/* * Gas Gauge driver for SBS Compliant Batteries * * Copyright (c) 2010, NVIDIA Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include <linux/init.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/err.h> #include <linux/power_supply.h> #include <linux/i2c.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/gpio.h> #include <linux/power/sbs-battery.h> enum { REG_MANUFACTURER_DATA, REG_TEMPERATURE, REG_VOLTAGE, REG_CURRENT, REG_CAPACITY, REG_TIME_TO_EMPTY, REG_TIME_TO_FULL, REG_STATUS, REG_CYCLE_COUNT, REG_SERIAL_NUMBER, REG_REMAINING_CAPACITY, REG_REMAINING_CAPACITY_CHARGE, REG_FULL_CHARGE_CAPACITY, REG_FULL_CHARGE_CAPACITY_CHARGE, REG_DESIGN_CAPACITY, REG_DESIGN_CAPACITY_CHARGE, REG_DESIGN_VOLTAGE, }; /* Battery Mode defines */ #define BATTERY_MODE_OFFSET 0x03 #define BATTERY_MODE_MASK 0x8000 enum sbs_battery_mode { BATTERY_MODE_AMPS, BATTERY_MODE_WATTS }; /* manufacturer access defines */ #define MANUFACTURER_ACCESS_STATUS 0x0006 #define MANUFACTURER_ACCESS_SLEEP 0x0011 /* battery status value bits */ #define BATTERY_DISCHARGING 0x40 #define BATTERY_FULL_CHARGED 0x20 #define BATTERY_FULL_DISCHARGED 0x10 #define SBS_DATA(_psp, _addr, _min_value, _max_value) { \ .psp = _psp, \ .addr = _addr, \ .min_value = _min_value, \ .max_value = _max_value, \ } static const struct chip_data { enum power_supply_property psp; u8 addr; int min_value; int max_value; } sbs_data[] = { [REG_MANUFACTURER_DATA] = SBS_DATA(POWER_SUPPLY_PROP_PRESENT, 0x00, 0, 65535), [REG_TEMPERATURE] = SBS_DATA(POWER_SUPPLY_PROP_TEMP, 0x08, 0, 65535), [REG_VOLTAGE] = SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_NOW, 0x09, 0, 20000), [REG_CURRENT] = SBS_DATA(POWER_SUPPLY_PROP_CURRENT_NOW, 0x0A, -32768, 32767), [REG_CAPACITY] = SBS_DATA(POWER_SUPPLY_PROP_CAPACITY, 0x0E, 0, 100), [REG_REMAINING_CAPACITY] = SBS_DATA(POWER_SUPPLY_PROP_ENERGY_NOW, 0x0F, 0, 65535), [REG_REMAINING_CAPACITY_CHARGE] = SBS_DATA(POWER_SUPPLY_PROP_CHARGE_NOW, 0x0F, 0, 65535), [REG_FULL_CHARGE_CAPACITY] = SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL, 0x10, 0, 65535), [REG_FULL_CHARGE_CAPACITY_CHARGE] = SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL, 0x10, 0, 65535), [REG_TIME_TO_EMPTY] = SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 0x12, 0, 65535), [REG_TIME_TO_FULL] = SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 0x13, 0, 65535), [REG_STATUS] = SBS_DATA(POWER_SUPPLY_PROP_STATUS, 0x16, 0, 65535), [REG_CYCLE_COUNT] = SBS_DATA(POWER_SUPPLY_PROP_CYCLE_COUNT, 0x17, 0, 65535), [REG_DESIGN_CAPACITY] = SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 0x18, 0, 65535), [REG_DESIGN_CAPACITY_CHARGE] = SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 0x18, 0, 65535), [REG_DESIGN_VOLTAGE] = SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 0x19, 0, 65535), [REG_SERIAL_NUMBER] = SBS_DATA(POWER_SUPPLY_PROP_SERIAL_NUMBER, 0x1C, 0, 65535), }; static enum power_supply_property sbs_properties[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, POWER_SUPPLY_PROP_SERIAL_NUMBER, POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_ENERGY_FULL, POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, }; struct sbs_info { struct i2c_client *client; struct power_supply power_supply; struct sbs_platform_data *pdata; bool is_present; bool gpio_detect; bool enable_detection; int irq; int last_state; int poll_time; struct delayed_work work; int ignore_changes; }; static int sbs_read_word_data(struct i2c_client *client, u8 address) { struct sbs_info *chip = i2c_get_clientdata(client); s32 ret = 0; int retries = 1; if (chip->pdata) retries = max(chip->pdata->i2c_retry_count + 1, 1); while (retries > 0) { ret = i2c_smbus_read_word_data(client, address); if (ret >= 0) break; retries--; } if (ret < 0) { dev_dbg(&client->dev, "%s: i2c read at address 0x%x failed\n", __func__, address); return ret; } return le16_to_cpu(ret); } static int sbs_write_word_data(struct i2c_client *client, u8 address, u16 value) { struct sbs_info *chip = i2c_get_clientdata(client); s32 ret = 0; int retries = 1; if (chip->pdata) retries = max(chip->pdata->i2c_retry_count + 1, 1); while (retries > 0) { ret = i2c_smbus_write_word_data(client, address, le16_to_cpu(value)); if (ret >= 0) break; retries--; } if (ret < 0) { dev_dbg(&client->dev, "%s: i2c write to address 0x%x failed\n", __func__, address); return ret; } return 0; } static int sbs_get_battery_presence_and_health( struct i2c_client *client, enum power_supply_property psp, union power_supply_propval *val) { s32 ret; struct sbs_info *chip = i2c_get_clientdata(client); if (psp == POWER_SUPPLY_PROP_PRESENT && chip->gpio_detect) { ret = gpio_get_value(chip->pdata->battery_detect); if (ret == chip->pdata->battery_detect_present) val->intval = 1; else val->intval = 0; chip->is_present = val->intval; return ret; } /* Write to ManufacturerAccess with * ManufacturerAccess command and then * read the status */ ret = sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr, MANUFACTURER_ACCESS_STATUS); if (ret < 0) { if (psp == POWER_SUPPLY_PROP_PRESENT) val->intval = 0; /* battery removed */ return ret; } ret = sbs_read_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr); if (ret < 0) return ret; if (ret < sbs_data[REG_MANUFACTURER_DATA].min_value || ret > sbs_data[REG_MANUFACTURER_DATA].max_value) { val->intval = 0; return 0; } /* Mask the upper nibble of 2nd byte and * lower byte of response then * shift the result by 8 to get status*/ ret &= 0x0F00; ret >>= 8; if (psp == POWER_SUPPLY_PROP_PRESENT) { if (ret == 0x0F) /* battery removed */ val->intval = 0; else val->intval = 1; } else if (psp == POWER_SUPPLY_PROP_HEALTH) { if (ret == 0x09) val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE; else if (ret == 0x0B) val->intval = POWER_SUPPLY_HEALTH_OVERHEAT; else if (ret == 0x0C) val->intval = POWER_SUPPLY_HEALTH_DEAD; else val->intval = POWER_SUPPLY_HEALTH_GOOD; } return 0; } static int sbs_get_battery_property(struct i2c_client *client, int reg_offset, enum power_supply_property psp, union power_supply_propval *val) { struct sbs_info *chip = i2c_get_clientdata(client); s32 ret; ret = sbs_read_word_data(client, sbs_data[reg_offset].addr); if (ret < 0) return ret; /* returned values are 16 bit */ if (sbs_data[reg_offset].min_value < 0) ret = (s16)ret; if (ret >= sbs_data[reg_offset].min_value && ret <= sbs_data[reg_offset].max_value) { val->intval = ret; if (psp != POWER_SUPPLY_PROP_STATUS) return 0; if (ret & BATTERY_FULL_CHARGED) val->intval = POWER_SUPPLY_STATUS_FULL; else if (ret & BATTERY_FULL_DISCHARGED) val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; else if (ret & BATTERY_DISCHARGING) val->intval = POWER_SUPPLY_STATUS_DISCHARGING; else val->intval = POWER_SUPPLY_STATUS_CHARGING; if (chip->poll_time == 0) chip->last_state = val->intval; else if (chip->last_state != val->intval) { cancel_delayed_work_sync(&chip->work); power_supply_changed(&chip->power_supply); chip->poll_time = 0; } } else { if (psp == POWER_SUPPLY_PROP_STATUS) val->intval = POWER_SUPPLY_STATUS_UNKNOWN; else val->intval = 0; } return 0; } static void sbs_unit_adjustment(struct i2c_client *client, enum power_supply_property psp, union power_supply_propval *val) { #define BASE_UNIT_CONVERSION 1000 #define BATTERY_MODE_CAP_MULT_WATT (10 * BASE_UNIT_CONVERSION) #define TIME_UNIT_CONVERSION 60 #define TEMP_KELVIN_TO_CELSIUS 2731 switch (psp) { case POWER_SUPPLY_PROP_ENERGY_NOW: case POWER_SUPPLY_PROP_ENERGY_FULL: case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: /* sbs provides energy in units of 10mWh. * Convert to µWh */ val->intval *= BATTERY_MODE_CAP_MULT_WATT; break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: case POWER_SUPPLY_PROP_CURRENT_NOW: case POWER_SUPPLY_PROP_CHARGE_NOW: case POWER_SUPPLY_PROP_CHARGE_FULL: case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: val->intval *= BASE_UNIT_CONVERSION; break; case POWER_SUPPLY_PROP_TEMP: /* sbs provides battery temperature in 0.1K * so convert it to 0.1°C */ val->intval -= TEMP_KELVIN_TO_CELSIUS; break; case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG: case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG: /* sbs provides time to empty and time to full in minutes. * Convert to seconds */ val->intval *= TIME_UNIT_CONVERSION; break; default: dev_dbg(&client->dev, "%s: no need for unit conversion %d\n", __func__, psp); } } static enum sbs_battery_mode sbs_set_battery_mode(struct i2c_client *client, enum sbs_battery_mode mode) { int ret, original_val; original_val = sbs_read_word_data(client, BATTERY_MODE_OFFSET); if (original_val < 0) return original_val; if ((original_val & BATTERY_MODE_MASK) == mode) return mode; if (mode == BATTERY_MODE_AMPS) ret = original_val & ~BATTERY_MODE_MASK; else ret = original_val | BATTERY_MODE_MASK; ret = sbs_write_word_data(client, BATTERY_MODE_OFFSET, ret); if (ret < 0) return ret; return original_val & BATTERY_MODE_MASK; } static int sbs_get_battery_capacity(struct i2c_client *client, int reg_offset, enum power_supply_property psp, union power_supply_propval *val) { s32 ret; enum sbs_battery_mode mode = BATTERY_MODE_WATTS; if (power_supply_is_amp_property(psp)) mode = BATTERY_MODE_AMPS; mode = sbs_set_battery_mode(client, mode); if (mode < 0) return mode; ret = sbs_read_word_data(client, sbs_data[reg_offset].addr); if (ret < 0) return ret; if (psp == POWER_SUPPLY_PROP_CAPACITY) { /* sbs spec says that this can be >100 % * even if max value is 100 % */ val->intval = min(ret, 100); } else val->intval = ret; ret = sbs_set_battery_mode(client, mode); if (ret < 0) return ret; return 0; } static char sbs_serial[5]; static int sbs_get_battery_serial_number(struct i2c_client *client, union power_supply_propval *val) { int ret; ret = sbs_read_word_data(client, sbs_data[REG_SERIAL_NUMBER].addr); if (ret < 0) return ret; ret = sprintf(sbs_serial, "%04x", ret); val->strval = sbs_serial; return 0; } static int sbs_get_property_index(struct i2c_client *client, enum power_supply_property psp) { int count; for (count = 0; count < ARRAY_SIZE(sbs_data); count++) if (psp == sbs_data[count].psp) return count; dev_warn(&client->dev, "%s: Invalid Property - %d\n", __func__, psp); return -EINVAL; } static int sbs_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { int ret = 0; struct sbs_info *chip = container_of(psy, struct sbs_info, power_supply); struct i2c_client *client = chip->client; switch (psp) { case POWER_SUPPLY_PROP_PRESENT: case POWER_SUPPLY_PROP_HEALTH: ret = sbs_get_battery_presence_and_health(client, psp, val); if (psp == POWER_SUPPLY_PROP_PRESENT) return 0; break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_ENERGY_NOW: case POWER_SUPPLY_PROP_ENERGY_FULL: case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: case POWER_SUPPLY_PROP_CHARGE_NOW: case POWER_SUPPLY_PROP_CHARGE_FULL: case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: case POWER_SUPPLY_PROP_CAPACITY: ret = sbs_get_property_index(client, psp); if (ret < 0) break; ret = sbs_get_battery_capacity(client, ret, psp, val); break; case POWER_SUPPLY_PROP_SERIAL_NUMBER: ret = sbs_get_battery_serial_number(client, val); break; case POWER_SUPPLY_PROP_STATUS: case POWER_SUPPLY_PROP_CYCLE_COUNT: case POWER_SUPPLY_PROP_VOLTAGE_NOW: case POWER_SUPPLY_PROP_CURRENT_NOW: case POWER_SUPPLY_PROP_TEMP: case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG: case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG: case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: ret = sbs_get_property_index(client, psp); if (ret < 0) break; ret = sbs_get_battery_property(client, ret, psp, val); break; default: dev_err(&client->dev, "%s: INVALID property\n", __func__); return -EINVAL; } if (!chip->enable_detection) goto done; if (!chip->gpio_detect && chip->is_present != (ret >= 0)) { chip->is_present = (ret >= 0); power_supply_changed(&chip->power_supply); } done: if (!ret) { /* Convert units to match requirements for power supply class */ sbs_unit_adjustment(client, psp, val); } dev_dbg(&client->dev, "%s: property = %d, value = %x\n", __func__, psp, val->intval); if (ret && chip->is_present) return ret; /* battery not present, so return NODATA for properties */ if (ret) return -ENODATA; return 0; } static irqreturn_t sbs_irq(int irq, void *devid) { struct power_supply *battery = devid; power_supply_changed(battery); return IRQ_HANDLED; } static void sbs_external_power_changed(struct power_supply *psy) { struct sbs_info *chip; chip = container_of(psy, struct sbs_info, power_supply); if (chip->ignore_changes > 0) { chip->ignore_changes--; return; } /* cancel outstanding work */ cancel_delayed_work_sync(&chip->work); schedule_delayed_work(&chip->work, HZ); chip->poll_time = chip->pdata->poll_retry_count; } static void sbs_delayed_work(struct work_struct *work) { struct sbs_info *chip; s32 ret; chip = container_of(work, struct sbs_info, work.work); ret = sbs_read_word_data(chip->client, sbs_data[REG_STATUS].addr); /* if the read failed, give up on this work */ if (ret < 0) { chip->poll_time = 0; return; } if (ret & BATTERY_FULL_CHARGED) ret = POWER_SUPPLY_STATUS_FULL; else if (ret & BATTERY_FULL_DISCHARGED) ret = POWER_SUPPLY_STATUS_NOT_CHARGING; else if (ret & BATTERY_DISCHARGING) ret = POWER_SUPPLY_STATUS_DISCHARGING; else ret = POWER_SUPPLY_STATUS_CHARGING; if (chip->last_state != ret) { chip->poll_time = 0; power_supply_changed(&chip->power_supply); return; } if (chip->poll_time > 0) { schedule_delayed_work(&chip->work, HZ); chip->poll_time--; return; } } #if defined(CONFIG_OF) #include <linux/of_device.h> #include <linux/of_gpio.h> static const struct of_device_id sbs_dt_ids[] = { { .compatible = "sbs,sbs-battery" }, { .compatible = "ti,bq20z75" }, { } }; MODULE_DEVICE_TABLE(of, sbs_dt_ids); static struct sbs_platform_data *sbs_of_populate_pdata( struct i2c_client *client) { struct device_node *of_node = client->dev.of_node; struct sbs_platform_data *pdata = client->dev.platform_data; enum of_gpio_flags gpio_flags; int rc; u32 prop; /* verify this driver matches this device */ if (!of_node) return NULL; /* if platform data is set, honor it */ if (pdata) return pdata; /* first make sure at least one property is set, otherwise * it won't change behavior from running without pdata. */ if (!of_get_property(of_node, "sbs,i2c-retry-count", NULL) && !of_get_property(of_node, "sbs,poll-retry-count", NULL) && !of_get_property(of_node, "sbs,battery-detect-gpios", NULL)) goto of_out; pdata = devm_kzalloc(&client->dev, sizeof(struct sbs_platform_data), GFP_KERNEL); if (!pdata) goto of_out; rc = of_property_read_u32(of_node, "sbs,i2c-retry-count", &prop); if (!rc) pdata->i2c_retry_count = prop; rc = of_property_read_u32(of_node, "sbs,poll-retry-count", &prop); if (!rc) pdata->poll_retry_count = prop; if (!of_get_property(of_node, "sbs,battery-detect-gpios", NULL)) { pdata->battery_detect = -1; goto of_out; } pdata->battery_detect = of_get_named_gpio_flags(of_node, "sbs,battery-detect-gpios", 0, &gpio_flags); if (gpio_flags & OF_GPIO_ACTIVE_LOW) pdata->battery_detect_present = 0; else pdata->battery_detect_present = 1; of_out: return pdata; } #else #define sbs_dt_ids NULL static struct sbs_platform_data *sbs_of_populate_pdata( struct i2c_client *client) { return client->dev.platform_data; } #endif static int __devinit sbs_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct sbs_info *chip; struct sbs_platform_data *pdata = client->dev.platform_data; int rc; int irq; char *name; name = kasprintf(GFP_KERNEL, "sbs-%s", dev_name(&client->dev)); if (!name) { dev_err(&client->dev, "Failed to allocate device name\n"); return -ENOMEM; } chip = kzalloc(sizeof(struct sbs_info), GFP_KERNEL); if (!chip) { rc = -ENOMEM; goto exit_free_name; } chip->client = client; chip->enable_detection = false; chip->gpio_detect = false; chip->power_supply.name = name; chip->power_supply.type = POWER_SUPPLY_TYPE_BATTERY; chip->power_supply.properties = sbs_properties; chip->power_supply.num_properties = ARRAY_SIZE(sbs_properties); chip->power_supply.get_property = sbs_get_property; /* ignore first notification of external change, it is generated * from the power_supply_register call back */ chip->ignore_changes = 1; chip->last_state = POWER_SUPPLY_STATUS_UNKNOWN; chip->power_supply.external_power_changed = sbs_external_power_changed; pdata = sbs_of_populate_pdata(client); if (pdata) { chip->gpio_detect = gpio_is_valid(pdata->battery_detect); chip->pdata = pdata; } i2c_set_clientdata(client, chip); if (!chip->gpio_detect) goto skip_gpio; rc = gpio_request(pdata->battery_detect, dev_name(&client->dev)); if (rc) { dev_warn(&client->dev, "Failed to request gpio: %d\n", rc); chip->gpio_detect = false; goto skip_gpio; } rc = gpio_direction_input(pdata->battery_detect); if (rc) { dev_warn(&client->dev, "Failed to get gpio as input: %d\n", rc); gpio_free(pdata->battery_detect); chip->gpio_detect = false; goto skip_gpio; } irq = gpio_to_irq(pdata->battery_detect); if (irq <= 0) { dev_warn(&client->dev, "Failed to get gpio as irq: %d\n", irq); gpio_free(pdata->battery_detect); chip->gpio_detect = false; goto skip_gpio; } rc = request_irq(irq, sbs_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, dev_name(&client->dev), &chip->power_supply); if (rc) { dev_warn(&client->dev, "Failed to request irq: %d\n", rc); gpio_free(pdata->battery_detect); chip->gpio_detect = false; goto skip_gpio; } chip->irq = irq; skip_gpio: rc = power_supply_register(&client->dev, &chip->power_supply); if (rc) { dev_err(&client->dev, "%s: Failed to register power supply\n", __func__); goto exit_psupply; } dev_info(&client->dev, "%s: battery gas gauge device registered\n", client->name); INIT_DELAYED_WORK(&chip->work, sbs_delayed_work); chip->enable_detection = true; return 0; exit_psupply: if (chip->irq) free_irq(chip->irq, &chip->power_supply); if (chip->gpio_detect) gpio_free(pdata->battery_detect); kfree(chip); exit_free_name: kfree(name); return rc; } static int __devexit sbs_remove(struct i2c_client *client) { struct sbs_info *chip = i2c_get_clientdata(client); if (chip->irq) free_irq(chip->irq, &chip->power_supply); if (chip->gpio_detect) gpio_free(chip->pdata->battery_detect); power_supply_unregister(&chip->power_supply); cancel_delayed_work_sync(&chip->work); kfree(chip->power_supply.name); kfree(chip); chip = NULL; return 0; } #if defined CONFIG_PM static int sbs_suspend(struct i2c_client *client, pm_message_t state) { struct sbs_info *chip = i2c_get_clientdata(client); s32 ret; if (chip->poll_time > 0) cancel_delayed_work_sync(&chip->work); /* write to manufacturer access with sleep command */ ret = sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr, MANUFACTURER_ACCESS_SLEEP); if (chip->is_present && ret < 0) return ret; return 0; } #else #define sbs_suspend NULL #endif /* any smbus transaction will wake up sbs */ #define sbs_resume NULL static const struct i2c_device_id sbs_id[] = { { "bq20z75", 0 }, { "sbs-battery", 1 }, {} }; MODULE_DEVICE_TABLE(i2c, sbs_id); static struct i2c_driver sbs_battery_driver = { .probe = sbs_probe, .remove = __devexit_p(sbs_remove), .suspend = sbs_suspend, .resume = sbs_resume, .id_table = sbs_id, .driver = { .name = "sbs-battery", .of_match_table = sbs_dt_ids, }, }; module_i2c_driver(sbs_battery_driver); MODULE_DESCRIPTION("SBS battery monitor driver"); MODULE_LICENSE("GPL");