/******************************************************************* * This file is part of the Emulex Linux Device Driver for * * Fibre Channel Host Bus Adapters. * * Copyright (C) 2004-2012 Emulex. All rights reserved. * * EMULEX and SLI are trademarks of Emulex. * * www.emulex.com * * Portions Copyright (C) 2004-2005 Christoph Hellwig * * * * This program is free software; you can redistribute it and/or * * modify it under the terms of version 2 of the GNU General * * Public License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful. * * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * * TO BE LEGALLY INVALID. See the GNU General Public License for * * more details, a copy of which can be found in the file COPYING * * included with this package. * *******************************************************************/ #include <linux/pci.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/export.h> #include <linux/delay.h> #include <asm/unaligned.h> #include <scsi/scsi.h> #include <scsi/scsi_device.h> #include <scsi/scsi_eh.h> #include <scsi/scsi_host.h> #include <scsi/scsi_tcq.h> #include <scsi/scsi_transport_fc.h> #include "lpfc_version.h" #include "lpfc_hw4.h" #include "lpfc_hw.h" #include "lpfc_sli.h" #include "lpfc_sli4.h" #include "lpfc_nl.h" #include "lpfc_disc.h" #include "lpfc.h" #include "lpfc_scsi.h" #include "lpfc_logmsg.h" #include "lpfc_crtn.h" #include "lpfc_vport.h" #define LPFC_RESET_WAIT 2 #define LPFC_ABORT_WAIT 2 int _dump_buf_done; static char *dif_op_str[] = { "PROT_NORMAL", "PROT_READ_INSERT", "PROT_WRITE_STRIP", "PROT_READ_STRIP", "PROT_WRITE_INSERT", "PROT_READ_PASS", "PROT_WRITE_PASS", }; static char *dif_grd_str[] = { "NO_GUARD", "DIF_CRC", "DIX_IP", }; struct scsi_dif_tuple { __be16 guard_tag; /* Checksum */ __be16 app_tag; /* Opaque storage */ __be32 ref_tag; /* Target LBA or indirect LBA */ }; static void lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb); static void lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb); static void lpfc_debug_save_data(struct lpfc_hba *phba, struct scsi_cmnd *cmnd) { void *src, *dst; struct scatterlist *sgde = scsi_sglist(cmnd); if (!_dump_buf_data) { lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9050 BLKGRD: ERROR %s _dump_buf_data is NULL\n", __func__); return; } if (!sgde) { lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9051 BLKGRD: ERROR: data scatterlist is null\n"); return; } dst = (void *) _dump_buf_data; while (sgde) { src = sg_virt(sgde); memcpy(dst, src, sgde->length); dst += sgde->length; sgde = sg_next(sgde); } } static void lpfc_debug_save_dif(struct lpfc_hba *phba, struct scsi_cmnd *cmnd) { void *src, *dst; struct scatterlist *sgde = scsi_prot_sglist(cmnd); if (!_dump_buf_dif) { lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9052 BLKGRD: ERROR %s _dump_buf_data is NULL\n", __func__); return; } if (!sgde) { lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9053 BLKGRD: ERROR: prot scatterlist is null\n"); return; } dst = _dump_buf_dif; while (sgde) { src = sg_virt(sgde); memcpy(dst, src, sgde->length); dst += sgde->length; sgde = sg_next(sgde); } } /** * lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge. * @phba: Pointer to HBA object. * @lpfc_cmd: lpfc scsi command object pointer. * * This function is called from the lpfc_prep_task_mgmt_cmd function to * set the last bit in the response sge entry. **/ static void lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) { struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; if (sgl) { sgl += 1; sgl->word2 = le32_to_cpu(sgl->word2); bf_set(lpfc_sli4_sge_last, sgl, 1); sgl->word2 = cpu_to_le32(sgl->word2); } } /** * lpfc_update_stats - Update statistical data for the command completion * @phba: Pointer to HBA object. * @lpfc_cmd: lpfc scsi command object pointer. * * This function is called when there is a command completion and this * function updates the statistical data for the command completion. **/ static void lpfc_update_stats(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) { struct lpfc_rport_data *rdata = lpfc_cmd->rdata; struct lpfc_nodelist *pnode = rdata->pnode; struct scsi_cmnd *cmd = lpfc_cmd->pCmd; unsigned long flags; struct Scsi_Host *shost = cmd->device->host; struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; unsigned long latency; int i; if (cmd->result) return; latency = jiffies_to_msecs((long)jiffies - (long)lpfc_cmd->start_time); spin_lock_irqsave(shost->host_lock, flags); if (!vport->stat_data_enabled || vport->stat_data_blocked || !pnode || !pnode->lat_data || (phba->bucket_type == LPFC_NO_BUCKET)) { spin_unlock_irqrestore(shost->host_lock, flags); return; } if (phba->bucket_type == LPFC_LINEAR_BUCKET) { i = (latency + phba->bucket_step - 1 - phba->bucket_base)/ phba->bucket_step; /* check array subscript bounds */ if (i < 0) i = 0; else if (i >= LPFC_MAX_BUCKET_COUNT) i = LPFC_MAX_BUCKET_COUNT - 1; } else { for (i = 0; i < LPFC_MAX_BUCKET_COUNT-1; i++) if (latency <= (phba->bucket_base + ((1<<i)*phba->bucket_step))) break; } pnode->lat_data[i].cmd_count++; spin_unlock_irqrestore(shost->host_lock, flags); } /** * lpfc_send_sdev_queuedepth_change_event - Posts a queuedepth change event * @phba: Pointer to HBA context object. * @vport: Pointer to vport object. * @ndlp: Pointer to FC node associated with the target. * @lun: Lun number of the scsi device. * @old_val: Old value of the queue depth. * @new_val: New value of the queue depth. * * This function sends an event to the mgmt application indicating * there is a change in the scsi device queue depth. **/ static void lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba *phba, struct lpfc_vport *vport, struct lpfc_nodelist *ndlp, uint32_t lun, uint32_t old_val, uint32_t new_val) { struct lpfc_fast_path_event *fast_path_evt; unsigned long flags; fast_path_evt = lpfc_alloc_fast_evt(phba); if (!fast_path_evt) return; fast_path_evt->un.queue_depth_evt.scsi_event.event_type = FC_REG_SCSI_EVENT; fast_path_evt->un.queue_depth_evt.scsi_event.subcategory = LPFC_EVENT_VARQUEDEPTH; /* Report all luns with change in queue depth */ fast_path_evt->un.queue_depth_evt.scsi_event.lun = lun; if (ndlp && NLP_CHK_NODE_ACT(ndlp)) { memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwpn, &ndlp->nlp_portname, sizeof(struct lpfc_name)); memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwnn, &ndlp->nlp_nodename, sizeof(struct lpfc_name)); } fast_path_evt->un.queue_depth_evt.oldval = old_val; fast_path_evt->un.queue_depth_evt.newval = new_val; fast_path_evt->vport = vport; fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT; spin_lock_irqsave(&phba->hbalock, flags); list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); spin_unlock_irqrestore(&phba->hbalock, flags); lpfc_worker_wake_up(phba); return; } /** * lpfc_change_queue_depth - Alter scsi device queue depth * @sdev: Pointer the scsi device on which to change the queue depth. * @qdepth: New queue depth to set the sdev to. * @reason: The reason for the queue depth change. * * This function is called by the midlayer and the LLD to alter the queue * depth for a scsi device. This function sets the queue depth to the new * value and sends an event out to log the queue depth change. **/ int lpfc_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason) { struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; struct lpfc_hba *phba = vport->phba; struct lpfc_rport_data *rdata; unsigned long new_queue_depth, old_queue_depth; old_queue_depth = sdev->queue_depth; scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth); new_queue_depth = sdev->queue_depth; rdata = sdev->hostdata; if (rdata) lpfc_send_sdev_queuedepth_change_event(phba, vport, rdata->pnode, sdev->lun, old_queue_depth, new_queue_depth); return sdev->queue_depth; } /** * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread * @phba: The Hba for which this call is being executed. * * This routine is called when there is resource error in driver or firmware. * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine * posts at most 1 event each second. This routine wakes up worker thread of * @phba to process WORKER_RAM_DOWN_EVENT event. * * This routine should be called with no lock held. **/ void lpfc_rampdown_queue_depth(struct lpfc_hba *phba) { unsigned long flags; uint32_t evt_posted; spin_lock_irqsave(&phba->hbalock, flags); atomic_inc(&phba->num_rsrc_err); phba->last_rsrc_error_time = jiffies; if ((phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL) > jiffies) { spin_unlock_irqrestore(&phba->hbalock, flags); return; } phba->last_ramp_down_time = jiffies; spin_unlock_irqrestore(&phba->hbalock, flags); spin_lock_irqsave(&phba->pport->work_port_lock, flags); evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE; if (!evt_posted) phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE; spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); if (!evt_posted) lpfc_worker_wake_up(phba); return; } /** * lpfc_rampup_queue_depth - Post RAMP_UP_QUEUE event for worker thread * @phba: The Hba for which this call is being executed. * * This routine post WORKER_RAMP_UP_QUEUE event for @phba vport. This routine * post at most 1 event every 5 minute after last_ramp_up_time or * last_rsrc_error_time. This routine wakes up worker thread of @phba * to process WORKER_RAM_DOWN_EVENT event. * * This routine should be called with no lock held. **/ static inline void lpfc_rampup_queue_depth(struct lpfc_vport *vport, uint32_t queue_depth) { unsigned long flags; struct lpfc_hba *phba = vport->phba; uint32_t evt_posted; atomic_inc(&phba->num_cmd_success); if (vport->cfg_lun_queue_depth <= queue_depth) return; spin_lock_irqsave(&phba->hbalock, flags); if (time_before(jiffies, phba->last_ramp_up_time + QUEUE_RAMP_UP_INTERVAL) || time_before(jiffies, phba->last_rsrc_error_time + QUEUE_RAMP_UP_INTERVAL)) { spin_unlock_irqrestore(&phba->hbalock, flags); return; } phba->last_ramp_up_time = jiffies; spin_unlock_irqrestore(&phba->hbalock, flags); spin_lock_irqsave(&phba->pport->work_port_lock, flags); evt_posted = phba->pport->work_port_events & WORKER_RAMP_UP_QUEUE; if (!evt_posted) phba->pport->work_port_events |= WORKER_RAMP_UP_QUEUE; spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); if (!evt_posted) lpfc_worker_wake_up(phba); return; } /** * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler * @phba: The Hba for which this call is being executed. * * This routine is called to process WORKER_RAMP_DOWN_QUEUE event for worker * thread.This routine reduces queue depth for all scsi device on each vport * associated with @phba. **/ void lpfc_ramp_down_queue_handler(struct lpfc_hba *phba) { struct lpfc_vport **vports; struct Scsi_Host *shost; struct scsi_device *sdev; unsigned long new_queue_depth; unsigned long num_rsrc_err, num_cmd_success; int i; num_rsrc_err = atomic_read(&phba->num_rsrc_err); num_cmd_success = atomic_read(&phba->num_cmd_success); vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { shost = lpfc_shost_from_vport(vports[i]); shost_for_each_device(sdev, shost) { new_queue_depth = sdev->queue_depth * num_rsrc_err / (num_rsrc_err + num_cmd_success); if (!new_queue_depth) new_queue_depth = sdev->queue_depth - 1; else new_queue_depth = sdev->queue_depth - new_queue_depth; lpfc_change_queue_depth(sdev, new_queue_depth, SCSI_QDEPTH_DEFAULT); } } lpfc_destroy_vport_work_array(phba, vports); atomic_set(&phba->num_rsrc_err, 0); atomic_set(&phba->num_cmd_success, 0); } /** * lpfc_ramp_up_queue_handler - WORKER_RAMP_UP_QUEUE event handler * @phba: The Hba for which this call is being executed. * * This routine is called to process WORKER_RAMP_UP_QUEUE event for worker * thread.This routine increases queue depth for all scsi device on each vport * associated with @phba by 1. This routine also sets @phba num_rsrc_err and * num_cmd_success to zero. **/ void lpfc_ramp_up_queue_handler(struct lpfc_hba *phba) { struct lpfc_vport **vports; struct Scsi_Host *shost; struct scsi_device *sdev; int i; vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { shost = lpfc_shost_from_vport(vports[i]); shost_for_each_device(sdev, shost) { if (vports[i]->cfg_lun_queue_depth <= sdev->queue_depth) continue; lpfc_change_queue_depth(sdev, sdev->queue_depth+1, SCSI_QDEPTH_RAMP_UP); } } lpfc_destroy_vport_work_array(phba, vports); atomic_set(&phba->num_rsrc_err, 0); atomic_set(&phba->num_cmd_success, 0); } /** * lpfc_scsi_dev_block - set all scsi hosts to block state * @phba: Pointer to HBA context object. * * This function walks vport list and set each SCSI host to block state * by invoking fc_remote_port_delete() routine. This function is invoked * with EEH when device's PCI slot has been permanently disabled. **/ void lpfc_scsi_dev_block(struct lpfc_hba *phba) { struct lpfc_vport **vports; struct Scsi_Host *shost; struct scsi_device *sdev; struct fc_rport *rport; int i; vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { shost = lpfc_shost_from_vport(vports[i]); shost_for_each_device(sdev, shost) { rport = starget_to_rport(scsi_target(sdev)); fc_remote_port_delete(rport); } } lpfc_destroy_vport_work_array(phba, vports); } /** * lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec * @vport: The virtual port for which this call being executed. * @num_to_allocate: The requested number of buffers to allocate. * * This routine allocates a scsi buffer for device with SLI-3 interface spec, * the scsi buffer contains all the necessary information needed to initiate * a SCSI I/O. The non-DMAable buffer region contains information to build * the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP, * and the initial BPL. In addition to allocating memory, the FCP CMND and * FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB. * * Return codes: * int - number of scsi buffers that were allocated. * 0 = failure, less than num_to_alloc is a partial failure. **/ static int lpfc_new_scsi_buf_s3(struct lpfc_vport *vport, int num_to_alloc) { struct lpfc_hba *phba = vport->phba; struct lpfc_scsi_buf *psb; struct ulp_bde64 *bpl; IOCB_t *iocb; dma_addr_t pdma_phys_fcp_cmd; dma_addr_t pdma_phys_fcp_rsp; dma_addr_t pdma_phys_bpl; uint16_t iotag; int bcnt; for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL); if (!psb) break; /* * Get memory from the pci pool to map the virt space to pci * bus space for an I/O. The DMA buffer includes space for the * struct fcp_cmnd, struct fcp_rsp and the number of bde's * necessary to support the sg_tablesize. */ psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool, GFP_KERNEL, &psb->dma_handle); if (!psb->data) { kfree(psb); break; } /* Initialize virtual ptrs to dma_buf region. */ memset(psb->data, 0, phba->cfg_sg_dma_buf_size); /* Allocate iotag for psb->cur_iocbq. */ iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq); if (iotag == 0) { pci_pool_free(phba->lpfc_scsi_dma_buf_pool, psb->data, psb->dma_handle); kfree(psb); break; } psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP; psb->fcp_cmnd = psb->data; psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd); psb->fcp_bpl = psb->data + sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp); /* Initialize local short-hand pointers. */ bpl = psb->fcp_bpl; pdma_phys_fcp_cmd = psb->dma_handle; pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd); pdma_phys_bpl = psb->dma_handle + sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp); /* * The first two bdes are the FCP_CMD and FCP_RSP. The balance * are sg list bdes. Initialize the first two and leave the * rest for queuecommand. */ bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd)); bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd)); bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd); bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64; bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w); /* Setup the physical region for the FCP RSP */ bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp)); bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp)); bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp); bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64; bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w); /* * Since the IOCB for the FCP I/O is built into this * lpfc_scsi_buf, initialize it with all known data now. */ iocb = &psb->cur_iocbq.iocb; iocb->un.fcpi64.bdl.ulpIoTag32 = 0; if ((phba->sli_rev == 3) && !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) { /* fill in immediate fcp command BDE */ iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED; iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd); iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t, unsli3.fcp_ext.icd); iocb->un.fcpi64.bdl.addrHigh = 0; iocb->ulpBdeCount = 0; iocb->ulpLe = 0; /* fill in response BDE */ iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize = sizeof(struct fcp_rsp); iocb->unsli3.fcp_ext.rbde.addrLow = putPaddrLow(pdma_phys_fcp_rsp); iocb->unsli3.fcp_ext.rbde.addrHigh = putPaddrHigh(pdma_phys_fcp_rsp); } else { iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64; iocb->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_bpl); iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_bpl); iocb->ulpBdeCount = 1; iocb->ulpLe = 1; } iocb->ulpClass = CLASS3; psb->status = IOSTAT_SUCCESS; /* Put it back into the SCSI buffer list */ psb->cur_iocbq.context1 = psb; lpfc_release_scsi_buf_s3(phba, psb); } return bcnt; } /** * lpfc_sli4_vport_delete_fcp_xri_aborted -Remove all ndlp references for vport * @vport: pointer to lpfc vport data structure. * * This routine is invoked by the vport cleanup for deletions and the cleanup * for an ndlp on removal. **/ void lpfc_sli4_vport_delete_fcp_xri_aborted(struct lpfc_vport *vport) { struct lpfc_hba *phba = vport->phba; struct lpfc_scsi_buf *psb, *next_psb; unsigned long iflag = 0; spin_lock_irqsave(&phba->hbalock, iflag); spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock); list_for_each_entry_safe(psb, next_psb, &phba->sli4_hba.lpfc_abts_scsi_buf_list, list) { if (psb->rdata && psb->rdata->pnode && psb->rdata->pnode->vport == vport) psb->rdata = NULL; } spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock); spin_unlock_irqrestore(&phba->hbalock, iflag); } /** * lpfc_sli4_fcp_xri_aborted - Fast-path process of fcp xri abort * @phba: pointer to lpfc hba data structure. * @axri: pointer to the fcp xri abort wcqe structure. * * This routine is invoked by the worker thread to process a SLI4 fast-path * FCP aborted xri. **/ void lpfc_sli4_fcp_xri_aborted(struct lpfc_hba *phba, struct sli4_wcqe_xri_aborted *axri) { uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri); struct lpfc_scsi_buf *psb, *next_psb; unsigned long iflag = 0; struct lpfc_iocbq *iocbq; int i; struct lpfc_nodelist *ndlp; int rrq_empty = 0; struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING]; spin_lock_irqsave(&phba->hbalock, iflag); spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock); list_for_each_entry_safe(psb, next_psb, &phba->sli4_hba.lpfc_abts_scsi_buf_list, list) { if (psb->cur_iocbq.sli4_xritag == xri) { list_del(&psb->list); psb->exch_busy = 0; psb->status = IOSTAT_SUCCESS; spin_unlock( &phba->sli4_hba.abts_scsi_buf_list_lock); if (psb->rdata && psb->rdata->pnode) ndlp = psb->rdata->pnode; else ndlp = NULL; rrq_empty = list_empty(&phba->active_rrq_list); spin_unlock_irqrestore(&phba->hbalock, iflag); if (ndlp) { lpfc_set_rrq_active(phba, ndlp, xri, rxid, 1); lpfc_sli4_abts_err_handler(phba, ndlp, axri); } lpfc_release_scsi_buf_s4(phba, psb); if (rrq_empty) lpfc_worker_wake_up(phba); return; } } spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock); for (i = 1; i <= phba->sli.last_iotag; i++) { iocbq = phba->sli.iocbq_lookup[i]; if (!(iocbq->iocb_flag & LPFC_IO_FCP) || (iocbq->iocb_flag & LPFC_IO_LIBDFC)) continue; if (iocbq->sli4_xritag != xri) continue; psb = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq); psb->exch_busy = 0; spin_unlock_irqrestore(&phba->hbalock, iflag); if (pring->txq_cnt) lpfc_worker_wake_up(phba); return; } spin_unlock_irqrestore(&phba->hbalock, iflag); } /** * lpfc_sli4_repost_scsi_sgl_list - Repsot the Scsi buffers sgl pages as block * @phba: pointer to lpfc hba data structure. * * This routine walks the list of scsi buffers that have been allocated and * repost them to the HBA by using SGL block post. This is needed after a * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine * is responsible for moving all scsi buffers on the lpfc_abts_scsi_sgl_list * to the lpfc_scsi_buf_list. If the repost fails, reject all scsi buffers. * * Returns: 0 = success, non-zero failure. **/ int lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba *phba) { struct lpfc_scsi_buf *psb; int index, status, bcnt = 0, rcnt = 0, rc = 0; LIST_HEAD(sblist); for (index = 0; index < phba->sli4_hba.scsi_xri_cnt; index++) { psb = phba->sli4_hba.lpfc_scsi_psb_array[index]; if (psb) { /* Remove from SCSI buffer list */ list_del(&psb->list); /* Add it to a local SCSI buffer list */ list_add_tail(&psb->list, &sblist); if (++rcnt == LPFC_NEMBED_MBOX_SGL_CNT) { bcnt = rcnt; rcnt = 0; } } else /* A hole present in the XRI array, need to skip */ bcnt = rcnt; if (index == phba->sli4_hba.scsi_xri_cnt - 1) /* End of XRI array for SCSI buffer, complete */ bcnt = rcnt; /* Continue until collect up to a nembed page worth of sgls */ if (bcnt == 0) continue; /* Now, post the SCSI buffer list sgls as a block */ if (!phba->sli4_hba.extents_in_use) status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt); else status = lpfc_sli4_post_scsi_sgl_blk_ext(phba, &sblist, bcnt); /* Reset SCSI buffer count for next round of posting */ bcnt = 0; while (!list_empty(&sblist)) { list_remove_head(&sblist, psb, struct lpfc_scsi_buf, list); if (status) { /* Put this back on the abort scsi list */ psb->exch_busy = 1; rc++; } else { psb->exch_busy = 0; psb->status = IOSTAT_SUCCESS; } /* Put it back into the SCSI buffer list */ lpfc_release_scsi_buf_s4(phba, psb); } } return rc; } /** * lpfc_new_scsi_buf_s4 - Scsi buffer allocator for HBA with SLI4 IF spec * @vport: The virtual port for which this call being executed. * @num_to_allocate: The requested number of buffers to allocate. * * This routine allocates a scsi buffer for device with SLI-4 interface spec, * the scsi buffer contains all the necessary information needed to initiate * a SCSI I/O. * * Return codes: * int - number of scsi buffers that were allocated. * 0 = failure, less than num_to_alloc is a partial failure. **/ static int lpfc_new_scsi_buf_s4(struct lpfc_vport *vport, int num_to_alloc) { struct lpfc_hba *phba = vport->phba; struct lpfc_scsi_buf *psb; struct sli4_sge *sgl; IOCB_t *iocb; dma_addr_t pdma_phys_fcp_cmd; dma_addr_t pdma_phys_fcp_rsp; dma_addr_t pdma_phys_bpl, pdma_phys_bpl1; uint16_t iotag, last_xritag = NO_XRI, lxri = 0; int status = 0, index; int bcnt; int non_sequential_xri = 0; LIST_HEAD(sblist); for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL); if (!psb) break; /* * Get memory from the pci pool to map the virt space to pci bus * space for an I/O. The DMA buffer includes space for the * struct fcp_cmnd, struct fcp_rsp and the number of bde's * necessary to support the sg_tablesize. */ psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool, GFP_KERNEL, &psb->dma_handle); if (!psb->data) { kfree(psb); break; } /* Initialize virtual ptrs to dma_buf region. */ memset(psb->data, 0, phba->cfg_sg_dma_buf_size); /* Allocate iotag for psb->cur_iocbq. */ iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq); if (iotag == 0) { pci_pool_free(phba->lpfc_scsi_dma_buf_pool, psb->data, psb->dma_handle); kfree(psb); break; } lxri = lpfc_sli4_next_xritag(phba); if (lxri == NO_XRI) { pci_pool_free(phba->lpfc_scsi_dma_buf_pool, psb->data, psb->dma_handle); kfree(psb); break; } psb->cur_iocbq.sli4_lxritag = lxri; psb->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri]; if (last_xritag != NO_XRI && psb->cur_iocbq.sli4_xritag != (last_xritag+1)) { non_sequential_xri = 1; } else list_add_tail(&psb->list, &sblist); last_xritag = psb->cur_iocbq.sli4_xritag; index = phba->sli4_hba.scsi_xri_cnt++; psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP; psb->fcp_bpl = psb->data; psb->fcp_cmnd = (psb->data + phba->cfg_sg_dma_buf_size) - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp)); psb->fcp_rsp = (struct fcp_rsp *)((uint8_t *)psb->fcp_cmnd + sizeof(struct fcp_cmnd)); /* Initialize local short-hand pointers. */ sgl = (struct sli4_sge *)psb->fcp_bpl; pdma_phys_bpl = psb->dma_handle; pdma_phys_fcp_cmd = (psb->dma_handle + phba->cfg_sg_dma_buf_size) - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp)); pdma_phys_fcp_rsp = pdma_phys_fcp_cmd + sizeof(struct fcp_cmnd); /* * The first two bdes are the FCP_CMD and FCP_RSP. The balance * are sg list bdes. Initialize the first two and leave the * rest for queuecommand. */ sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd)); sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd)); sgl->word2 = le32_to_cpu(sgl->word2); bf_set(lpfc_sli4_sge_last, sgl, 0); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32(sizeof(struct fcp_cmnd)); sgl++; /* Setup the physical region for the FCP RSP */ sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp)); sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp)); sgl->word2 = le32_to_cpu(sgl->word2); bf_set(lpfc_sli4_sge_last, sgl, 1); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32(sizeof(struct fcp_rsp)); /* * Since the IOCB for the FCP I/O is built into this * lpfc_scsi_buf, initialize it with all known data now. */ iocb = &psb->cur_iocbq.iocb; iocb->un.fcpi64.bdl.ulpIoTag32 = 0; iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_64; /* setting the BLP size to 2 * sizeof BDE may not be correct. * We are setting the bpl to point to out sgl. An sgl's * entries are 16 bytes, a bpl entries are 12 bytes. */ iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd); iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_fcp_cmd); iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_fcp_cmd); iocb->ulpBdeCount = 1; iocb->ulpLe = 1; iocb->ulpClass = CLASS3; psb->cur_iocbq.context1 = psb; if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) pdma_phys_bpl1 = pdma_phys_bpl + SGL_PAGE_SIZE; else pdma_phys_bpl1 = 0; psb->dma_phys_bpl = pdma_phys_bpl; phba->sli4_hba.lpfc_scsi_psb_array[index] = psb; if (non_sequential_xri) { status = lpfc_sli4_post_sgl(phba, pdma_phys_bpl, pdma_phys_bpl1, psb->cur_iocbq.sli4_xritag); if (status) { /* Put this back on the abort scsi list */ psb->exch_busy = 1; } else { psb->exch_busy = 0; psb->status = IOSTAT_SUCCESS; } /* Put it back into the SCSI buffer list */ lpfc_release_scsi_buf_s4(phba, psb); break; } } if (bcnt) { if (!phba->sli4_hba.extents_in_use) status = lpfc_sli4_post_scsi_sgl_block(phba, &sblist, bcnt); else status = lpfc_sli4_post_scsi_sgl_blk_ext(phba, &sblist, bcnt); if (status) { lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI, "3021 SCSI SGL post error %d\n", status); bcnt = 0; } /* Reset SCSI buffer count for next round of posting */ while (!list_empty(&sblist)) { list_remove_head(&sblist, psb, struct lpfc_scsi_buf, list); if (status) { /* Put this back on the abort scsi list */ psb->exch_busy = 1; } else { psb->exch_busy = 0; psb->status = IOSTAT_SUCCESS; } /* Put it back into the SCSI buffer list */ lpfc_release_scsi_buf_s4(phba, psb); } } return bcnt + non_sequential_xri; } /** * lpfc_new_scsi_buf - Wrapper funciton for scsi buffer allocator * @vport: The virtual port for which this call being executed. * @num_to_allocate: The requested number of buffers to allocate. * * This routine wraps the actual SCSI buffer allocator function pointer from * the lpfc_hba struct. * * Return codes: * int - number of scsi buffers that were allocated. * 0 = failure, less than num_to_alloc is a partial failure. **/ static inline int lpfc_new_scsi_buf(struct lpfc_vport *vport, int num_to_alloc) { return vport->phba->lpfc_new_scsi_buf(vport, num_to_alloc); } /** * lpfc_get_scsi_buf_s3 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA * @phba: The HBA for which this call is being executed. * * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list * and returns to caller. * * Return codes: * NULL - Error * Pointer to lpfc_scsi_buf - Success **/ static struct lpfc_scsi_buf* lpfc_get_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) { struct lpfc_scsi_buf * lpfc_cmd = NULL; struct list_head *scsi_buf_list = &phba->lpfc_scsi_buf_list; unsigned long iflag = 0; spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); list_remove_head(scsi_buf_list, lpfc_cmd, struct lpfc_scsi_buf, list); if (lpfc_cmd) { lpfc_cmd->seg_cnt = 0; lpfc_cmd->nonsg_phys = 0; lpfc_cmd->prot_seg_cnt = 0; } spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); return lpfc_cmd; } /** * lpfc_get_scsi_buf_s4 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA * @phba: The HBA for which this call is being executed. * * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list * and returns to caller. * * Return codes: * NULL - Error * Pointer to lpfc_scsi_buf - Success **/ static struct lpfc_scsi_buf* lpfc_get_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) { struct lpfc_scsi_buf *lpfc_cmd ; unsigned long iflag = 0; int found = 0; spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); list_for_each_entry(lpfc_cmd, &phba->lpfc_scsi_buf_list, list) { if (lpfc_test_rrq_active(phba, ndlp, lpfc_cmd->cur_iocbq.sli4_xritag)) continue; list_del(&lpfc_cmd->list); found = 1; lpfc_cmd->seg_cnt = 0; lpfc_cmd->nonsg_phys = 0; lpfc_cmd->prot_seg_cnt = 0; break; } spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); if (!found) return NULL; else return lpfc_cmd; } /** * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA * @phba: The HBA for which this call is being executed. * * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list * and returns to caller. * * Return codes: * NULL - Error * Pointer to lpfc_scsi_buf - Success **/ static struct lpfc_scsi_buf* lpfc_get_scsi_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) { return phba->lpfc_get_scsi_buf(phba, ndlp); } /** * lpfc_release_scsi_buf - Return a scsi buffer back to hba scsi buf list * @phba: The Hba for which this call is being executed. * @psb: The scsi buffer which is being released. * * This routine releases @psb scsi buffer by adding it to tail of @phba * lpfc_scsi_buf_list list. **/ static void lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) { unsigned long iflag = 0; spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); psb->pCmd = NULL; list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list); spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); } /** * lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list. * @phba: The Hba for which this call is being executed. * @psb: The scsi buffer which is being released. * * This routine releases @psb scsi buffer by adding it to tail of @phba * lpfc_scsi_buf_list list. For SLI4 XRI's are tied to the scsi buffer * and cannot be reused for at least RA_TOV amount of time if it was * aborted. **/ static void lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) { unsigned long iflag = 0; if (psb->exch_busy) { spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock, iflag); psb->pCmd = NULL; list_add_tail(&psb->list, &phba->sli4_hba.lpfc_abts_scsi_buf_list); spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock, iflag); } else { spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); psb->pCmd = NULL; list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list); spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); } } /** * lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list. * @phba: The Hba for which this call is being executed. * @psb: The scsi buffer which is being released. * * This routine releases @psb scsi buffer by adding it to tail of @phba * lpfc_scsi_buf_list list. **/ static void lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) { phba->lpfc_release_scsi_buf(phba, psb); } /** * lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec * @phba: The Hba for which this call is being executed. * @lpfc_cmd: The scsi buffer which is going to be mapped. * * This routine does the pci dma mapping for scatter-gather list of scsi cmnd * field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans * through sg elements and format the bdea. This routine also initializes all * IOCB fields which are dependent on scsi command request buffer. * * Return codes: * 1 - Error * 0 - Success **/ static int lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) { struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; struct scatterlist *sgel = NULL; struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl; struct lpfc_iocbq *iocbq = &lpfc_cmd->cur_iocbq; IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde; dma_addr_t physaddr; uint32_t num_bde = 0; int nseg, datadir = scsi_cmnd->sc_data_direction; /* * There are three possibilities here - use scatter-gather segment, use * the single mapping, or neither. Start the lpfc command prep by * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first * data bde entry. */ bpl += 2; if (scsi_sg_count(scsi_cmnd)) { /* * The driver stores the segment count returned from pci_map_sg * because this a count of dma-mappings used to map the use_sg * pages. They are not guaranteed to be the same for those * architectures that implement an IOMMU. */ nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd), scsi_sg_count(scsi_cmnd), datadir); if (unlikely(!nseg)) return 1; lpfc_cmd->seg_cnt = nseg; if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9064 BLKGRD: %s: Too many sg segments from " "dma_map_sg. Config %d, seg_cnt %d\n", __func__, phba->cfg_sg_seg_cnt, lpfc_cmd->seg_cnt); scsi_dma_unmap(scsi_cmnd); return 1; } /* * The driver established a maximum scatter-gather segment count * during probe that limits the number of sg elements in any * single scsi command. Just run through the seg_cnt and format * the bde's. * When using SLI-3 the driver will try to fit all the BDEs into * the IOCB. If it can't then the BDEs get added to a BPL as it * does for SLI-2 mode. */ scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) { physaddr = sg_dma_address(sgel); if (phba->sli_rev == 3 && !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && !(iocbq->iocb_flag & DSS_SECURITY_OP) && nseg <= LPFC_EXT_DATA_BDE_COUNT) { data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; data_bde->tus.f.bdeSize = sg_dma_len(sgel); data_bde->addrLow = putPaddrLow(physaddr); data_bde->addrHigh = putPaddrHigh(physaddr); data_bde++; } else { bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; bpl->tus.f.bdeSize = sg_dma_len(sgel); bpl->tus.w = le32_to_cpu(bpl->tus.w); bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr)); bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); bpl++; } } } /* * Finish initializing those IOCB fields that are dependent on the * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is * explicitly reinitialized and for SLI-3 the extended bde count is * explicitly reinitialized since all iocb memory resources are reused. */ if (phba->sli_rev == 3 && !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && !(iocbq->iocb_flag & DSS_SECURITY_OP)) { if (num_bde > LPFC_EXT_DATA_BDE_COUNT) { /* * The extended IOCB format can only fit 3 BDE or a BPL. * This I/O has more than 3 BDE so the 1st data bde will * be a BPL that is filled in here. */ physaddr = lpfc_cmd->dma_handle; data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64; data_bde->tus.f.bdeSize = (num_bde * sizeof(struct ulp_bde64)); physaddr += (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp) + (2 * sizeof(struct ulp_bde64))); data_bde->addrHigh = putPaddrHigh(physaddr); data_bde->addrLow = putPaddrLow(physaddr); /* ebde count includes the response bde and data bpl */ iocb_cmd->unsli3.fcp_ext.ebde_count = 2; } else { /* ebde count includes the response bde and data bdes */ iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1); } } else { iocb_cmd->un.fcpi64.bdl.bdeSize = ((num_bde + 2) * sizeof(struct ulp_bde64)); iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1); } fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd)); /* * Due to difference in data length between DIF/non-DIF paths, * we need to set word 4 of IOCB here */ iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd); return 0; } static inline unsigned lpfc_cmd_blksize(struct scsi_cmnd *sc) { return sc->device->sector_size; } #ifdef CONFIG_SCSI_LPFC_DEBUG_FS /* Return if if error injection is detected by Initiator */ #define BG_ERR_INIT 0x1 /* Return if if error injection is detected by Target */ #define BG_ERR_TGT 0x2 /* Return if if swapping CSUM<-->CRC is required for error injection */ #define BG_ERR_SWAP 0x10 /* Return if disabling Guard/Ref/App checking is required for error injection */ #define BG_ERR_CHECK 0x20 /** * lpfc_bg_err_inject - Determine if we should inject an error * @phba: The Hba for which this call is being executed. * @sc: The SCSI command to examine * @reftag: (out) BlockGuard reference tag for transmitted data * @apptag: (out) BlockGuard application tag for transmitted data * @new_guard (in) Value to replace CRC with if needed * * Returns BG_ERR_* bit mask or 0 if request ignored **/ static int lpfc_bg_err_inject(struct lpfc_hba *phba, struct scsi_cmnd *sc, uint32_t *reftag, uint16_t *apptag, uint32_t new_guard) { struct scatterlist *sgpe; /* s/g prot entry */ struct scatterlist *sgde; /* s/g data entry */ struct lpfc_scsi_buf *lpfc_cmd = NULL; struct scsi_dif_tuple *src = NULL; struct lpfc_nodelist *ndlp; struct lpfc_rport_data *rdata; uint32_t op = scsi_get_prot_op(sc); uint32_t blksize; uint32_t numblks; sector_t lba; int rc = 0; int blockoff = 0; if (op == SCSI_PROT_NORMAL) return 0; sgpe = scsi_prot_sglist(sc); sgde = scsi_sglist(sc); lba = scsi_get_lba(sc); /* First check if we need to match the LBA */ if (phba->lpfc_injerr_lba != LPFC_INJERR_LBA_OFF) { blksize = lpfc_cmd_blksize(sc); numblks = (scsi_bufflen(sc) + blksize - 1) / blksize; /* Make sure we have the right LBA if one is specified */ if ((phba->lpfc_injerr_lba < lba) || (phba->lpfc_injerr_lba >= (lba + numblks))) return 0; if (sgpe) { blockoff = phba->lpfc_injerr_lba - lba; numblks = sg_dma_len(sgpe) / sizeof(struct scsi_dif_tuple); if (numblks < blockoff) blockoff = numblks; } } /* Next check if we need to match the remote NPortID or WWPN */ rdata = sc->device->hostdata; if (rdata && rdata->pnode) { ndlp = rdata->pnode; /* Make sure we have the right NPortID if one is specified */ if (phba->lpfc_injerr_nportid && (phba->lpfc_injerr_nportid != ndlp->nlp_DID)) return 0; /* * Make sure we have the right WWPN if one is specified. * wwn[0] should be a non-zero NAA in a good WWPN. */ if (phba->lpfc_injerr_wwpn.u.wwn[0] && (memcmp(&ndlp->nlp_portname, &phba->lpfc_injerr_wwpn, sizeof(struct lpfc_name)) != 0)) return 0; } /* Setup a ptr to the protection data if the SCSI host provides it */ if (sgpe) { src = (struct scsi_dif_tuple *)sg_virt(sgpe); src += blockoff; lpfc_cmd = (struct lpfc_scsi_buf *)sc->host_scribble; } /* Should we change the Reference Tag */ if (reftag) { if (phba->lpfc_injerr_wref_cnt) { switch (op) { case SCSI_PROT_WRITE_PASS: if (src) { /* * For WRITE_PASS, force the error * to be sent on the wire. It should * be detected by the Target. * If blockoff != 0 error will be * inserted in middle of the IO. */ lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9076 BLKGRD: Injecting reftag error: " "write lba x%lx + x%x oldrefTag x%x\n", (unsigned long)lba, blockoff, be32_to_cpu(src->ref_tag)); /* * Save the old ref_tag so we can * restore it on completion. */ if (lpfc_cmd) { lpfc_cmd->prot_data_type = LPFC_INJERR_REFTAG; lpfc_cmd->prot_data_segment = src; lpfc_cmd->prot_data = src->ref_tag; } src->ref_tag = cpu_to_be32(0xDEADBEEF); phba->lpfc_injerr_wref_cnt--; if (phba->lpfc_injerr_wref_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_TGT | BG_ERR_CHECK; break; } /* Drop thru */ case SCSI_PROT_WRITE_INSERT: /* * For WRITE_INSERT, force the error * to be sent on the wire. It should be * detected by the Target. */ /* DEADBEEF will be the reftag on the wire */ *reftag = 0xDEADBEEF; phba->lpfc_injerr_wref_cnt--; if (phba->lpfc_injerr_wref_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_TGT | BG_ERR_CHECK; lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9078 BLKGRD: Injecting reftag error: " "write lba x%lx\n", (unsigned long)lba); break; case SCSI_PROT_WRITE_STRIP: /* * For WRITE_STRIP and WRITE_PASS, * force the error on data * being copied from SLI-Host to SLI-Port. */ *reftag = 0xDEADBEEF; phba->lpfc_injerr_wref_cnt--; if (phba->lpfc_injerr_wref_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_INIT; lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9077 BLKGRD: Injecting reftag error: " "write lba x%lx\n", (unsigned long)lba); break; } } if (phba->lpfc_injerr_rref_cnt) { switch (op) { case SCSI_PROT_READ_INSERT: case SCSI_PROT_READ_STRIP: case SCSI_PROT_READ_PASS: /* * For READ_STRIP and READ_PASS, force the * error on data being read off the wire. It * should force an IO error to the driver. */ *reftag = 0xDEADBEEF; phba->lpfc_injerr_rref_cnt--; if (phba->lpfc_injerr_rref_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_INIT; lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9079 BLKGRD: Injecting reftag error: " "read lba x%lx\n", (unsigned long)lba); break; } } } /* Should we change the Application Tag */ if (apptag) { if (phba->lpfc_injerr_wapp_cnt) { switch (op) { case SCSI_PROT_WRITE_PASS: if (src) { /* * For WRITE_PASS, force the error * to be sent on the wire. It should * be detected by the Target. * If blockoff != 0 error will be * inserted in middle of the IO. */ lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9080 BLKGRD: Injecting apptag error: " "write lba x%lx + x%x oldappTag x%x\n", (unsigned long)lba, blockoff, be16_to_cpu(src->app_tag)); /* * Save the old app_tag so we can * restore it on completion. */ if (lpfc_cmd) { lpfc_cmd->prot_data_type = LPFC_INJERR_APPTAG; lpfc_cmd->prot_data_segment = src; lpfc_cmd->prot_data = src->app_tag; } src->app_tag = cpu_to_be16(0xDEAD); phba->lpfc_injerr_wapp_cnt--; if (phba->lpfc_injerr_wapp_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_TGT | BG_ERR_CHECK; break; } /* Drop thru */ case SCSI_PROT_WRITE_INSERT: /* * For WRITE_INSERT, force the * error to be sent on the wire. It should be * detected by the Target. */ /* DEAD will be the apptag on the wire */ *apptag = 0xDEAD; phba->lpfc_injerr_wapp_cnt--; if (phba->lpfc_injerr_wapp_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_TGT | BG_ERR_CHECK; lpfc_printf_log(phba, KERN_ERR, LOG_BG, "0813 BLKGRD: Injecting apptag error: " "write lba x%lx\n", (unsigned long)lba); break; case SCSI_PROT_WRITE_STRIP: /* * For WRITE_STRIP and WRITE_PASS, * force the error on data * being copied from SLI-Host to SLI-Port. */ *apptag = 0xDEAD; phba->lpfc_injerr_wapp_cnt--; if (phba->lpfc_injerr_wapp_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_INIT; lpfc_printf_log(phba, KERN_ERR, LOG_BG, "0812 BLKGRD: Injecting apptag error: " "write lba x%lx\n", (unsigned long)lba); break; } } if (phba->lpfc_injerr_rapp_cnt) { switch (op) { case SCSI_PROT_READ_INSERT: case SCSI_PROT_READ_STRIP: case SCSI_PROT_READ_PASS: /* * For READ_STRIP and READ_PASS, force the * error on data being read off the wire. It * should force an IO error to the driver. */ *apptag = 0xDEAD; phba->lpfc_injerr_rapp_cnt--; if (phba->lpfc_injerr_rapp_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_INIT; lpfc_printf_log(phba, KERN_ERR, LOG_BG, "0814 BLKGRD: Injecting apptag error: " "read lba x%lx\n", (unsigned long)lba); break; } } } /* Should we change the Guard Tag */ if (new_guard) { if (phba->lpfc_injerr_wgrd_cnt) { switch (op) { case SCSI_PROT_WRITE_PASS: rc = BG_ERR_CHECK; /* Drop thru */ case SCSI_PROT_WRITE_INSERT: /* * For WRITE_INSERT, force the * error to be sent on the wire. It should be * detected by the Target. */ phba->lpfc_injerr_wgrd_cnt--; if (phba->lpfc_injerr_wgrd_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc |= BG_ERR_TGT | BG_ERR_SWAP; /* Signals the caller to swap CRC->CSUM */ lpfc_printf_log(phba, KERN_ERR, LOG_BG, "0817 BLKGRD: Injecting guard error: " "write lba x%lx\n", (unsigned long)lba); break; case SCSI_PROT_WRITE_STRIP: /* * For WRITE_STRIP and WRITE_PASS, * force the error on data * being copied from SLI-Host to SLI-Port. */ phba->lpfc_injerr_wgrd_cnt--; if (phba->lpfc_injerr_wgrd_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_INIT | BG_ERR_SWAP; /* Signals the caller to swap CRC->CSUM */ lpfc_printf_log(phba, KERN_ERR, LOG_BG, "0816 BLKGRD: Injecting guard error: " "write lba x%lx\n", (unsigned long)lba); break; } } if (phba->lpfc_injerr_rgrd_cnt) { switch (op) { case SCSI_PROT_READ_INSERT: case SCSI_PROT_READ_STRIP: case SCSI_PROT_READ_PASS: /* * For READ_STRIP and READ_PASS, force the * error on data being read off the wire. It * should force an IO error to the driver. */ phba->lpfc_injerr_rgrd_cnt--; if (phba->lpfc_injerr_rgrd_cnt == 0) { phba->lpfc_injerr_nportid = 0; phba->lpfc_injerr_lba = LPFC_INJERR_LBA_OFF; memset(&phba->lpfc_injerr_wwpn, 0, sizeof(struct lpfc_name)); } rc = BG_ERR_INIT | BG_ERR_SWAP; /* Signals the caller to swap CRC->CSUM */ lpfc_printf_log(phba, KERN_ERR, LOG_BG, "0818 BLKGRD: Injecting guard error: " "read lba x%lx\n", (unsigned long)lba); } } } return rc; } #endif /** * lpfc_sc_to_bg_opcodes - Determine the BlockGuard opcodes to be used with * the specified SCSI command. * @phba: The Hba for which this call is being executed. * @sc: The SCSI command to examine * @txopt: (out) BlockGuard operation for transmitted data * @rxopt: (out) BlockGuard operation for received data * * Returns: zero on success; non-zero if tx and/or rx op cannot be determined * **/ static int lpfc_sc_to_bg_opcodes(struct lpfc_hba *phba, struct scsi_cmnd *sc, uint8_t *txop, uint8_t *rxop) { uint8_t guard_type = scsi_host_get_guard(sc->device->host); uint8_t ret = 0; if (guard_type == SHOST_DIX_GUARD_IP) { switch (scsi_get_prot_op(sc)) { case SCSI_PROT_READ_INSERT: case SCSI_PROT_WRITE_STRIP: *rxop = BG_OP_IN_NODIF_OUT_CSUM; *txop = BG_OP_IN_CSUM_OUT_NODIF; break; case SCSI_PROT_READ_STRIP: case SCSI_PROT_WRITE_INSERT: *rxop = BG_OP_IN_CRC_OUT_NODIF; *txop = BG_OP_IN_NODIF_OUT_CRC; break; case SCSI_PROT_READ_PASS: case SCSI_PROT_WRITE_PASS: *rxop = BG_OP_IN_CRC_OUT_CSUM; *txop = BG_OP_IN_CSUM_OUT_CRC; break; case SCSI_PROT_NORMAL: default: lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9063 BLKGRD: Bad op/guard:%d/IP combination\n", scsi_get_prot_op(sc)); ret = 1; break; } } else { switch (scsi_get_prot_op(sc)) { case SCSI_PROT_READ_STRIP: case SCSI_PROT_WRITE_INSERT: *rxop = BG_OP_IN_CRC_OUT_NODIF; *txop = BG_OP_IN_NODIF_OUT_CRC; break; case SCSI_PROT_READ_PASS: case SCSI_PROT_WRITE_PASS: *rxop = BG_OP_IN_CRC_OUT_CRC; *txop = BG_OP_IN_CRC_OUT_CRC; break; case SCSI_PROT_READ_INSERT: case SCSI_PROT_WRITE_STRIP: *rxop = BG_OP_IN_NODIF_OUT_CRC; *txop = BG_OP_IN_CRC_OUT_NODIF; break; case SCSI_PROT_NORMAL: default: lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9075 BLKGRD: Bad op/guard:%d/CRC combination\n", scsi_get_prot_op(sc)); ret = 1; break; } } return ret; } #ifdef CONFIG_SCSI_LPFC_DEBUG_FS /** * lpfc_bg_err_opcodes - reDetermine the BlockGuard opcodes to be used with * the specified SCSI command in order to force a guard tag error. * @phba: The Hba for which this call is being executed. * @sc: The SCSI command to examine * @txopt: (out) BlockGuard operation for transmitted data * @rxopt: (out) BlockGuard operation for received data * * Returns: zero on success; non-zero if tx and/or rx op cannot be determined * **/ static int lpfc_bg_err_opcodes(struct lpfc_hba *phba, struct scsi_cmnd *sc, uint8_t *txop, uint8_t *rxop) { uint8_t guard_type = scsi_host_get_guard(sc->device->host); uint8_t ret = 0; if (guard_type == SHOST_DIX_GUARD_IP) { switch (scsi_get_prot_op(sc)) { case SCSI_PROT_READ_INSERT: case SCSI_PROT_WRITE_STRIP: *rxop = BG_OP_IN_NODIF_OUT_CRC; *txop = BG_OP_IN_CRC_OUT_NODIF; break; case SCSI_PROT_READ_STRIP: case SCSI_PROT_WRITE_INSERT: *rxop = BG_OP_IN_CSUM_OUT_NODIF; *txop = BG_OP_IN_NODIF_OUT_CSUM; break; case SCSI_PROT_READ_PASS: case SCSI_PROT_WRITE_PASS: *rxop = BG_OP_IN_CSUM_OUT_CRC; *txop = BG_OP_IN_CRC_OUT_CSUM; break; case SCSI_PROT_NORMAL: default: break; } } else { switch (scsi_get_prot_op(sc)) { case SCSI_PROT_READ_STRIP: case SCSI_PROT_WRITE_INSERT: *rxop = BG_OP_IN_CSUM_OUT_NODIF; *txop = BG_OP_IN_NODIF_OUT_CSUM; break; case SCSI_PROT_READ_PASS: case SCSI_PROT_WRITE_PASS: *rxop = BG_OP_IN_CSUM_OUT_CSUM; *txop = BG_OP_IN_CSUM_OUT_CSUM; break; case SCSI_PROT_READ_INSERT: case SCSI_PROT_WRITE_STRIP: *rxop = BG_OP_IN_NODIF_OUT_CSUM; *txop = BG_OP_IN_CSUM_OUT_NODIF; break; case SCSI_PROT_NORMAL: default: break; } } return ret; } #endif /** * lpfc_bg_setup_bpl - Setup BlockGuard BPL with no protection data * @phba: The Hba for which this call is being executed. * @sc: pointer to scsi command we're working on * @bpl: pointer to buffer list for protection groups * @datacnt: number of segments of data that have been dma mapped * * This function sets up BPL buffer list for protection groups of * type LPFC_PG_TYPE_NO_DIF * * This is usually used when the HBA is instructed to generate * DIFs and insert them into data stream (or strip DIF from * incoming data stream) * * The buffer list consists of just one protection group described * below: * +-------------------------+ * start of prot group --> | PDE_5 | * +-------------------------+ * | PDE_6 | * +-------------------------+ * | Data BDE | * +-------------------------+ * |more Data BDE's ... (opt)| * +-------------------------+ * * * Note: Data s/g buffers have been dma mapped * * Returns the number of BDEs added to the BPL. **/ static int lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc, struct ulp_bde64 *bpl, int datasegcnt) { struct scatterlist *sgde = NULL; /* s/g data entry */ struct lpfc_pde5 *pde5 = NULL; struct lpfc_pde6 *pde6 = NULL; dma_addr_t physaddr; int i = 0, num_bde = 0, status; int datadir = sc->sc_data_direction; uint32_t rc; uint32_t checking = 1; uint32_t reftag; unsigned blksize; uint8_t txop, rxop; status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop); if (status) goto out; /* extract some info from the scsi command for pde*/ blksize = lpfc_cmd_blksize(sc); reftag = (uint32_t)scsi_get_lba(sc); /* Truncate LBA */ #ifdef CONFIG_SCSI_LPFC_DEBUG_FS rc = lpfc_bg_err_inject(phba, sc, &reftag, NULL, 1); if (rc) { if (rc & BG_ERR_SWAP) lpfc_bg_err_opcodes(phba, sc, &txop, &rxop); if (rc & BG_ERR_CHECK) checking = 0; } #endif /* setup PDE5 with what we have */ pde5 = (struct lpfc_pde5 *) bpl; memset(pde5, 0, sizeof(struct lpfc_pde5)); bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR); /* Endianness conversion if necessary for PDE5 */ pde5->word0 = cpu_to_le32(pde5->word0); pde5->reftag = cpu_to_le32(reftag); /* advance bpl and increment bde count */ num_bde++; bpl++; pde6 = (struct lpfc_pde6 *) bpl; /* setup PDE6 with the rest of the info */ memset(pde6, 0, sizeof(struct lpfc_pde6)); bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR); bf_set(pde6_optx, pde6, txop); bf_set(pde6_oprx, pde6, rxop); if (datadir == DMA_FROM_DEVICE) { bf_set(pde6_ce, pde6, checking); bf_set(pde6_re, pde6, checking); } bf_set(pde6_ai, pde6, 1); bf_set(pde6_ae, pde6, 0); bf_set(pde6_apptagval, pde6, 0); /* Endianness conversion if necessary for PDE6 */ pde6->word0 = cpu_to_le32(pde6->word0); pde6->word1 = cpu_to_le32(pde6->word1); pde6->word2 = cpu_to_le32(pde6->word2); /* advance bpl and increment bde count */ num_bde++; bpl++; /* assumption: caller has already run dma_map_sg on command data */ scsi_for_each_sg(sc, sgde, datasegcnt, i) { physaddr = sg_dma_address(sgde); bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr)); bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); bpl->tus.f.bdeSize = sg_dma_len(sgde); if (datadir == DMA_TO_DEVICE) bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; else bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; bpl->tus.w = le32_to_cpu(bpl->tus.w); bpl++; num_bde++; } out: return num_bde; } /** * lpfc_bg_setup_bpl_prot - Setup BlockGuard BPL with protection data * @phba: The Hba for which this call is being executed. * @sc: pointer to scsi command we're working on * @bpl: pointer to buffer list for protection groups * @datacnt: number of segments of data that have been dma mapped * @protcnt: number of segment of protection data that have been dma mapped * * This function sets up BPL buffer list for protection groups of * type LPFC_PG_TYPE_DIF * * This is usually used when DIFs are in their own buffers, * separate from the data. The HBA can then by instructed * to place the DIFs in the outgoing stream. For read operations, * The HBA could extract the DIFs and place it in DIF buffers. * * The buffer list for this type consists of one or more of the * protection groups described below: * +-------------------------+ * start of first prot group --> | PDE_5 | * +-------------------------+ * | PDE_6 | * +-------------------------+ * | PDE_7 (Prot BDE) | * +-------------------------+ * | Data BDE | * +-------------------------+ * |more Data BDE's ... (opt)| * +-------------------------+ * start of new prot group --> | PDE_5 | * +-------------------------+ * | ... | * +-------------------------+ * * Note: It is assumed that both data and protection s/g buffers have been * mapped for DMA * * Returns the number of BDEs added to the BPL. **/ static int lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc, struct ulp_bde64 *bpl, int datacnt, int protcnt) { struct scatterlist *sgde = NULL; /* s/g data entry */ struct scatterlist *sgpe = NULL; /* s/g prot entry */ struct lpfc_pde5 *pde5 = NULL; struct lpfc_pde6 *pde6 = NULL; struct lpfc_pde7 *pde7 = NULL; dma_addr_t dataphysaddr, protphysaddr; unsigned short curr_data = 0, curr_prot = 0; unsigned int split_offset; unsigned int protgroup_len, protgroup_offset = 0, protgroup_remainder; unsigned int protgrp_blks, protgrp_bytes; unsigned int remainder, subtotal; int status; int datadir = sc->sc_data_direction; unsigned char pgdone = 0, alldone = 0; unsigned blksize; uint32_t rc; uint32_t checking = 1; uint32_t reftag; uint8_t txop, rxop; int num_bde = 0; sgpe = scsi_prot_sglist(sc); sgde = scsi_sglist(sc); if (!sgpe || !sgde) { lpfc_printf_log(phba, KERN_ERR, LOG_FCP, "9020 Invalid s/g entry: data=0x%p prot=0x%p\n", sgpe, sgde); return 0; } status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop); if (status) goto out; /* extract some info from the scsi command */ blksize = lpfc_cmd_blksize(sc); reftag = (uint32_t)scsi_get_lba(sc); /* Truncate LBA */ #ifdef CONFIG_SCSI_LPFC_DEBUG_FS rc = lpfc_bg_err_inject(phba, sc, &reftag, NULL, 1); if (rc) { if (rc & BG_ERR_SWAP) lpfc_bg_err_opcodes(phba, sc, &txop, &rxop); if (rc & BG_ERR_CHECK) checking = 0; } #endif split_offset = 0; do { /* setup PDE5 with what we have */ pde5 = (struct lpfc_pde5 *) bpl; memset(pde5, 0, sizeof(struct lpfc_pde5)); bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR); /* Endianness conversion if necessary for PDE5 */ pde5->word0 = cpu_to_le32(pde5->word0); pde5->reftag = cpu_to_le32(reftag); /* advance bpl and increment bde count */ num_bde++; bpl++; pde6 = (struct lpfc_pde6 *) bpl; /* setup PDE6 with the rest of the info */ memset(pde6, 0, sizeof(struct lpfc_pde6)); bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR); bf_set(pde6_optx, pde6, txop); bf_set(pde6_oprx, pde6, rxop); bf_set(pde6_ce, pde6, checking); bf_set(pde6_re, pde6, checking); bf_set(pde6_ai, pde6, 1); bf_set(pde6_ae, pde6, 0); bf_set(pde6_apptagval, pde6, 0); /* Endianness conversion if necessary for PDE6 */ pde6->word0 = cpu_to_le32(pde6->word0); pde6->word1 = cpu_to_le32(pde6->word1); pde6->word2 = cpu_to_le32(pde6->word2); /* advance bpl and increment bde count */ num_bde++; bpl++; /* setup the first BDE that points to protection buffer */ protphysaddr = sg_dma_address(sgpe) + protgroup_offset; protgroup_len = sg_dma_len(sgpe) - protgroup_offset; /* must be integer multiple of the DIF block length */ BUG_ON(protgroup_len % 8); pde7 = (struct lpfc_pde7 *) bpl; memset(pde7, 0, sizeof(struct lpfc_pde7)); bf_set(pde7_type, pde7, LPFC_PDE7_DESCRIPTOR); pde7->addrHigh = le32_to_cpu(putPaddrHigh(protphysaddr)); pde7->addrLow = le32_to_cpu(putPaddrLow(protphysaddr)); protgrp_blks = protgroup_len / 8; protgrp_bytes = protgrp_blks * blksize; /* check if this pde is crossing the 4K boundary; if so split */ if ((pde7->addrLow & 0xfff) + protgroup_len > 0x1000) { protgroup_remainder = 0x1000 - (pde7->addrLow & 0xfff); protgroup_offset += protgroup_remainder; protgrp_blks = protgroup_remainder / 8; protgrp_bytes = protgrp_blks * blksize; } else { protgroup_offset = 0; curr_prot++; } num_bde++; /* setup BDE's for data blocks associated with DIF data */ pgdone = 0; subtotal = 0; /* total bytes processed for current prot grp */ while (!pgdone) { if (!sgde) { lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9065 BLKGRD:%s Invalid data segment\n", __func__); return 0; } bpl++; dataphysaddr = sg_dma_address(sgde) + split_offset; bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr)); bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr)); remainder = sg_dma_len(sgde) - split_offset; if ((subtotal + remainder) <= protgrp_bytes) { /* we can use this whole buffer */ bpl->tus.f.bdeSize = remainder; split_offset = 0; if ((subtotal + remainder) == protgrp_bytes) pgdone = 1; } else { /* must split this buffer with next prot grp */ bpl->tus.f.bdeSize = protgrp_bytes - subtotal; split_offset += bpl->tus.f.bdeSize; } subtotal += bpl->tus.f.bdeSize; if (datadir == DMA_TO_DEVICE) bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; else bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; bpl->tus.w = le32_to_cpu(bpl->tus.w); num_bde++; curr_data++; if (split_offset) break; /* Move to the next s/g segment if possible */ sgde = sg_next(sgde); } if (protgroup_offset) { /* update the reference tag */ reftag += protgrp_blks; bpl++; continue; } /* are we done ? */ if (curr_prot == protcnt) { alldone = 1; } else if (curr_prot < protcnt) { /* advance to next prot buffer */ sgpe = sg_next(sgpe); bpl++; /* update the reference tag */ reftag += protgrp_blks; } else { /* if we're here, we have a bug */ lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9054 BLKGRD: bug in %s\n", __func__); } } while (!alldone); out: return num_bde; } /** * lpfc_bg_setup_sgl - Setup BlockGuard SGL with no protection data * @phba: The Hba for which this call is being executed. * @sc: pointer to scsi command we're working on * @sgl: pointer to buffer list for protection groups * @datacnt: number of segments of data that have been dma mapped * * This function sets up SGL buffer list for protection groups of * type LPFC_PG_TYPE_NO_DIF * * This is usually used when the HBA is instructed to generate * DIFs and insert them into data stream (or strip DIF from * incoming data stream) * * The buffer list consists of just one protection group described * below: * +-------------------------+ * start of prot group --> | DI_SEED | * +-------------------------+ * | Data SGE | * +-------------------------+ * |more Data SGE's ... (opt)| * +-------------------------+ * * * Note: Data s/g buffers have been dma mapped * * Returns the number of SGEs added to the SGL. **/ static int lpfc_bg_setup_sgl(struct lpfc_hba *phba, struct scsi_cmnd *sc, struct sli4_sge *sgl, int datasegcnt) { struct scatterlist *sgde = NULL; /* s/g data entry */ struct sli4_sge_diseed *diseed = NULL; dma_addr_t physaddr; int i = 0, num_sge = 0, status; int datadir = sc->sc_data_direction; uint32_t reftag; unsigned blksize; uint8_t txop, rxop; uint32_t rc; uint32_t checking = 1; uint32_t dma_len; uint32_t dma_offset = 0; status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop); if (status) goto out; /* extract some info from the scsi command for pde*/ blksize = lpfc_cmd_blksize(sc); reftag = (uint32_t)scsi_get_lba(sc); /* Truncate LBA */ #ifdef CONFIG_SCSI_LPFC_DEBUG_FS rc = lpfc_bg_err_inject(phba, sc, &reftag, NULL, 1); if (rc) { if (rc & BG_ERR_SWAP) lpfc_bg_err_opcodes(phba, sc, &txop, &rxop); if (rc & BG_ERR_CHECK) checking = 0; } #endif /* setup DISEED with what we have */ diseed = (struct sli4_sge_diseed *) sgl; memset(diseed, 0, sizeof(struct sli4_sge_diseed)); bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DISEED); /* Endianness conversion if necessary */ diseed->ref_tag = cpu_to_le32(reftag); diseed->ref_tag_tran = diseed->ref_tag; /* setup DISEED with the rest of the info */ bf_set(lpfc_sli4_sge_dif_optx, diseed, txop); bf_set(lpfc_sli4_sge_dif_oprx, diseed, rxop); if (datadir == DMA_FROM_DEVICE) { bf_set(lpfc_sli4_sge_dif_ce, diseed, checking); bf_set(lpfc_sli4_sge_dif_re, diseed, checking); } bf_set(lpfc_sli4_sge_dif_ai, diseed, 1); bf_set(lpfc_sli4_sge_dif_me, diseed, 0); /* Endianness conversion if necessary for DISEED */ diseed->word2 = cpu_to_le32(diseed->word2); diseed->word3 = cpu_to_le32(diseed->word3); /* advance bpl and increment sge count */ num_sge++; sgl++; /* assumption: caller has already run dma_map_sg on command data */ scsi_for_each_sg(sc, sgde, datasegcnt, i) { physaddr = sg_dma_address(sgde); dma_len = sg_dma_len(sgde); sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr)); sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr)); if ((i + 1) == datasegcnt) bf_set(lpfc_sli4_sge_last, sgl, 1); else bf_set(lpfc_sli4_sge_last, sgl, 0); bf_set(lpfc_sli4_sge_offset, sgl, dma_offset); bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); sgl->sge_len = cpu_to_le32(dma_len); dma_offset += dma_len; sgl++; num_sge++; } out: return num_sge; } /** * lpfc_bg_setup_sgl_prot - Setup BlockGuard SGL with protection data * @phba: The Hba for which this call is being executed. * @sc: pointer to scsi command we're working on * @sgl: pointer to buffer list for protection groups * @datacnt: number of segments of data that have been dma mapped * @protcnt: number of segment of protection data that have been dma mapped * * This function sets up SGL buffer list for protection groups of * type LPFC_PG_TYPE_DIF * * This is usually used when DIFs are in their own buffers, * separate from the data. The HBA can then by instructed * to place the DIFs in the outgoing stream. For read operations, * The HBA could extract the DIFs and place it in DIF buffers. * * The buffer list for this type consists of one or more of the * protection groups described below: * +-------------------------+ * start of first prot group --> | DISEED | * +-------------------------+ * | DIF (Prot SGE) | * +-------------------------+ * | Data SGE | * +-------------------------+ * |more Data SGE's ... (opt)| * +-------------------------+ * start of new prot group --> | DISEED | * +-------------------------+ * | ... | * +-------------------------+ * * Note: It is assumed that both data and protection s/g buffers have been * mapped for DMA * * Returns the number of SGEs added to the SGL. **/ static int lpfc_bg_setup_sgl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc, struct sli4_sge *sgl, int datacnt, int protcnt) { struct scatterlist *sgde = NULL; /* s/g data entry */ struct scatterlist *sgpe = NULL; /* s/g prot entry */ struct sli4_sge_diseed *diseed = NULL; dma_addr_t dataphysaddr, protphysaddr; unsigned short curr_data = 0, curr_prot = 0; unsigned int split_offset; unsigned int protgroup_len, protgroup_offset = 0, protgroup_remainder; unsigned int protgrp_blks, protgrp_bytes; unsigned int remainder, subtotal; int status; unsigned char pgdone = 0, alldone = 0; unsigned blksize; uint32_t reftag; uint8_t txop, rxop; uint32_t dma_len; uint32_t rc; uint32_t checking = 1; uint32_t dma_offset = 0; int num_sge = 0; sgpe = scsi_prot_sglist(sc); sgde = scsi_sglist(sc); if (!sgpe || !sgde) { lpfc_printf_log(phba, KERN_ERR, LOG_FCP, "9082 Invalid s/g entry: data=0x%p prot=0x%p\n", sgpe, sgde); return 0; } status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop); if (status) goto out; /* extract some info from the scsi command */ blksize = lpfc_cmd_blksize(sc); reftag = (uint32_t)scsi_get_lba(sc); /* Truncate LBA */ #ifdef CONFIG_SCSI_LPFC_DEBUG_FS rc = lpfc_bg_err_inject(phba, sc, &reftag, NULL, 1); if (rc) { if (rc & BG_ERR_SWAP) lpfc_bg_err_opcodes(phba, sc, &txop, &rxop); if (rc & BG_ERR_CHECK) checking = 0; } #endif split_offset = 0; do { /* setup DISEED with what we have */ diseed = (struct sli4_sge_diseed *) sgl; memset(diseed, 0, sizeof(struct sli4_sge_diseed)); bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DISEED); /* Endianness conversion if necessary */ diseed->ref_tag = cpu_to_le32(reftag); diseed->ref_tag_tran = diseed->ref_tag; /* setup DISEED with the rest of the info */ bf_set(lpfc_sli4_sge_dif_optx, diseed, txop); bf_set(lpfc_sli4_sge_dif_oprx, diseed, rxop); bf_set(lpfc_sli4_sge_dif_ce, diseed, checking); bf_set(lpfc_sli4_sge_dif_re, diseed, checking); bf_set(lpfc_sli4_sge_dif_ai, diseed, 1); bf_set(lpfc_sli4_sge_dif_me, diseed, 0); /* Endianness conversion if necessary for DISEED */ diseed->word2 = cpu_to_le32(diseed->word2); diseed->word3 = cpu_to_le32(diseed->word3); /* advance sgl and increment bde count */ num_sge++; sgl++; /* setup the first BDE that points to protection buffer */ protphysaddr = sg_dma_address(sgpe) + protgroup_offset; protgroup_len = sg_dma_len(sgpe) - protgroup_offset; /* must be integer multiple of the DIF block length */ BUG_ON(protgroup_len % 8); /* Now setup DIF SGE */ sgl->word2 = 0; bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DIF); sgl->addr_hi = le32_to_cpu(putPaddrHigh(protphysaddr)); sgl->addr_lo = le32_to_cpu(putPaddrLow(protphysaddr)); sgl->word2 = cpu_to_le32(sgl->word2); protgrp_blks = protgroup_len / 8; protgrp_bytes = protgrp_blks * blksize; /* check if DIF SGE is crossing the 4K boundary; if so split */ if ((sgl->addr_lo & 0xfff) + protgroup_len > 0x1000) { protgroup_remainder = 0x1000 - (sgl->addr_lo & 0xfff); protgroup_offset += protgroup_remainder; protgrp_blks = protgroup_remainder / 8; protgrp_bytes = protgrp_blks * blksize; } else { protgroup_offset = 0; curr_prot++; } num_sge++; /* setup SGE's for data blocks associated with DIF data */ pgdone = 0; subtotal = 0; /* total bytes processed for current prot grp */ while (!pgdone) { if (!sgde) { lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9086 BLKGRD:%s Invalid data segment\n", __func__); return 0; } sgl++; dataphysaddr = sg_dma_address(sgde) + split_offset; remainder = sg_dma_len(sgde) - split_offset; if ((subtotal + remainder) <= protgrp_bytes) { /* we can use this whole buffer */ dma_len = remainder; split_offset = 0; if ((subtotal + remainder) == protgrp_bytes) pgdone = 1; } else { /* must split this buffer with next prot grp */ dma_len = protgrp_bytes - subtotal; split_offset += dma_len; } subtotal += dma_len; sgl->addr_lo = cpu_to_le32(putPaddrLow(dataphysaddr)); sgl->addr_hi = cpu_to_le32(putPaddrHigh(dataphysaddr)); bf_set(lpfc_sli4_sge_last, sgl, 0); bf_set(lpfc_sli4_sge_offset, sgl, dma_offset); bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); sgl->sge_len = cpu_to_le32(dma_len); dma_offset += dma_len; num_sge++; curr_data++; if (split_offset) break; /* Move to the next s/g segment if possible */ sgde = sg_next(sgde); } if (protgroup_offset) { /* update the reference tag */ reftag += protgrp_blks; sgl++; continue; } /* are we done ? */ if (curr_prot == protcnt) { bf_set(lpfc_sli4_sge_last, sgl, 1); alldone = 1; } else if (curr_prot < protcnt) { /* advance to next prot buffer */ sgpe = sg_next(sgpe); sgl++; /* update the reference tag */ reftag += protgrp_blks; } else { /* if we're here, we have a bug */ lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9085 BLKGRD: bug in %s\n", __func__); } } while (!alldone); out: return num_sge; } /** * lpfc_prot_group_type - Get prtotection group type of SCSI command * @phba: The Hba for which this call is being executed. * @sc: pointer to scsi command we're working on * * Given a SCSI command that supports DIF, determine composition of protection * groups involved in setting up buffer lists * * Returns: Protection group type (with or without DIF) * **/ static int lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc) { int ret = LPFC_PG_TYPE_INVALID; unsigned char op = scsi_get_prot_op(sc); switch (op) { case SCSI_PROT_READ_STRIP: case SCSI_PROT_WRITE_INSERT: ret = LPFC_PG_TYPE_NO_DIF; break; case SCSI_PROT_READ_INSERT: case SCSI_PROT_WRITE_STRIP: case SCSI_PROT_READ_PASS: case SCSI_PROT_WRITE_PASS: ret = LPFC_PG_TYPE_DIF_BUF; break; default: lpfc_printf_log(phba, KERN_ERR, LOG_FCP, "9021 Unsupported protection op:%d\n", op); break; } return ret; } /** * lpfc_bg_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec * @phba: The Hba for which this call is being executed. * @lpfc_cmd: The scsi buffer which is going to be prep'ed. * * This is the protection/DIF aware version of * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the * two functions eventually, but for now, it's here **/ static int lpfc_bg_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) { struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl; IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; uint32_t num_bde = 0; int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction; int prot_group_type = 0; int diflen, fcpdl; unsigned blksize; /* * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd * fcp_rsp regions to the first data bde entry */ bpl += 2; if (scsi_sg_count(scsi_cmnd)) { /* * The driver stores the segment count returned from pci_map_sg * because this a count of dma-mappings used to map the use_sg * pages. They are not guaranteed to be the same for those * architectures that implement an IOMMU. */ datasegcnt = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd), scsi_sg_count(scsi_cmnd), datadir); if (unlikely(!datasegcnt)) return 1; lpfc_cmd->seg_cnt = datasegcnt; if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9067 BLKGRD: %s: Too many sg segments" " from dma_map_sg. Config %d, seg_cnt" " %d\n", __func__, phba->cfg_sg_seg_cnt, lpfc_cmd->seg_cnt); scsi_dma_unmap(scsi_cmnd); return 1; } prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd); switch (prot_group_type) { case LPFC_PG_TYPE_NO_DIF: num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl, datasegcnt); /* we should have 2 or more entries in buffer list */ if (num_bde < 2) goto err; break; case LPFC_PG_TYPE_DIF_BUF:{ /* * This type indicates that protection buffers are * passed to the driver, so that needs to be prepared * for DMA */ protsegcnt = dma_map_sg(&phba->pcidev->dev, scsi_prot_sglist(scsi_cmnd), scsi_prot_sg_count(scsi_cmnd), datadir); if (unlikely(!protsegcnt)) { scsi_dma_unmap(scsi_cmnd); return 1; } lpfc_cmd->prot_seg_cnt = protsegcnt; if (lpfc_cmd->prot_seg_cnt > phba->cfg_prot_sg_seg_cnt) { lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9068 BLKGRD: %s: Too many prot sg " "segments from dma_map_sg. Config %d," "prot_seg_cnt %d\n", __func__, phba->cfg_prot_sg_seg_cnt, lpfc_cmd->prot_seg_cnt); dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(scsi_cmnd), scsi_prot_sg_count(scsi_cmnd), datadir); scsi_dma_unmap(scsi_cmnd); return 1; } num_bde = lpfc_bg_setup_bpl_prot(phba, scsi_cmnd, bpl, datasegcnt, protsegcnt); /* we should have 3 or more entries in buffer list */ if (num_bde < 3) goto err; break; } case LPFC_PG_TYPE_INVALID: default: lpfc_printf_log(phba, KERN_ERR, LOG_FCP, "9022 Unexpected protection group %i\n", prot_group_type); return 1; } } /* * Finish initializing those IOCB fields that are dependent on the * scsi_cmnd request_buffer. Note that the bdeSize is explicitly * reinitialized since all iocb memory resources are used many times * for transmit, receive, and continuation bpl's. */ iocb_cmd->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); iocb_cmd->un.fcpi64.bdl.bdeSize += (num_bde * sizeof(struct ulp_bde64)); iocb_cmd->ulpBdeCount = 1; iocb_cmd->ulpLe = 1; fcpdl = scsi_bufflen(scsi_cmnd); if (scsi_get_prot_type(scsi_cmnd) == SCSI_PROT_DIF_TYPE1) { /* * We are in DIF Type 1 mode * Every data block has a 8 byte DIF (trailer) * attached to it. Must ajust FCP data length */ blksize = lpfc_cmd_blksize(scsi_cmnd); diflen = (fcpdl / blksize) * 8; fcpdl += diflen; } fcp_cmnd->fcpDl = be32_to_cpu(fcpdl); /* * Due to difference in data length between DIF/non-DIF paths, * we need to set word 4 of IOCB here */ iocb_cmd->un.fcpi.fcpi_parm = fcpdl; return 0; err: lpfc_printf_log(phba, KERN_ERR, LOG_FCP, "9023 Could not setup all needed BDE's" "prot_group_type=%d, num_bde=%d\n", prot_group_type, num_bde); return 1; } /* * This function checks for BlockGuard errors detected by * the HBA. In case of errors, the ASC/ASCQ fields in the * sense buffer will be set accordingly, paired with * ILLEGAL_REQUEST to signal to the kernel that the HBA * detected corruption. * * Returns: * 0 - No error found * 1 - BlockGuard error found * -1 - Internal error (bad profile, ...etc) */ static int lpfc_parse_bg_err(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *pIocbOut) { struct scsi_cmnd *cmd = lpfc_cmd->pCmd; struct sli3_bg_fields *bgf = &pIocbOut->iocb.unsli3.sli3_bg; int ret = 0; uint32_t bghm = bgf->bghm; uint32_t bgstat = bgf->bgstat; uint64_t failing_sector = 0; lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9069 BLKGRD: BG ERROR in cmd" " 0x%x lba 0x%llx blk cnt 0x%x " "bgstat=0x%x bghm=0x%x\n", cmd->cmnd[0], (unsigned long long)scsi_get_lba(cmd), blk_rq_sectors(cmd->request), bgstat, bghm); spin_lock(&_dump_buf_lock); if (!_dump_buf_done) { lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9070 BLKGRD: Saving" " Data for %u blocks to debugfs\n", (cmd->cmnd[7] << 8 | cmd->cmnd[8])); lpfc_debug_save_data(phba, cmd); /* If we have a prot sgl, save the DIF buffer */ if (lpfc_prot_group_type(phba, cmd) == LPFC_PG_TYPE_DIF_BUF) { lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9071 BLKGRD: " "Saving DIF for %u blocks to debugfs\n", (cmd->cmnd[7] << 8 | cmd->cmnd[8])); lpfc_debug_save_dif(phba, cmd); } _dump_buf_done = 1; } spin_unlock(&_dump_buf_lock); if (lpfc_bgs_get_invalid_prof(bgstat)) { cmd->result = ScsiResult(DID_ERROR, 0); lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9072 BLKGRD: Invalid" " BlockGuard profile. bgstat:0x%x\n", bgstat); ret = (-1); goto out; } if (lpfc_bgs_get_uninit_dif_block(bgstat)) { cmd->result = ScsiResult(DID_ERROR, 0); lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9073 BLKGRD: " "Invalid BlockGuard DIF Block. bgstat:0x%x\n", bgstat); ret = (-1); goto out; } if (lpfc_bgs_get_guard_err(bgstat)) { ret = 1; scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 0x10, 0x1); cmd->result = DRIVER_SENSE << 24 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); phba->bg_guard_err_cnt++; lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9055 BLKGRD: guard_tag error\n"); } if (lpfc_bgs_get_reftag_err(bgstat)) { ret = 1; scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 0x10, 0x3); cmd->result = DRIVER_SENSE << 24 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); phba->bg_reftag_err_cnt++; lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9056 BLKGRD: ref_tag error\n"); } if (lpfc_bgs_get_apptag_err(bgstat)) { ret = 1; scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 0x10, 0x2); cmd->result = DRIVER_SENSE << 24 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); phba->bg_apptag_err_cnt++; lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9061 BLKGRD: app_tag error\n"); } if (lpfc_bgs_get_hi_water_mark_present(bgstat)) { /* * setup sense data descriptor 0 per SPC-4 as an information * field, and put the failing LBA in it. * This code assumes there was also a guard/app/ref tag error * indication. */ cmd->sense_buffer[7] = 0xc; /* Additional sense length */ cmd->sense_buffer[8] = 0; /* Information descriptor type */ cmd->sense_buffer[9] = 0xa; /* Additional descriptor length */ cmd->sense_buffer[10] = 0x80; /* Validity bit */ /* bghm is a "on the wire" FC frame based count */ switch (scsi_get_prot_op(cmd)) { case SCSI_PROT_READ_INSERT: case SCSI_PROT_WRITE_STRIP: bghm /= cmd->device->sector_size; break; case SCSI_PROT_READ_STRIP: case SCSI_PROT_WRITE_INSERT: case SCSI_PROT_READ_PASS: case SCSI_PROT_WRITE_PASS: bghm /= (cmd->device->sector_size + sizeof(struct scsi_dif_tuple)); break; } failing_sector = scsi_get_lba(cmd); failing_sector += bghm; /* Descriptor Information */ put_unaligned_be64(failing_sector, &cmd->sense_buffer[12]); } if (!ret) { /* No error was reported - problem in FW? */ cmd->result = ScsiResult(DID_ERROR, 0); lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9057 BLKGRD: Unknown error reported!\n"); } out: return ret; } /** * lpfc_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec * @phba: The Hba for which this call is being executed. * @lpfc_cmd: The scsi buffer which is going to be mapped. * * This routine does the pci dma mapping for scatter-gather list of scsi cmnd * field of @lpfc_cmd for device with SLI-4 interface spec. * * Return codes: * 1 - Error * 0 - Success **/ static int lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) { struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; struct scatterlist *sgel = NULL; struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl; struct sli4_sge *first_data_sgl; IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; dma_addr_t physaddr; uint32_t num_bde = 0; uint32_t dma_len; uint32_t dma_offset = 0; int nseg; struct ulp_bde64 *bde; /* * There are three possibilities here - use scatter-gather segment, use * the single mapping, or neither. Start the lpfc command prep by * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first * data bde entry. */ if (scsi_sg_count(scsi_cmnd)) { /* * The driver stores the segment count returned from pci_map_sg * because this a count of dma-mappings used to map the use_sg * pages. They are not guaranteed to be the same for those * architectures that implement an IOMMU. */ nseg = scsi_dma_map(scsi_cmnd); if (unlikely(!nseg)) return 1; sgl += 1; /* clear the last flag in the fcp_rsp map entry */ sgl->word2 = le32_to_cpu(sgl->word2); bf_set(lpfc_sli4_sge_last, sgl, 0); sgl->word2 = cpu_to_le32(sgl->word2); sgl += 1; first_data_sgl = sgl; lpfc_cmd->seg_cnt = nseg; if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9074 BLKGRD:" " %s: Too many sg segments from " "dma_map_sg. Config %d, seg_cnt %d\n", __func__, phba->cfg_sg_seg_cnt, lpfc_cmd->seg_cnt); scsi_dma_unmap(scsi_cmnd); return 1; } /* * The driver established a maximum scatter-gather segment count * during probe that limits the number of sg elements in any * single scsi command. Just run through the seg_cnt and format * the sge's. * When using SLI-3 the driver will try to fit all the BDEs into * the IOCB. If it can't then the BDEs get added to a BPL as it * does for SLI-2 mode. */ scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) { physaddr = sg_dma_address(sgel); dma_len = sg_dma_len(sgel); sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr)); sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr)); sgl->word2 = le32_to_cpu(sgl->word2); if ((num_bde + 1) == nseg) bf_set(lpfc_sli4_sge_last, sgl, 1); else bf_set(lpfc_sli4_sge_last, sgl, 0); bf_set(lpfc_sli4_sge_offset, sgl, dma_offset); bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32(dma_len); dma_offset += dma_len; sgl++; } /* setup the performance hint (first data BDE) if enabled */ if (phba->sli3_options & LPFC_SLI4_PERFH_ENABLED) { bde = (struct ulp_bde64 *) &(iocb_cmd->unsli3.sli3Words[5]); bde->addrLow = first_data_sgl->addr_lo; bde->addrHigh = first_data_sgl->addr_hi; bde->tus.f.bdeSize = le32_to_cpu(first_data_sgl->sge_len); bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; bde->tus.w = cpu_to_le32(bde->tus.w); } } else { sgl += 1; /* clear the last flag in the fcp_rsp map entry */ sgl->word2 = le32_to_cpu(sgl->word2); bf_set(lpfc_sli4_sge_last, sgl, 1); sgl->word2 = cpu_to_le32(sgl->word2); } /* * Finish initializing those IOCB fields that are dependent on the * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is * explicitly reinitialized. * all iocb memory resources are reused. */ fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd)); /* * Due to difference in data length between DIF/non-DIF paths, * we need to set word 4 of IOCB here */ iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd); return 0; } /** * lpfc_bg_scsi_adjust_dl - Adjust SCSI data length for BlockGuard * @phba: The Hba for which this call is being executed. * @lpfc_cmd: The scsi buffer which is going to be adjusted. * * Adjust the data length to account for how much data * is actually on the wire. * * returns the adjusted data length **/ static int lpfc_bg_scsi_adjust_dl(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) { struct scsi_cmnd *sc = lpfc_cmd->pCmd; int diflen, fcpdl; unsigned blksize; fcpdl = scsi_bufflen(sc); /* Check if there is protection data on the wire */ if (sc->sc_data_direction == DMA_FROM_DEVICE) { /* Read */ if (scsi_get_prot_op(sc) == SCSI_PROT_READ_INSERT) return fcpdl; } else { /* Write */ if (scsi_get_prot_op(sc) == SCSI_PROT_WRITE_STRIP) return fcpdl; } /* If protection data on the wire, adjust the count accordingly */ blksize = lpfc_cmd_blksize(sc); diflen = (fcpdl / blksize) * 8; fcpdl += diflen; return fcpdl; } /** * lpfc_bg_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec * @phba: The Hba for which this call is being executed. * @lpfc_cmd: The scsi buffer which is going to be mapped. * * This is the protection/DIF aware version of * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the * two functions eventually, but for now, it's here **/ static int lpfc_bg_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) { struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; struct sli4_sge *sgl = (struct sli4_sge *)(lpfc_cmd->fcp_bpl); IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; uint32_t num_bde = 0; int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction; int prot_group_type = 0; int fcpdl; /* * Start the lpfc command prep by bumping the sgl beyond fcp_cmnd * fcp_rsp regions to the first data bde entry */ if (scsi_sg_count(scsi_cmnd)) { /* * The driver stores the segment count returned from pci_map_sg * because this a count of dma-mappings used to map the use_sg * pages. They are not guaranteed to be the same for those * architectures that implement an IOMMU. */ datasegcnt = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd), scsi_sg_count(scsi_cmnd), datadir); if (unlikely(!datasegcnt)) return 1; sgl += 1; /* clear the last flag in the fcp_rsp map entry */ sgl->word2 = le32_to_cpu(sgl->word2); bf_set(lpfc_sli4_sge_last, sgl, 0); sgl->word2 = cpu_to_le32(sgl->word2); sgl += 1; lpfc_cmd->seg_cnt = datasegcnt; if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9087 BLKGRD: %s: Too many sg segments" " from dma_map_sg. Config %d, seg_cnt" " %d\n", __func__, phba->cfg_sg_seg_cnt, lpfc_cmd->seg_cnt); scsi_dma_unmap(scsi_cmnd); return 1; } prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd); switch (prot_group_type) { case LPFC_PG_TYPE_NO_DIF: num_bde = lpfc_bg_setup_sgl(phba, scsi_cmnd, sgl, datasegcnt); /* we should have 2 or more entries in buffer list */ if (num_bde < 2) goto err; break; case LPFC_PG_TYPE_DIF_BUF:{ /* * This type indicates that protection buffers are * passed to the driver, so that needs to be prepared * for DMA */ protsegcnt = dma_map_sg(&phba->pcidev->dev, scsi_prot_sglist(scsi_cmnd), scsi_prot_sg_count(scsi_cmnd), datadir); if (unlikely(!protsegcnt)) { scsi_dma_unmap(scsi_cmnd); return 1; } lpfc_cmd->prot_seg_cnt = protsegcnt; if (lpfc_cmd->prot_seg_cnt > phba->cfg_prot_sg_seg_cnt) { lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9088 BLKGRD: %s: Too many prot sg " "segments from dma_map_sg. Config %d," "prot_seg_cnt %d\n", __func__, phba->cfg_prot_sg_seg_cnt, lpfc_cmd->prot_seg_cnt); dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(scsi_cmnd), scsi_prot_sg_count(scsi_cmnd), datadir); scsi_dma_unmap(scsi_cmnd); return 1; } num_bde = lpfc_bg_setup_sgl_prot(phba, scsi_cmnd, sgl, datasegcnt, protsegcnt); /* we should have 3 or more entries in buffer list */ if (num_bde < 3) goto err; break; } case LPFC_PG_TYPE_INVALID: default: lpfc_printf_log(phba, KERN_ERR, LOG_FCP, "9083 Unexpected protection group %i\n", prot_group_type); return 1; } } fcpdl = lpfc_bg_scsi_adjust_dl(phba, lpfc_cmd); fcp_cmnd->fcpDl = be32_to_cpu(fcpdl); /* * Due to difference in data length between DIF/non-DIF paths, * we need to set word 4 of IOCB here */ iocb_cmd->un.fcpi.fcpi_parm = fcpdl; lpfc_cmd->cur_iocbq.iocb_flag |= LPFC_IO_DIF; return 0; err: lpfc_printf_log(phba, KERN_ERR, LOG_FCP, "9084 Could not setup all needed BDE's" "prot_group_type=%d, num_bde=%d\n", prot_group_type, num_bde); return 1; } /** * lpfc_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer * @phba: The Hba for which this call is being executed. * @lpfc_cmd: The scsi buffer which is going to be mapped. * * This routine wraps the actual DMA mapping function pointer from the * lpfc_hba struct. * * Return codes: * 1 - Error * 0 - Success **/ static inline int lpfc_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) { return phba->lpfc_scsi_prep_dma_buf(phba, lpfc_cmd); } /** * lpfc_bg_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer * using BlockGuard. * @phba: The Hba for which this call is being executed. * @lpfc_cmd: The scsi buffer which is going to be mapped. * * This routine wraps the actual DMA mapping function pointer from the * lpfc_hba struct. * * Return codes: * 1 - Error * 0 - Success **/ static inline int lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) { return phba->lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd); } /** * lpfc_send_scsi_error_event - Posts an event when there is SCSI error * @phba: Pointer to hba context object. * @vport: Pointer to vport object. * @lpfc_cmd: Pointer to lpfc scsi command which reported the error. * @rsp_iocb: Pointer to response iocb object which reported error. * * This function posts an event when there is a SCSI command reporting * error from the scsi device. **/ static void lpfc_send_scsi_error_event(struct lpfc_hba *phba, struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *rsp_iocb) { struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; uint32_t resp_info = fcprsp->rspStatus2; uint32_t scsi_status = fcprsp->rspStatus3; uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm; struct lpfc_fast_path_event *fast_path_evt = NULL; struct lpfc_nodelist *pnode = lpfc_cmd->rdata->pnode; unsigned long flags; if (!pnode || !NLP_CHK_NODE_ACT(pnode)) return; /* If there is queuefull or busy condition send a scsi event */ if ((cmnd->result == SAM_STAT_TASK_SET_FULL) || (cmnd->result == SAM_STAT_BUSY)) { fast_path_evt = lpfc_alloc_fast_evt(phba); if (!fast_path_evt) return; fast_path_evt->un.scsi_evt.event_type = FC_REG_SCSI_EVENT; fast_path_evt->un.scsi_evt.subcategory = (cmnd->result == SAM_STAT_TASK_SET_FULL) ? LPFC_EVENT_QFULL : LPFC_EVENT_DEVBSY; fast_path_evt->un.scsi_evt.lun = cmnd->device->lun; memcpy(&fast_path_evt->un.scsi_evt.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); memcpy(&fast_path_evt->un.scsi_evt.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); } else if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen && ((cmnd->cmnd[0] == READ_10) || (cmnd->cmnd[0] == WRITE_10))) { fast_path_evt = lpfc_alloc_fast_evt(phba); if (!fast_path_evt) return; fast_path_evt->un.check_cond_evt.scsi_event.event_type = FC_REG_SCSI_EVENT; fast_path_evt->un.check_cond_evt.scsi_event.subcategory = LPFC_EVENT_CHECK_COND; fast_path_evt->un.check_cond_evt.scsi_event.lun = cmnd->device->lun; memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); fast_path_evt->un.check_cond_evt.sense_key = cmnd->sense_buffer[2] & 0xf; fast_path_evt->un.check_cond_evt.asc = cmnd->sense_buffer[12]; fast_path_evt->un.check_cond_evt.ascq = cmnd->sense_buffer[13]; } else if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) && fcpi_parm && ((be32_to_cpu(fcprsp->rspResId) != fcpi_parm) || ((scsi_status == SAM_STAT_GOOD) && !(resp_info & (RESID_UNDER | RESID_OVER))))) { /* * If status is good or resid does not match with fcp_param and * there is valid fcpi_parm, then there is a read_check error */ fast_path_evt = lpfc_alloc_fast_evt(phba); if (!fast_path_evt) return; fast_path_evt->un.read_check_error.header.event_type = FC_REG_FABRIC_EVENT; fast_path_evt->un.read_check_error.header.subcategory = LPFC_EVENT_FCPRDCHKERR; memcpy(&fast_path_evt->un.read_check_error.header.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); memcpy(&fast_path_evt->un.read_check_error.header.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); fast_path_evt->un.read_check_error.lun = cmnd->device->lun; fast_path_evt->un.read_check_error.opcode = cmnd->cmnd[0]; fast_path_evt->un.read_check_error.fcpiparam = fcpi_parm; } else return; fast_path_evt->vport = vport; spin_lock_irqsave(&phba->hbalock, flags); list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); spin_unlock_irqrestore(&phba->hbalock, flags); lpfc_worker_wake_up(phba); return; } /** * lpfc_scsi_unprep_dma_buf - Un-map DMA mapping of SG-list for dev * @phba: The HBA for which this call is being executed. * @psb: The scsi buffer which is going to be un-mapped. * * This routine does DMA un-mapping of scatter gather list of scsi command * field of @lpfc_cmd for device with SLI-3 interface spec. **/ static void lpfc_scsi_unprep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) { /* * There are only two special cases to consider. (1) the scsi command * requested scatter-gather usage or (2) the scsi command allocated * a request buffer, but did not request use_sg. There is a third * case, but it does not require resource deallocation. */ if (psb->seg_cnt > 0) scsi_dma_unmap(psb->pCmd); if (psb->prot_seg_cnt > 0) dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(psb->pCmd), scsi_prot_sg_count(psb->pCmd), psb->pCmd->sc_data_direction); } /** * lpfc_handler_fcp_err - FCP response handler * @vport: The virtual port for which this call is being executed. * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure. * @rsp_iocb: The response IOCB which contains FCP error. * * This routine is called to process response IOCB with status field * IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command * based upon SCSI and FCP error. **/ static void lpfc_handle_fcp_err(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *rsp_iocb) { struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; struct fcp_cmnd *fcpcmd = lpfc_cmd->fcp_cmnd; struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm; uint32_t resp_info = fcprsp->rspStatus2; uint32_t scsi_status = fcprsp->rspStatus3; uint32_t *lp; uint32_t host_status = DID_OK; uint32_t rsplen = 0; uint32_t logit = LOG_FCP | LOG_FCP_ERROR; /* * If this is a task management command, there is no * scsi packet associated with this lpfc_cmd. The driver * consumes it. */ if (fcpcmd->fcpCntl2) { scsi_status = 0; goto out; } if (resp_info & RSP_LEN_VALID) { rsplen = be32_to_cpu(fcprsp->rspRspLen); if (rsplen != 0 && rsplen != 4 && rsplen != 8) { lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "2719 Invalid response length: " "tgt x%x lun x%x cmnd x%x rsplen x%x\n", cmnd->device->id, cmnd->device->lun, cmnd->cmnd[0], rsplen); host_status = DID_ERROR; goto out; } if (fcprsp->rspInfo3 != RSP_NO_FAILURE) { lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "2757 Protocol failure detected during " "processing of FCP I/O op: " "tgt x%x lun x%x cmnd x%x rspInfo3 x%x\n", cmnd->device->id, cmnd->device->lun, cmnd->cmnd[0], fcprsp->rspInfo3); host_status = DID_ERROR; goto out; } } if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen) { uint32_t snslen = be32_to_cpu(fcprsp->rspSnsLen); if (snslen > SCSI_SENSE_BUFFERSIZE) snslen = SCSI_SENSE_BUFFERSIZE; if (resp_info & RSP_LEN_VALID) rsplen = be32_to_cpu(fcprsp->rspRspLen); memcpy(cmnd->sense_buffer, &fcprsp->rspInfo0 + rsplen, snslen); } lp = (uint32_t *)cmnd->sense_buffer; if (!scsi_status && (resp_info & RESID_UNDER) && vport->cfg_log_verbose & LOG_FCP_UNDER) logit = LOG_FCP_UNDER; lpfc_printf_vlog(vport, KERN_WARNING, logit, "9024 FCP command x%x failed: x%x SNS x%x x%x " "Data: x%x x%x x%x x%x x%x\n", cmnd->cmnd[0], scsi_status, be32_to_cpu(*lp), be32_to_cpu(*(lp + 3)), resp_info, be32_to_cpu(fcprsp->rspResId), be32_to_cpu(fcprsp->rspSnsLen), be32_to_cpu(fcprsp->rspRspLen), fcprsp->rspInfo3); scsi_set_resid(cmnd, 0); if (resp_info & RESID_UNDER) { scsi_set_resid(cmnd, be32_to_cpu(fcprsp->rspResId)); lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP_UNDER, "9025 FCP Read Underrun, expected %d, " "residual %d Data: x%x x%x x%x\n", be32_to_cpu(fcpcmd->fcpDl), scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0], cmnd->underflow); /* * If there is an under run check if under run reported by * storage array is same as the under run reported by HBA. * If this is not same, there is a dropped frame. */ if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) && fcpi_parm && (scsi_get_resid(cmnd) != fcpi_parm)) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR, "9026 FCP Read Check Error " "and Underrun Data: x%x x%x x%x x%x\n", be32_to_cpu(fcpcmd->fcpDl), scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0]); scsi_set_resid(cmnd, scsi_bufflen(cmnd)); host_status = DID_ERROR; } /* * The cmnd->underflow is the minimum number of bytes that must * be transferred for this command. Provided a sense condition * is not present, make sure the actual amount transferred is at * least the underflow value or fail. */ if (!(resp_info & SNS_LEN_VALID) && (scsi_status == SAM_STAT_GOOD) && (scsi_bufflen(cmnd) - scsi_get_resid(cmnd) < cmnd->underflow)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "9027 FCP command x%x residual " "underrun converted to error " "Data: x%x x%x x%x\n", cmnd->cmnd[0], scsi_bufflen(cmnd), scsi_get_resid(cmnd), cmnd->underflow); host_status = DID_ERROR; } } else if (resp_info & RESID_OVER) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "9028 FCP command x%x residual overrun error. " "Data: x%x x%x\n", cmnd->cmnd[0], scsi_bufflen(cmnd), scsi_get_resid(cmnd)); host_status = DID_ERROR; /* * Check SLI validation that all the transfer was actually done * (fcpi_parm should be zero). Apply check only to reads. */ } else if (fcpi_parm && (cmnd->sc_data_direction == DMA_FROM_DEVICE)) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR, "9029 FCP Read Check Error Data: " "x%x x%x x%x x%x x%x\n", be32_to_cpu(fcpcmd->fcpDl), be32_to_cpu(fcprsp->rspResId), fcpi_parm, cmnd->cmnd[0], scsi_status); switch (scsi_status) { case SAM_STAT_GOOD: case SAM_STAT_CHECK_CONDITION: /* Fabric dropped a data frame. Fail any successful * command in which we detected dropped frames. * A status of good or some check conditions could * be considered a successful command. */ host_status = DID_ERROR; break; } scsi_set_resid(cmnd, scsi_bufflen(cmnd)); } out: cmnd->result = ScsiResult(host_status, scsi_status); lpfc_send_scsi_error_event(vport->phba, vport, lpfc_cmd, rsp_iocb); } /** * lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine * @phba: The Hba for which this call is being executed. * @pIocbIn: The command IOCBQ for the scsi cmnd. * @pIocbOut: The response IOCBQ for the scsi cmnd. * * This routine assigns scsi command result by looking into response IOCB * status field appropriately. This routine handles QUEUE FULL condition as * well by ramping down device queue depth. **/ static void lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn, struct lpfc_iocbq *pIocbOut) { struct lpfc_scsi_buf *lpfc_cmd = (struct lpfc_scsi_buf *) pIocbIn->context1; struct lpfc_vport *vport = pIocbIn->vport; struct lpfc_rport_data *rdata = lpfc_cmd->rdata; struct lpfc_nodelist *pnode = rdata->pnode; struct scsi_cmnd *cmd; int result; struct scsi_device *tmp_sdev; int depth; unsigned long flags; struct lpfc_fast_path_event *fast_path_evt; struct Scsi_Host *shost; uint32_t queue_depth, scsi_id; uint32_t logit = LOG_FCP; /* Sanity check on return of outstanding command */ if (!(lpfc_cmd->pCmd)) return; cmd = lpfc_cmd->pCmd; shost = cmd->device->host; lpfc_cmd->result = pIocbOut->iocb.un.ulpWord[4]; lpfc_cmd->status = pIocbOut->iocb.ulpStatus; /* pick up SLI4 exhange busy status from HBA */ lpfc_cmd->exch_busy = pIocbOut->iocb_flag & LPFC_EXCHANGE_BUSY; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS if (lpfc_cmd->prot_data_type) { struct scsi_dif_tuple *src = NULL; src = (struct scsi_dif_tuple *)lpfc_cmd->prot_data_segment; /* * Used to restore any changes to protection * data for error injection. */ switch (lpfc_cmd->prot_data_type) { case LPFC_INJERR_REFTAG: src->ref_tag = lpfc_cmd->prot_data; break; case LPFC_INJERR_APPTAG: src->app_tag = (uint16_t)lpfc_cmd->prot_data; break; case LPFC_INJERR_GUARD: src->guard_tag = (uint16_t)lpfc_cmd->prot_data; break; default: break; } lpfc_cmd->prot_data = 0; lpfc_cmd->prot_data_type = 0; lpfc_cmd->prot_data_segment = NULL; } #endif if (pnode && NLP_CHK_NODE_ACT(pnode)) atomic_dec(&pnode->cmd_pending); if (lpfc_cmd->status) { if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT && (lpfc_cmd->result & IOERR_DRVR_MASK)) lpfc_cmd->status = IOSTAT_DRIVER_REJECT; else if (lpfc_cmd->status >= IOSTAT_CNT) lpfc_cmd->status = IOSTAT_DEFAULT; if (lpfc_cmd->status == IOSTAT_FCP_RSP_ERROR && !lpfc_cmd->fcp_rsp->rspStatus3 && (lpfc_cmd->fcp_rsp->rspStatus2 & RESID_UNDER) && !(phba->cfg_log_verbose & LOG_FCP_UNDER)) logit = 0; else logit = LOG_FCP | LOG_FCP_UNDER; lpfc_printf_vlog(vport, KERN_WARNING, logit, "9030 FCP cmd x%x failed <%d/%d> " "status: x%x result: x%x Data: x%x x%x\n", cmd->cmnd[0], cmd->device ? cmd->device->id : 0xffff, cmd->device ? cmd->device->lun : 0xffff, lpfc_cmd->status, lpfc_cmd->result, pIocbOut->iocb.ulpContext, lpfc_cmd->cur_iocbq.iocb.ulpIoTag); switch (lpfc_cmd->status) { case IOSTAT_FCP_RSP_ERROR: /* Call FCP RSP handler to determine result */ lpfc_handle_fcp_err(vport, lpfc_cmd, pIocbOut); break; case IOSTAT_NPORT_BSY: case IOSTAT_FABRIC_BSY: cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0); fast_path_evt = lpfc_alloc_fast_evt(phba); if (!fast_path_evt) break; fast_path_evt->un.fabric_evt.event_type = FC_REG_FABRIC_EVENT; fast_path_evt->un.fabric_evt.subcategory = (lpfc_cmd->status == IOSTAT_NPORT_BSY) ? LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY; if (pnode && NLP_CHK_NODE_ACT(pnode)) { memcpy(&fast_path_evt->un.fabric_evt.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); memcpy(&fast_path_evt->un.fabric_evt.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); } fast_path_evt->vport = vport; fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT; spin_lock_irqsave(&phba->hbalock, flags); list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); spin_unlock_irqrestore(&phba->hbalock, flags); lpfc_worker_wake_up(phba); break; case IOSTAT_LOCAL_REJECT: case IOSTAT_REMOTE_STOP: if (lpfc_cmd->result == IOERR_ELXSEC_KEY_UNWRAP_ERROR || lpfc_cmd->result == IOERR_ELXSEC_KEY_UNWRAP_COMPARE_ERROR || lpfc_cmd->result == IOERR_ELXSEC_CRYPTO_ERROR || lpfc_cmd->result == IOERR_ELXSEC_CRYPTO_COMPARE_ERROR) { cmd->result = ScsiResult(DID_NO_CONNECT, 0); break; } if (lpfc_cmd->result == IOERR_INVALID_RPI || lpfc_cmd->result == IOERR_NO_RESOURCES || lpfc_cmd->result == IOERR_ABORT_REQUESTED || lpfc_cmd->result == IOERR_SLER_CMD_RCV_FAILURE) { cmd->result = ScsiResult(DID_REQUEUE, 0); break; } if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED || lpfc_cmd->result == IOERR_TX_DMA_FAILED) && pIocbOut->iocb.unsli3.sli3_bg.bgstat) { if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) { /* * This is a response for a BG enabled * cmd. Parse BG error */ lpfc_parse_bg_err(phba, lpfc_cmd, pIocbOut); break; } else { lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9031 non-zero BGSTAT " "on unprotected cmd\n"); } } if ((lpfc_cmd->status == IOSTAT_REMOTE_STOP) && (phba->sli_rev == LPFC_SLI_REV4) && (pnode && NLP_CHK_NODE_ACT(pnode))) { /* This IO was aborted by the target, we don't * know the rxid and because we did not send the * ABTS we cannot generate and RRQ. */ lpfc_set_rrq_active(phba, pnode, lpfc_cmd->cur_iocbq.sli4_xritag, 0, 0); } /* else: fall through */ default: cmd->result = ScsiResult(DID_ERROR, 0); break; } if (!pnode || !NLP_CHK_NODE_ACT(pnode) || (pnode->nlp_state != NLP_STE_MAPPED_NODE)) cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, SAM_STAT_BUSY); } else cmd->result = ScsiResult(DID_OK, 0); if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) { uint32_t *lp = (uint32_t *)cmd->sense_buffer; lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "0710 Iodone <%d/%d> cmd %p, error " "x%x SNS x%x x%x Data: x%x x%x\n", cmd->device->id, cmd->device->lun, cmd, cmd->result, *lp, *(lp + 3), cmd->retries, scsi_get_resid(cmd)); } lpfc_update_stats(phba, lpfc_cmd); result = cmd->result; if (vport->cfg_max_scsicmpl_time && time_after(jiffies, lpfc_cmd->start_time + msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) { spin_lock_irqsave(shost->host_lock, flags); if (pnode && NLP_CHK_NODE_ACT(pnode)) { if (pnode->cmd_qdepth > atomic_read(&pnode->cmd_pending) && (atomic_read(&pnode->cmd_pending) > LPFC_MIN_TGT_QDEPTH) && ((cmd->cmnd[0] == READ_10) || (cmd->cmnd[0] == WRITE_10))) pnode->cmd_qdepth = atomic_read(&pnode->cmd_pending); pnode->last_change_time = jiffies; } spin_unlock_irqrestore(shost->host_lock, flags); } else if (pnode && NLP_CHK_NODE_ACT(pnode)) { if ((pnode->cmd_qdepth < vport->cfg_tgt_queue_depth) && time_after(jiffies, pnode->last_change_time + msecs_to_jiffies(LPFC_TGTQ_INTERVAL))) { spin_lock_irqsave(shost->host_lock, flags); depth = pnode->cmd_qdepth * LPFC_TGTQ_RAMPUP_PCENT / 100; depth = depth ? depth : 1; pnode->cmd_qdepth += depth; if (pnode->cmd_qdepth > vport->cfg_tgt_queue_depth) pnode->cmd_qdepth = vport->cfg_tgt_queue_depth; pnode->last_change_time = jiffies; spin_unlock_irqrestore(shost->host_lock, flags); } } lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); /* The sdev is not guaranteed to be valid post scsi_done upcall. */ queue_depth = cmd->device->queue_depth; scsi_id = cmd->device->id; cmd->scsi_done(cmd); if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { /* * If there is a thread waiting for command completion * wake up the thread. */ spin_lock_irqsave(shost->host_lock, flags); lpfc_cmd->pCmd = NULL; if (lpfc_cmd->waitq) wake_up(lpfc_cmd->waitq); spin_unlock_irqrestore(shost->host_lock, flags); lpfc_release_scsi_buf(phba, lpfc_cmd); return; } if (!result) lpfc_rampup_queue_depth(vport, queue_depth); /* * Check for queue full. If the lun is reporting queue full, then * back off the lun queue depth to prevent target overloads. */ if (result == SAM_STAT_TASK_SET_FULL && pnode && NLP_CHK_NODE_ACT(pnode)) { shost_for_each_device(tmp_sdev, shost) { if (tmp_sdev->id != scsi_id) continue; depth = scsi_track_queue_full(tmp_sdev, tmp_sdev->queue_depth-1); if (depth <= 0) continue; lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "0711 detected queue full - lun queue " "depth adjusted to %d.\n", depth); lpfc_send_sdev_queuedepth_change_event(phba, vport, pnode, tmp_sdev->lun, depth+1, depth); } } /* * If there is a thread waiting for command completion * wake up the thread. */ spin_lock_irqsave(shost->host_lock, flags); lpfc_cmd->pCmd = NULL; if (lpfc_cmd->waitq) wake_up(lpfc_cmd->waitq); spin_unlock_irqrestore(shost->host_lock, flags); lpfc_release_scsi_buf(phba, lpfc_cmd); } /** * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB * @data: A pointer to the immediate command data portion of the IOCB. * @fcp_cmnd: The FCP Command that is provided by the SCSI layer. * * The routine copies the entire FCP command from @fcp_cmnd to @data while * byte swapping the data to big endian format for transmission on the wire. **/ static void lpfc_fcpcmd_to_iocb(uint8_t *data, struct fcp_cmnd *fcp_cmnd) { int i, j; for (i = 0, j = 0; i < sizeof(struct fcp_cmnd); i += sizeof(uint32_t), j++) { ((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]); } } /** * lpfc_scsi_prep_cmnd - Wrapper func for convert scsi cmnd to FCP info unit * @vport: The virtual port for which this call is being executed. * @lpfc_cmd: The scsi command which needs to send. * @pnode: Pointer to lpfc_nodelist. * * This routine initializes fcp_cmnd and iocb data structure from scsi command * to transfer for device with SLI3 interface spec. **/ static void lpfc_scsi_prep_cmnd(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_nodelist *pnode) { struct lpfc_hba *phba = vport->phba; struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; struct lpfc_iocbq *piocbq = &(lpfc_cmd->cur_iocbq); int datadir = scsi_cmnd->sc_data_direction; char tag[2]; if (!pnode || !NLP_CHK_NODE_ACT(pnode)) return; lpfc_cmd->fcp_rsp->rspSnsLen = 0; /* clear task management bits */ lpfc_cmd->fcp_cmnd->fcpCntl2 = 0; int_to_scsilun(lpfc_cmd->pCmd->device->lun, &lpfc_cmd->fcp_cmnd->fcp_lun); memset(&fcp_cmnd->fcpCdb[0], 0, LPFC_FCP_CDB_LEN); memcpy(&fcp_cmnd->fcpCdb[0], scsi_cmnd->cmnd, scsi_cmnd->cmd_len); if (scsi_populate_tag_msg(scsi_cmnd, tag)) { switch (tag[0]) { case HEAD_OF_QUEUE_TAG: fcp_cmnd->fcpCntl1 = HEAD_OF_Q; break; case ORDERED_QUEUE_TAG: fcp_cmnd->fcpCntl1 = ORDERED_Q; break; default: fcp_cmnd->fcpCntl1 = SIMPLE_Q; break; } } else fcp_cmnd->fcpCntl1 = 0; /* * There are three possibilities here - use scatter-gather segment, use * the single mapping, or neither. Start the lpfc command prep by * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first * data bde entry. */ if (scsi_sg_count(scsi_cmnd)) { if (datadir == DMA_TO_DEVICE) { iocb_cmd->ulpCommand = CMD_FCP_IWRITE64_CR; if (phba->sli_rev < LPFC_SLI_REV4) { iocb_cmd->un.fcpi.fcpi_parm = 0; iocb_cmd->ulpPU = 0; } else iocb_cmd->ulpPU = PARM_READ_CHECK; fcp_cmnd->fcpCntl3 = WRITE_DATA; phba->fc4OutputRequests++; } else { iocb_cmd->ulpCommand = CMD_FCP_IREAD64_CR; iocb_cmd->ulpPU = PARM_READ_CHECK; fcp_cmnd->fcpCntl3 = READ_DATA; phba->fc4InputRequests++; } } else { iocb_cmd->ulpCommand = CMD_FCP_ICMND64_CR; iocb_cmd->un.fcpi.fcpi_parm = 0; iocb_cmd->ulpPU = 0; fcp_cmnd->fcpCntl3 = 0; phba->fc4ControlRequests++; } if (phba->sli_rev == 3 && !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) lpfc_fcpcmd_to_iocb(iocb_cmd->unsli3.fcp_ext.icd, fcp_cmnd); /* * Finish initializing those IOCB fields that are independent * of the scsi_cmnd request_buffer */ piocbq->iocb.ulpContext = pnode->nlp_rpi; if (phba->sli_rev == LPFC_SLI_REV4) piocbq->iocb.ulpContext = phba->sli4_hba.rpi_ids[pnode->nlp_rpi]; if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE) piocbq->iocb.ulpFCP2Rcvy = 1; else piocbq->iocb.ulpFCP2Rcvy = 0; piocbq->iocb.ulpClass = (pnode->nlp_fcp_info & 0x0f); piocbq->context1 = lpfc_cmd; piocbq->iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl; piocbq->iocb.ulpTimeout = lpfc_cmd->timeout; piocbq->vport = vport; } /** * lpfc_scsi_prep_task_mgmt_cmd - Convert SLI3 scsi TM cmd to FCP info unit * @vport: The virtual port for which this call is being executed. * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure. * @lun: Logical unit number. * @task_mgmt_cmd: SCSI task management command. * * This routine creates FCP information unit corresponding to @task_mgmt_cmd * for device with SLI-3 interface spec. * * Return codes: * 0 - Error * 1 - Success **/ static int lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, unsigned int lun, uint8_t task_mgmt_cmd) { struct lpfc_iocbq *piocbq; IOCB_t *piocb; struct fcp_cmnd *fcp_cmnd; struct lpfc_rport_data *rdata = lpfc_cmd->rdata; struct lpfc_nodelist *ndlp = rdata->pnode; if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || ndlp->nlp_state != NLP_STE_MAPPED_NODE) return 0; piocbq = &(lpfc_cmd->cur_iocbq); piocbq->vport = vport; piocb = &piocbq->iocb; fcp_cmnd = lpfc_cmd->fcp_cmnd; /* Clear out any old data in the FCP command area */ memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd)); int_to_scsilun(lun, &fcp_cmnd->fcp_lun); fcp_cmnd->fcpCntl2 = task_mgmt_cmd; if (vport->phba->sli_rev == 3 && !(vport->phba->sli3_options & LPFC_SLI3_BG_ENABLED)) lpfc_fcpcmd_to_iocb(piocb->unsli3.fcp_ext.icd, fcp_cmnd); piocb->ulpCommand = CMD_FCP_ICMND64_CR; piocb->ulpContext = ndlp->nlp_rpi; if (vport->phba->sli_rev == LPFC_SLI_REV4) { piocb->ulpContext = vport->phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; } if (ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) { piocb->ulpFCP2Rcvy = 1; } piocb->ulpClass = (ndlp->nlp_fcp_info & 0x0f); /* ulpTimeout is only one byte */ if (lpfc_cmd->timeout > 0xff) { /* * Do not timeout the command at the firmware level. * The driver will provide the timeout mechanism. */ piocb->ulpTimeout = 0; } else piocb->ulpTimeout = lpfc_cmd->timeout; if (vport->phba->sli_rev == LPFC_SLI_REV4) lpfc_sli4_set_rsp_sgl_last(vport->phba, lpfc_cmd); return 1; } /** * lpfc_scsi_api_table_setup - Set up scsi api function jump table * @phba: The hba struct for which this call is being executed. * @dev_grp: The HBA PCI-Device group number. * * This routine sets up the SCSI interface API function jump table in @phba * struct. * Returns: 0 - success, -ENODEV - failure. **/ int lpfc_scsi_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) { phba->lpfc_scsi_unprep_dma_buf = lpfc_scsi_unprep_dma_buf; phba->lpfc_scsi_prep_cmnd = lpfc_scsi_prep_cmnd; switch (dev_grp) { case LPFC_PCI_DEV_LP: phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s3; phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s3; phba->lpfc_bg_scsi_prep_dma_buf = lpfc_bg_scsi_prep_dma_buf_s3; phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s3; phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s3; break; case LPFC_PCI_DEV_OC: phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s4; phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s4; phba->lpfc_bg_scsi_prep_dma_buf = lpfc_bg_scsi_prep_dma_buf_s4; phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s4; phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s4; break; default: lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "1418 Invalid HBA PCI-device group: 0x%x\n", dev_grp); return -ENODEV; break; } phba->lpfc_rampdown_queue_depth = lpfc_rampdown_queue_depth; phba->lpfc_scsi_cmd_iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl; return 0; } /** * lpfc_taskmgmt_def_cmpl - IOCB completion routine for task management command * @phba: The Hba for which this call is being executed. * @cmdiocbq: Pointer to lpfc_iocbq data structure. * @rspiocbq: Pointer to lpfc_iocbq data structure. * * This routine is IOCB completion routine for device reset and target reset * routine. This routine release scsi buffer associated with lpfc_cmd. **/ static void lpfc_tskmgmt_def_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, struct lpfc_iocbq *rspiocbq) { struct lpfc_scsi_buf *lpfc_cmd = (struct lpfc_scsi_buf *) cmdiocbq->context1; if (lpfc_cmd) lpfc_release_scsi_buf(phba, lpfc_cmd); return; } /** * lpfc_info - Info entry point of scsi_host_template data structure * @host: The scsi host for which this call is being executed. * * This routine provides module information about hba. * * Reutrn code: * Pointer to char - Success. **/ const char * lpfc_info(struct Scsi_Host *host) { struct lpfc_vport *vport = (struct lpfc_vport *) host->hostdata; struct lpfc_hba *phba = vport->phba; int len; static char lpfcinfobuf[384]; memset(lpfcinfobuf,0,384); if (phba && phba->pcidev){ strncpy(lpfcinfobuf, phba->ModelDesc, 256); len = strlen(lpfcinfobuf); snprintf(lpfcinfobuf + len, 384-len, " on PCI bus %02x device %02x irq %d", phba->pcidev->bus->number, phba->pcidev->devfn, phba->pcidev->irq); len = strlen(lpfcinfobuf); if (phba->Port[0]) { snprintf(lpfcinfobuf + len, 384-len, " port %s", phba->Port); } len = strlen(lpfcinfobuf); if (phba->sli4_hba.link_state.logical_speed) { snprintf(lpfcinfobuf + len, 384-len, " Logical Link Speed: %d Mbps", phba->sli4_hba.link_state.logical_speed * 10); } } return lpfcinfobuf; } /** * lpfc_poll_rearm_time - Routine to modify fcp_poll timer of hba * @phba: The Hba for which this call is being executed. * * This routine modifies fcp_poll_timer field of @phba by cfg_poll_tmo. * The default value of cfg_poll_tmo is 10 milliseconds. **/ static __inline__ void lpfc_poll_rearm_timer(struct lpfc_hba * phba) { unsigned long poll_tmo_expires = (jiffies + msecs_to_jiffies(phba->cfg_poll_tmo)); if (phba->sli.ring[LPFC_FCP_RING].txcmplq_cnt) mod_timer(&phba->fcp_poll_timer, poll_tmo_expires); } /** * lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA * @phba: The Hba for which this call is being executed. * * This routine starts the fcp_poll_timer of @phba. **/ void lpfc_poll_start_timer(struct lpfc_hba * phba) { lpfc_poll_rearm_timer(phba); } /** * lpfc_poll_timeout - Restart polling timer * @ptr: Map to lpfc_hba data structure pointer. * * This routine restarts fcp_poll timer, when FCP ring polling is enable * and FCP Ring interrupt is disable. **/ void lpfc_poll_timeout(unsigned long ptr) { struct lpfc_hba *phba = (struct lpfc_hba *) ptr; if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { lpfc_sli_handle_fast_ring_event(phba, &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); if (phba->cfg_poll & DISABLE_FCP_RING_INT) lpfc_poll_rearm_timer(phba); } } /** * lpfc_queuecommand - scsi_host_template queuecommand entry point * @cmnd: Pointer to scsi_cmnd data structure. * @done: Pointer to done routine. * * Driver registers this routine to scsi midlayer to submit a @cmd to process. * This routine prepares an IOCB from scsi command and provides to firmware. * The @done callback is invoked after driver finished processing the command. * * Return value : * 0 - Success * SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily. **/ static int lpfc_queuecommand_lck(struct scsi_cmnd *cmnd, void (*done) (struct scsi_cmnd *)) { struct Scsi_Host *shost = cmnd->device->host; struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_hba *phba = vport->phba; struct lpfc_rport_data *rdata = cmnd->device->hostdata; struct lpfc_nodelist *ndlp; struct lpfc_scsi_buf *lpfc_cmd; struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device)); int err; err = fc_remote_port_chkready(rport); if (err) { cmnd->result = err; goto out_fail_command; } ndlp = rdata->pnode; if ((scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) && (!(phba->sli3_options & LPFC_SLI3_BG_ENABLED))) { lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9058 BLKGRD: ERROR: rcvd protected cmd:%02x" " op:%02x str=%s without registering for" " BlockGuard - Rejecting command\n", cmnd->cmnd[0], scsi_get_prot_op(cmnd), dif_op_str[scsi_get_prot_op(cmnd)]); goto out_fail_command; } /* * Catch race where our node has transitioned, but the * transport is still transitioning. */ if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { cmnd->result = ScsiResult(DID_IMM_RETRY, 0); goto out_fail_command; } if (atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth) goto out_tgt_busy; lpfc_cmd = lpfc_get_scsi_buf(phba, ndlp); if (lpfc_cmd == NULL) { lpfc_rampdown_queue_depth(phba); lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "0707 driver's buffer pool is empty, " "IO busied\n"); goto out_host_busy; } /* * Store the midlayer's command structure for the completion phase * and complete the command initialization. */ lpfc_cmd->pCmd = cmnd; lpfc_cmd->rdata = rdata; lpfc_cmd->timeout = 0; lpfc_cmd->start_time = jiffies; cmnd->host_scribble = (unsigned char *)lpfc_cmd; cmnd->scsi_done = done; if (scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) { if (vport->phba->cfg_enable_bg) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9033 BLKGRD: rcvd protected cmd:%02x op=%s " "guard=%s\n", cmnd->cmnd[0], dif_op_str[scsi_get_prot_op(cmnd)], dif_grd_str[scsi_host_get_guard(shost)]); if (cmnd->cmnd[0] == READ_10) lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9035 BLKGRD: READ @ sector %llu, " "cnt %u, rpt %d\n", (unsigned long long)scsi_get_lba(cmnd), blk_rq_sectors(cmnd->request), (cmnd->cmnd[1]>>5)); else if (cmnd->cmnd[0] == WRITE_10) lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9036 BLKGRD: WRITE @ sector %llu, " "cnt %u, wpt %d\n", (unsigned long long)scsi_get_lba(cmnd), blk_rq_sectors(cmnd->request), (cmnd->cmnd[1]>>5)); } err = lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd); } else { if (vport->phba->cfg_enable_bg) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9038 BLKGRD: rcvd unprotected cmd:" "%02x op=%s guard=%s\n", cmnd->cmnd[0], dif_op_str[scsi_get_prot_op(cmnd)], dif_grd_str[scsi_host_get_guard(shost)]); if (cmnd->cmnd[0] == READ_10) lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9040 dbg: READ @ sector %llu, " "cnt %u, rpt %d\n", (unsigned long long)scsi_get_lba(cmnd), blk_rq_sectors(cmnd->request), (cmnd->cmnd[1]>>5)); else if (cmnd->cmnd[0] == WRITE_10) lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9041 dbg: WRITE @ sector %llu, " "cnt %u, wpt %d\n", (unsigned long long)scsi_get_lba(cmnd), blk_rq_sectors(cmnd->request), (cmnd->cmnd[1]>>5)); } err = lpfc_scsi_prep_dma_buf(phba, lpfc_cmd); } if (err) goto out_host_busy_free_buf; lpfc_scsi_prep_cmnd(vport, lpfc_cmd, ndlp); atomic_inc(&ndlp->cmd_pending); err = lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, &lpfc_cmd->cur_iocbq, SLI_IOCB_RET_IOCB); if (err) { atomic_dec(&ndlp->cmd_pending); goto out_host_busy_free_buf; } if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { spin_unlock(shost->host_lock); lpfc_sli_handle_fast_ring_event(phba, &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); spin_lock(shost->host_lock); if (phba->cfg_poll & DISABLE_FCP_RING_INT) lpfc_poll_rearm_timer(phba); } return 0; out_host_busy_free_buf: lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); lpfc_release_scsi_buf(phba, lpfc_cmd); out_host_busy: return SCSI_MLQUEUE_HOST_BUSY; out_tgt_busy: return SCSI_MLQUEUE_TARGET_BUSY; out_fail_command: done(cmnd); return 0; } static DEF_SCSI_QCMD(lpfc_queuecommand) /** * lpfc_abort_handler - scsi_host_template eh_abort_handler entry point * @cmnd: Pointer to scsi_cmnd data structure. * * This routine aborts @cmnd pending in base driver. * * Return code : * 0x2003 - Error * 0x2002 - Success **/ static int lpfc_abort_handler(struct scsi_cmnd *cmnd) { struct Scsi_Host *shost = cmnd->device->host; struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_hba *phba = vport->phba; struct lpfc_iocbq *iocb; struct lpfc_iocbq *abtsiocb; struct lpfc_scsi_buf *lpfc_cmd; IOCB_t *cmd, *icmd; int ret = SUCCESS; DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq); ret = fc_block_scsi_eh(cmnd); if (ret) return ret; lpfc_cmd = (struct lpfc_scsi_buf *)cmnd->host_scribble; if (!lpfc_cmd) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "2873 SCSI Layer I/O Abort Request IO CMPL Status " "x%x ID %d LUN %d\n", ret, cmnd->device->id, cmnd->device->lun); return SUCCESS; } /* * If pCmd field of the corresponding lpfc_scsi_buf structure * points to a different SCSI command, then the driver has * already completed this command, but the midlayer did not * see the completion before the eh fired. Just return * SUCCESS. */ iocb = &lpfc_cmd->cur_iocbq; if (lpfc_cmd->pCmd != cmnd) goto out; BUG_ON(iocb->context1 != lpfc_cmd); abtsiocb = lpfc_sli_get_iocbq(phba); if (abtsiocb == NULL) { ret = FAILED; goto out; } /* * The scsi command can not be in txq and it is in flight because the * pCmd is still pointig at the SCSI command we have to abort. There * is no need to search the txcmplq. Just send an abort to the FW. */ cmd = &iocb->iocb; icmd = &abtsiocb->iocb; icmd->un.acxri.abortType = ABORT_TYPE_ABTS; icmd->un.acxri.abortContextTag = cmd->ulpContext; if (phba->sli_rev == LPFC_SLI_REV4) icmd->un.acxri.abortIoTag = iocb->sli4_xritag; else icmd->un.acxri.abortIoTag = cmd->ulpIoTag; icmd->ulpLe = 1; icmd->ulpClass = cmd->ulpClass; /* ABTS WQE must go to the same WQ as the WQE to be aborted */ abtsiocb->fcp_wqidx = iocb->fcp_wqidx; abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; if (lpfc_is_link_up(phba)) icmd->ulpCommand = CMD_ABORT_XRI_CN; else icmd->ulpCommand = CMD_CLOSE_XRI_CN; abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; abtsiocb->vport = vport; if (lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, abtsiocb, 0) == IOCB_ERROR) { lpfc_sli_release_iocbq(phba, abtsiocb); ret = FAILED; goto out; } if (phba->cfg_poll & DISABLE_FCP_RING_INT) lpfc_sli_handle_fast_ring_event(phba, &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); lpfc_cmd->waitq = &waitq; /* Wait for abort to complete */ wait_event_timeout(waitq, (lpfc_cmd->pCmd != cmnd), (2*vport->cfg_devloss_tmo*HZ)); spin_lock_irq(shost->host_lock); lpfc_cmd->waitq = NULL; spin_unlock_irq(shost->host_lock); if (lpfc_cmd->pCmd == cmnd) { ret = FAILED; lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0748 abort handler timed out waiting " "for abort to complete: ret %#x, ID %d, " "LUN %d\n", ret, cmnd->device->id, cmnd->device->lun); } out: lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "0749 SCSI Layer I/O Abort Request Status x%x ID %d " "LUN %d\n", ret, cmnd->device->id, cmnd->device->lun); return ret; } static char * lpfc_taskmgmt_name(uint8_t task_mgmt_cmd) { switch (task_mgmt_cmd) { case FCP_ABORT_TASK_SET: return "ABORT_TASK_SET"; case FCP_CLEAR_TASK_SET: return "FCP_CLEAR_TASK_SET"; case FCP_BUS_RESET: return "FCP_BUS_RESET"; case FCP_LUN_RESET: return "FCP_LUN_RESET"; case FCP_TARGET_RESET: return "FCP_TARGET_RESET"; case FCP_CLEAR_ACA: return "FCP_CLEAR_ACA"; case FCP_TERMINATE_TASK: return "FCP_TERMINATE_TASK"; default: return "unknown"; } } /** * lpfc_send_taskmgmt - Generic SCSI Task Mgmt Handler * @vport: The virtual port for which this call is being executed. * @rdata: Pointer to remote port local data * @tgt_id: Target ID of remote device. * @lun_id: Lun number for the TMF * @task_mgmt_cmd: type of TMF to send * * This routine builds and sends a TMF (SCSI Task Mgmt Function) to * a remote port. * * Return Code: * 0x2003 - Error * 0x2002 - Success. **/ static int lpfc_send_taskmgmt(struct lpfc_vport *vport, struct lpfc_rport_data *rdata, unsigned tgt_id, unsigned int lun_id, uint8_t task_mgmt_cmd) { struct lpfc_hba *phba = vport->phba; struct lpfc_scsi_buf *lpfc_cmd; struct lpfc_iocbq *iocbq; struct lpfc_iocbq *iocbqrsp; struct lpfc_nodelist *pnode = rdata->pnode; int ret; int status; if (!pnode || !NLP_CHK_NODE_ACT(pnode)) return FAILED; lpfc_cmd = lpfc_get_scsi_buf(phba, rdata->pnode); if (lpfc_cmd == NULL) return FAILED; lpfc_cmd->timeout = 60; lpfc_cmd->rdata = rdata; status = lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, lun_id, task_mgmt_cmd); if (!status) { lpfc_release_scsi_buf(phba, lpfc_cmd); return FAILED; } iocbq = &lpfc_cmd->cur_iocbq; iocbqrsp = lpfc_sli_get_iocbq(phba); if (iocbqrsp == NULL) { lpfc_release_scsi_buf(phba, lpfc_cmd); return FAILED; } lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "0702 Issue %s to TGT %d LUN %d " "rpi x%x nlp_flag x%x Data: x%x x%x\n", lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id, pnode->nlp_rpi, pnode->nlp_flag, iocbq->sli4_xritag, iocbq->iocb_flag); status = lpfc_sli_issue_iocb_wait(phba, LPFC_FCP_RING, iocbq, iocbqrsp, lpfc_cmd->timeout); if (status != IOCB_SUCCESS) { if (status == IOCB_TIMEDOUT) { iocbq->iocb_cmpl = lpfc_tskmgmt_def_cmpl; ret = TIMEOUT_ERROR; } else ret = FAILED; lpfc_cmd->status = IOSTAT_DRIVER_REJECT; lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0727 TMF %s to TGT %d LUN %d failed (%d, %d) " "iocb_flag x%x\n", lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id, iocbqrsp->iocb.ulpStatus, iocbqrsp->iocb.un.ulpWord[4], iocbq->iocb_flag); } else if (status == IOCB_BUSY) ret = FAILED; else ret = SUCCESS; lpfc_sli_release_iocbq(phba, iocbqrsp); if (ret != TIMEOUT_ERROR) lpfc_release_scsi_buf(phba, lpfc_cmd); return ret; } /** * lpfc_chk_tgt_mapped - * @vport: The virtual port to check on * @cmnd: Pointer to scsi_cmnd data structure. * * This routine delays until the scsi target (aka rport) for the * command exists (is present and logged in) or we declare it non-existent. * * Return code : * 0x2003 - Error * 0x2002 - Success **/ static int lpfc_chk_tgt_mapped(struct lpfc_vport *vport, struct scsi_cmnd *cmnd) { struct lpfc_rport_data *rdata = cmnd->device->hostdata; struct lpfc_nodelist *pnode; unsigned long later; if (!rdata) { lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "0797 Tgt Map rport failure: rdata x%p\n", rdata); return FAILED; } pnode = rdata->pnode; /* * If target is not in a MAPPED state, delay until * target is rediscovered or devloss timeout expires. */ later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; while (time_after(later, jiffies)) { if (!pnode || !NLP_CHK_NODE_ACT(pnode)) return FAILED; if (pnode->nlp_state == NLP_STE_MAPPED_NODE) return SUCCESS; schedule_timeout_uninterruptible(msecs_to_jiffies(500)); rdata = cmnd->device->hostdata; if (!rdata) return FAILED; pnode = rdata->pnode; } if (!pnode || !NLP_CHK_NODE_ACT(pnode) || (pnode->nlp_state != NLP_STE_MAPPED_NODE)) return FAILED; return SUCCESS; } /** * lpfc_reset_flush_io_context - * @vport: The virtual port (scsi_host) for the flush context * @tgt_id: If aborting by Target contect - specifies the target id * @lun_id: If aborting by Lun context - specifies the lun id * @context: specifies the context level to flush at. * * After a reset condition via TMF, we need to flush orphaned i/o * contexts from the adapter. This routine aborts any contexts * outstanding, then waits for their completions. The wait is * bounded by devloss_tmo though. * * Return code : * 0x2003 - Error * 0x2002 - Success **/ static int lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd context) { struct lpfc_hba *phba = vport->phba; unsigned long later; int cnt; cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context); if (cnt) lpfc_sli_abort_iocb(vport, &phba->sli.ring[phba->sli.fcp_ring], tgt_id, lun_id, context); later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; while (time_after(later, jiffies) && cnt) { schedule_timeout_uninterruptible(msecs_to_jiffies(20)); cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context); } if (cnt) { lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0724 I/O flush failure for context %s : cnt x%x\n", ((context == LPFC_CTX_LUN) ? "LUN" : ((context == LPFC_CTX_TGT) ? "TGT" : ((context == LPFC_CTX_HOST) ? "HOST" : "Unknown"))), cnt); return FAILED; } return SUCCESS; } /** * lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point * @cmnd: Pointer to scsi_cmnd data structure. * * This routine does a device reset by sending a LUN_RESET task management * command. * * Return code : * 0x2003 - Error * 0x2002 - Success **/ static int lpfc_device_reset_handler(struct scsi_cmnd *cmnd) { struct Scsi_Host *shost = cmnd->device->host; struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_rport_data *rdata = cmnd->device->hostdata; struct lpfc_nodelist *pnode; unsigned tgt_id = cmnd->device->id; unsigned int lun_id = cmnd->device->lun; struct lpfc_scsi_event_header scsi_event; int status; if (!rdata) { lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0798 Device Reset rport failure: rdata x%p\n", rdata); return FAILED; } pnode = rdata->pnode; status = fc_block_scsi_eh(cmnd); if (status) return status; status = lpfc_chk_tgt_mapped(vport, cmnd); if (status == FAILED) { lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0721 Device Reset rport failure: rdata x%p\n", rdata); return FAILED; } scsi_event.event_type = FC_REG_SCSI_EVENT; scsi_event.subcategory = LPFC_EVENT_LUNRESET; scsi_event.lun = lun_id; memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); fc_host_post_vendor_event(shost, fc_get_event_number(), sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id, FCP_LUN_RESET); lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0713 SCSI layer issued Device Reset (%d, %d) " "return x%x\n", tgt_id, lun_id, status); /* * We have to clean up i/o as : they may be orphaned by the TMF; * or if the TMF failed, they may be in an indeterminate state. * So, continue on. * We will report success if all the i/o aborts successfully. */ status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id, LPFC_CTX_LUN); return status; } /** * lpfc_target_reset_handler - scsi_host_template eh_target_reset entry point * @cmnd: Pointer to scsi_cmnd data structure. * * This routine does a target reset by sending a TARGET_RESET task management * command. * * Return code : * 0x2003 - Error * 0x2002 - Success **/ static int lpfc_target_reset_handler(struct scsi_cmnd *cmnd) { struct Scsi_Host *shost = cmnd->device->host; struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_rport_data *rdata = cmnd->device->hostdata; struct lpfc_nodelist *pnode; unsigned tgt_id = cmnd->device->id; unsigned int lun_id = cmnd->device->lun; struct lpfc_scsi_event_header scsi_event; int status; if (!rdata) { lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0799 Target Reset rport failure: rdata x%p\n", rdata); return FAILED; } pnode = rdata->pnode; status = fc_block_scsi_eh(cmnd); if (status) return status; status = lpfc_chk_tgt_mapped(vport, cmnd); if (status == FAILED) { lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0722 Target Reset rport failure: rdata x%p\n", rdata); return FAILED; } scsi_event.event_type = FC_REG_SCSI_EVENT; scsi_event.subcategory = LPFC_EVENT_TGTRESET; scsi_event.lun = 0; memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); fc_host_post_vendor_event(shost, fc_get_event_number(), sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id, FCP_TARGET_RESET); lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0723 SCSI layer issued Target Reset (%d, %d) " "return x%x\n", tgt_id, lun_id, status); /* * We have to clean up i/o as : they may be orphaned by the TMF; * or if the TMF failed, they may be in an indeterminate state. * So, continue on. * We will report success if all the i/o aborts successfully. */ status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id, LPFC_CTX_TGT); return status; } /** * lpfc_bus_reset_handler - scsi_host_template eh_bus_reset_handler entry point * @cmnd: Pointer to scsi_cmnd data structure. * * This routine does target reset to all targets on @cmnd->device->host. * This emulates Parallel SCSI Bus Reset Semantics. * * Return code : * 0x2003 - Error * 0x2002 - Success **/ static int lpfc_bus_reset_handler(struct scsi_cmnd *cmnd) { struct Scsi_Host *shost = cmnd->device->host; struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_nodelist *ndlp = NULL; struct lpfc_scsi_event_header scsi_event; int match; int ret = SUCCESS, status, i; scsi_event.event_type = FC_REG_SCSI_EVENT; scsi_event.subcategory = LPFC_EVENT_BUSRESET; scsi_event.lun = 0; memcpy(scsi_event.wwpn, &vport->fc_portname, sizeof(struct lpfc_name)); memcpy(scsi_event.wwnn, &vport->fc_nodename, sizeof(struct lpfc_name)); fc_host_post_vendor_event(shost, fc_get_event_number(), sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); status = fc_block_scsi_eh(cmnd); if (status) return status; /* * Since the driver manages a single bus device, reset all * targets known to the driver. Should any target reset * fail, this routine returns failure to the midlayer. */ for (i = 0; i < LPFC_MAX_TARGET; i++) { /* Search for mapped node by target ID */ match = 0; spin_lock_irq(shost->host_lock); list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) { if (!NLP_CHK_NODE_ACT(ndlp)) continue; if (ndlp->nlp_state == NLP_STE_MAPPED_NODE && ndlp->nlp_sid == i && ndlp->rport) { match = 1; break; } } spin_unlock_irq(shost->host_lock); if (!match) continue; status = lpfc_send_taskmgmt(vport, ndlp->rport->dd_data, i, 0, FCP_TARGET_RESET); if (status != SUCCESS) { lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0700 Bus Reset on target %d failed\n", i); ret = FAILED; } } /* * We have to clean up i/o as : they may be orphaned by the TMFs * above; or if any of the TMFs failed, they may be in an * indeterminate state. * We will report success if all the i/o aborts successfully. */ status = lpfc_reset_flush_io_context(vport, 0, 0, LPFC_CTX_HOST); if (status != SUCCESS) ret = FAILED; lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0714 SCSI layer issued Bus Reset Data: x%x\n", ret); return ret; } /** * lpfc_slave_alloc - scsi_host_template slave_alloc entry point * @sdev: Pointer to scsi_device. * * This routine populates the cmds_per_lun count + 2 scsi_bufs into this host's * globally available list of scsi buffers. This routine also makes sure scsi * buffer is not allocated more than HBA limit conveyed to midlayer. This list * of scsi buffer exists for the lifetime of the driver. * * Return codes: * non-0 - Error * 0 - Success **/ static int lpfc_slave_alloc(struct scsi_device *sdev) { struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; struct lpfc_hba *phba = vport->phba; struct fc_rport *rport = starget_to_rport(scsi_target(sdev)); uint32_t total = 0; uint32_t num_to_alloc = 0; int num_allocated = 0; uint32_t sdev_cnt; if (!rport || fc_remote_port_chkready(rport)) return -ENXIO; sdev->hostdata = rport->dd_data; sdev_cnt = atomic_inc_return(&phba->sdev_cnt); /* * Populate the cmds_per_lun count scsi_bufs into this host's globally * available list of scsi buffers. Don't allocate more than the * HBA limit conveyed to the midlayer via the host structure. The * formula accounts for the lun_queue_depth + error handlers + 1 * extra. This list of scsi bufs exists for the lifetime of the driver. */ total = phba->total_scsi_bufs; num_to_alloc = vport->cfg_lun_queue_depth + 2; /* If allocated buffers are enough do nothing */ if ((sdev_cnt * (vport->cfg_lun_queue_depth + 2)) < total) return 0; /* Allow some exchanges to be available always to complete discovery */ if (total >= phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "0704 At limitation of %d preallocated " "command buffers\n", total); return 0; /* Allow some exchanges to be available always to complete discovery */ } else if (total + num_to_alloc > phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "0705 Allocation request of %d " "command buffers will exceed max of %d. " "Reducing allocation request to %d.\n", num_to_alloc, phba->cfg_hba_queue_depth, (phba->cfg_hba_queue_depth - total)); num_to_alloc = phba->cfg_hba_queue_depth - total; } num_allocated = lpfc_new_scsi_buf(vport, num_to_alloc); if (num_to_alloc != num_allocated) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "0708 Allocation request of %d " "command buffers did not succeed. " "Allocated %d buffers.\n", num_to_alloc, num_allocated); } if (num_allocated > 0) phba->total_scsi_bufs += num_allocated; return 0; } /** * lpfc_slave_configure - scsi_host_template slave_configure entry point * @sdev: Pointer to scsi_device. * * This routine configures following items * - Tag command queuing support for @sdev if supported. * - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set. * * Return codes: * 0 - Success **/ static int lpfc_slave_configure(struct scsi_device *sdev) { struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; struct lpfc_hba *phba = vport->phba; if (sdev->tagged_supported) scsi_activate_tcq(sdev, vport->cfg_lun_queue_depth); else scsi_deactivate_tcq(sdev, vport->cfg_lun_queue_depth); if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { lpfc_sli_handle_fast_ring_event(phba, &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ); if (phba->cfg_poll & DISABLE_FCP_RING_INT) lpfc_poll_rearm_timer(phba); } return 0; } /** * lpfc_slave_destroy - slave_destroy entry point of SHT data structure * @sdev: Pointer to scsi_device. * * This routine sets @sdev hostatdata filed to null. **/ static void lpfc_slave_destroy(struct scsi_device *sdev) { struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; struct lpfc_hba *phba = vport->phba; atomic_dec(&phba->sdev_cnt); sdev->hostdata = NULL; return; } struct scsi_host_template lpfc_template = { .module = THIS_MODULE, .name = LPFC_DRIVER_NAME, .info = lpfc_info, .queuecommand = lpfc_queuecommand, .eh_abort_handler = lpfc_abort_handler, .eh_device_reset_handler = lpfc_device_reset_handler, .eh_target_reset_handler = lpfc_target_reset_handler, .eh_bus_reset_handler = lpfc_bus_reset_handler, .slave_alloc = lpfc_slave_alloc, .slave_configure = lpfc_slave_configure, .slave_destroy = lpfc_slave_destroy, .scan_finished = lpfc_scan_finished, .this_id = -1, .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, .cmd_per_lun = LPFC_CMD_PER_LUN, .use_clustering = ENABLE_CLUSTERING, .shost_attrs = lpfc_hba_attrs, .max_sectors = 0xFFFF, .vendor_id = LPFC_NL_VENDOR_ID, .change_queue_depth = lpfc_change_queue_depth, }; struct scsi_host_template lpfc_vport_template = { .module = THIS_MODULE, .name = LPFC_DRIVER_NAME, .info = lpfc_info, .queuecommand = lpfc_queuecommand, .eh_abort_handler = lpfc_abort_handler, .eh_device_reset_handler = lpfc_device_reset_handler, .eh_target_reset_handler = lpfc_target_reset_handler, .eh_bus_reset_handler = lpfc_bus_reset_handler, .slave_alloc = lpfc_slave_alloc, .slave_configure = lpfc_slave_configure, .slave_destroy = lpfc_slave_destroy, .scan_finished = lpfc_scan_finished, .this_id = -1, .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, .cmd_per_lun = LPFC_CMD_PER_LUN, .use_clustering = ENABLE_CLUSTERING, .shost_attrs = lpfc_vport_attrs, .max_sectors = 0xFFFF, .change_queue_depth = lpfc_change_queue_depth, };