pvec; vec_seek = *pvec_seek; do { int n = map_bankwidth(map) - word_gap; if (n > vec->iov_len - vec_seek) n = vec->iov_len - vec_seek; if (n > len) n = len; if (!word_gap && (len < map_bankwidth(map))) datum = map_word_ff(map); datum = map_word_load_partial(map, datum, vec->iov_base + vec_seek, word_gap, n); len -= n; word_gap += n; if (!len || word_gap == map_bankwidth(map)) { map_write(map, datum, prog_buf_ofs); prog_buf_ofs += map_bankwidth(map); word_gap = 0; } vec_seek += n; if (vec_seek == vec->iov_len) { vec++; vec_seek = 0; } } while (len); *pvec = vec; *pvec_seek = vec_seek; /* GO GO GO */ send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL); chip->state = FL_WRITING; ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime)); if (ret) { printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n", map->name, ret, adr); goto out; } out: put_chip(map, chip); mutex_unlock(&chip->mutex); return ret; } int do_erase_oneblock(struct mtd_info *mtd, loff_t adr) { struct map_info *map = mtd->priv; struct lpddr_private *lpddr = map->fldrv_priv; int chipnum = adr >> lpddr->chipshift; struct flchip *chip = &lpddr->chips[chipnum]; int ret; mutex_lock(&chip->mutex); ret = get_chip(map, chip, FL_ERASING); if (ret) { mutex_unlock(&chip->mutex); return ret; } send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL); chip->state = FL_ERASING; ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000); if (ret) { printk(KERN_WARNING"%s Erase block error %d at : %llx\n", map->name, ret, adr); goto out; } out: put_chip(map, chip); mutex_unlock(&chip->mutex); return ret; } static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len, size_t *retlen, u_char *buf) { struct map_info *map = mtd->priv; struct lpddr_private *lpddr = map->fldrv_priv; int chipnum = adr >> lpddr->chipshift; struct flchip *chip = &lpddr->chips[chipnum]; int ret = 0; mutex_lock(&chip->mutex); ret = get_chip(map, chip, FL_READY); if (ret) { mutex_unlock(&chip->mutex); return ret; } map_copy_from(map, buf, adr, len); *retlen = len; put_chip(map, chip); mutex_unlock(&chip->mutex); return ret; } static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, size_t *retlen, void **mtdbuf, resource_size_t *phys) { struct map_info *map = mtd->priv; struct lpddr_private *lpddr = map->fldrv_priv; int chipnum = adr >> lpddr->chipshift; unsigned long ofs, last_end = 0; struct flchip *chip = &lpddr->chips[chipnum]; int ret = 0; if (!map->virt) return -EINVAL; /* ofs: offset within the first chip that the first read should start */ ofs = adr - (chipnum << lpddr->chipshift); *mtdbuf = (void *)map->virt + chip->start + ofs; while (len) { unsigned long thislen; if (chipnum >= lpddr->numchips) break; /* We cannot point across chips that are virtually disjoint */ if (!last_end) last_end = chip->start; else if (chip->start != last_end) break; if ((len + ofs - 1) >> lpddr->chipshift) thislen = (1<<lpddr->chipshift) - ofs; else thislen = len; /* get the chip */ mutex_lock(&chip->mutex); ret = get_chip(map, chip, FL_POINT); mutex_unlock(&chip->mutex); if (ret) break; chip->state = FL_POINT; chip->ref_point_counter++; *retlen += thislen; len -= thislen; ofs = 0; last_end += 1 << lpddr->chipshift; chipnum++; chip = &lpddr->chips[chipnum]; } return 0; } static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len) { struct map_info *map = mtd->priv; struct lpddr_private *lpddr = map->fldrv_priv; int chipnum = adr >> lpddr->chipshift, err = 0; unsigned long ofs; /* ofs: offset within the first chip that the first read should start */ ofs = adr - (chipnum << lpddr->chipshift); while (len) { unsigned long thislen; struct flchip *chip; chip = &lpddr->chips[chipnum]; if (chipnum >= lpddr->numchips) break; if ((len + ofs - 1) >> lpddr->chipshift) thislen = (1<<lpddr->chipshift) - ofs; else thislen = len; mutex_lock(&chip->mutex); if (chip->state == FL_POINT) { chip->ref_point_counter--; if (chip->ref_point_counter == 0) chip->state = FL_READY; } else { printk(KERN_WARNING "%s: Warning: unpoint called on non" "pointed region\n", map->name); err = -EINVAL; } put_chip(map, chip); mutex_unlock(&chip->mutex); len -= thislen; ofs = 0; chipnum++; } return err; } static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct kvec vec; vec.iov_base = (void *) buf; vec.iov_len = len; return lpddr_writev(mtd, &vec, 1, to, retlen); } static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen) { struct map_info *map = mtd->priv; struct lpddr_private *lpddr = map->fldrv_priv; int ret = 0; int chipnum; unsigned long ofs, vec_seek, i; int wbufsize = 1 << lpddr->qinfo->BufSizeShift; size_t len = 0; for (i = 0; i < count; i++) len += vecs[i].iov_len; if (!len) return 0; chipnum = to >> lpddr->chipshift; ofs = to; vec_seek = 0; do { /* We must not cross write block boundaries */ int size = wbufsize - (ofs & (wbufsize-1)); if (size > len) size = len; ret = do_write_buffer(map, &lpddr->chips[chipnum], ofs, &vecs, &vec_seek, size); if (ret) return ret; ofs += size; (*retlen) += size; len -= size; /* Be nice and reschedule with the chip in a usable * state for other processes */ cond_resched(); } while (len); return 0; } static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr) { unsigned long ofs, len; int ret; struct map_info *map = mtd->priv; struct lpddr_private *lpddr = map->fldrv_priv; int size = 1 << lpddr->qinfo->UniformBlockSizeShift; ofs = instr->addr; len = instr->len; while (len > 0) { ret = do_erase_oneblock(mtd, ofs); if (ret) return ret; ofs += size; len -= size; } instr->state = MTD_ERASE_DONE; mtd_erase_callback(instr); return 0; } #define DO_XXLOCK_LOCK 1 #define DO_XXLOCK_UNLOCK 2 int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk) { int ret = 0; struct map_info *map = mtd->priv; struct lpddr_private *lpddr = map->fldrv_priv; int chipnum = adr >> lpddr->chipshift; struct flchip *chip = &lpddr->chips[chipnum]; mutex_lock(&chip->mutex); ret = get_chip(map, chip, FL_LOCKING); if (ret) { mutex_unlock(&chip->mutex); return ret; } if (thunk == DO_XXLOCK_LOCK) { send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL); chip->state = FL_LOCKING; } else if (thunk == DO_XXLOCK_UNLOCK) { send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL); chip->state = FL_UNLOCKING; } else BUG(); ret = wait_for_ready(map, chip, 1); if (ret) { printk(KERN_ERR "%s: block unlock error status %d \n", map->name, ret); goto out; } out: put_chip(map, chip); mutex_unlock(&chip->mutex); return ret; } static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK); } static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK); } int word_program(struct map_info *map, loff_t adr, uint32_t curval) { int ret; struct lpddr_private *lpddr = map->fldrv_priv; int chipnum = adr >> lpddr->chipshift; struct flchip *chip = &lpddr->chips[chipnum]; mutex_lock(&chip->mutex); ret = get_chip(map, chip, FL_WRITING); if (ret) { mutex_unlock(&chip->mutex); return ret; } send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval); ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime)); if (ret) { printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n", map->name, adr, curval); goto out; } out: put_chip(map, chip); mutex_unlock(&chip->mutex); return ret; } MODULE_LICENSE("GPL"); MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>"); MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");