/* IEEE 802.11 SoftMAC layer * Copyright (c) 2005 Andrea Merello <andreamrl@tiscali.it> * * Mostly extracted from the rtl8180-sa2400 driver for the * in-kernel generic ieee802.11 stack. * * Few lines might be stolen from other part of the rtllib * stack. Copyright who own it's copyright * * WPA code stolen from the ipw2200 driver. * Copyright who own it's copyright. * * released under the GPL */ #include "rtllib.h" #include <linux/random.h> #include <linux/delay.h> #include <linux/uaccess.h> #include "dot11d.h" short rtllib_is_54g(struct rtllib_network *net) { return (net->rates_ex_len > 0) || (net->rates_len > 4); } short rtllib_is_shortslot(const struct rtllib_network *net) { return net->capability & WLAN_CAPABILITY_SHORT_SLOT_TIME; } /* returns the total length needed for pleacing the RATE MFIE * tag and the EXTENDED RATE MFIE tag if needed. * It encludes two bytes per tag for the tag itself and its len */ static unsigned int rtllib_MFIE_rate_len(struct rtllib_device *ieee) { unsigned int rate_len = 0; if (ieee->modulation & RTLLIB_CCK_MODULATION) rate_len = RTLLIB_CCK_RATE_LEN + 2; if (ieee->modulation & RTLLIB_OFDM_MODULATION) rate_len += RTLLIB_OFDM_RATE_LEN + 2; return rate_len; } /* pleace the MFIE rate, tag to the memory (double) poined. * Then it updates the pointer so that * it points after the new MFIE tag added. */ static void rtllib_MFIE_Brate(struct rtllib_device *ieee, u8 **tag_p) { u8 *tag = *tag_p; if (ieee->modulation & RTLLIB_CCK_MODULATION) { *tag++ = MFIE_TYPE_RATES; *tag++ = 4; *tag++ = RTLLIB_BASIC_RATE_MASK | RTLLIB_CCK_RATE_1MB; *tag++ = RTLLIB_BASIC_RATE_MASK | RTLLIB_CCK_RATE_2MB; *tag++ = RTLLIB_BASIC_RATE_MASK | RTLLIB_CCK_RATE_5MB; *tag++ = RTLLIB_BASIC_RATE_MASK | RTLLIB_CCK_RATE_11MB; } /* We may add an option for custom rates that specific HW * might support */ *tag_p = tag; } static void rtllib_MFIE_Grate(struct rtllib_device *ieee, u8 **tag_p) { u8 *tag = *tag_p; if (ieee->modulation & RTLLIB_OFDM_MODULATION) { *tag++ = MFIE_TYPE_RATES_EX; *tag++ = 8; *tag++ = RTLLIB_BASIC_RATE_MASK | RTLLIB_OFDM_RATE_6MB; *tag++ = RTLLIB_BASIC_RATE_MASK | RTLLIB_OFDM_RATE_9MB; *tag++ = RTLLIB_BASIC_RATE_MASK | RTLLIB_OFDM_RATE_12MB; *tag++ = RTLLIB_BASIC_RATE_MASK | RTLLIB_OFDM_RATE_18MB; *tag++ = RTLLIB_BASIC_RATE_MASK | RTLLIB_OFDM_RATE_24MB; *tag++ = RTLLIB_BASIC_RATE_MASK | RTLLIB_OFDM_RATE_36MB; *tag++ = RTLLIB_BASIC_RATE_MASK | RTLLIB_OFDM_RATE_48MB; *tag++ = RTLLIB_BASIC_RATE_MASK | RTLLIB_OFDM_RATE_54MB; } /* We may add an option for custom rates that specific HW might * support */ *tag_p = tag; } static void rtllib_WMM_Info(struct rtllib_device *ieee, u8 **tag_p) { u8 *tag = *tag_p; *tag++ = MFIE_TYPE_GENERIC; *tag++ = 7; *tag++ = 0x00; *tag++ = 0x50; *tag++ = 0xf2; *tag++ = 0x02; *tag++ = 0x00; *tag++ = 0x01; *tag++ = MAX_SP_Len; *tag_p = tag; } void rtllib_TURBO_Info(struct rtllib_device *ieee, u8 **tag_p) { u8 *tag = *tag_p; *tag++ = MFIE_TYPE_GENERIC; *tag++ = 7; *tag++ = 0x00; *tag++ = 0xe0; *tag++ = 0x4c; *tag++ = 0x01; *tag++ = 0x02; *tag++ = 0x11; *tag++ = 0x00; *tag_p = tag; printk(KERN_ALERT "This is enable turbo mode IE process\n"); } static void enqueue_mgmt(struct rtllib_device *ieee, struct sk_buff *skb) { int nh; nh = (ieee->mgmt_queue_head + 1) % MGMT_QUEUE_NUM; /* * if the queue is full but we have newer frames then * just overwrites the oldest. * * if (nh == ieee->mgmt_queue_tail) * return -1; */ ieee->mgmt_queue_head = nh; ieee->mgmt_queue_ring[nh] = skb; } static struct sk_buff *dequeue_mgmt(struct rtllib_device *ieee) { struct sk_buff *ret; if (ieee->mgmt_queue_tail == ieee->mgmt_queue_head) return NULL; ret = ieee->mgmt_queue_ring[ieee->mgmt_queue_tail]; ieee->mgmt_queue_tail = (ieee->mgmt_queue_tail+1) % MGMT_QUEUE_NUM; return ret; } static void init_mgmt_queue(struct rtllib_device *ieee) { ieee->mgmt_queue_tail = ieee->mgmt_queue_head = 0; } u8 MgntQuery_TxRateExcludeCCKRates(struct rtllib_device *ieee) { u16 i; u8 QueryRate = 0; u8 BasicRate; for (i = 0; i < ieee->current_network.rates_len; i++) { BasicRate = ieee->current_network.rates[i]&0x7F; if (!rtllib_is_cck_rate(BasicRate)) { if (QueryRate == 0) { QueryRate = BasicRate; } else { if (BasicRate < QueryRate) QueryRate = BasicRate; } } } if (QueryRate == 0) { QueryRate = 12; printk(KERN_INFO "No BasicRate found!!\n"); } return QueryRate; } u8 MgntQuery_MgntFrameTxRate(struct rtllib_device *ieee) { struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; u8 rate; if (pHTInfo->IOTAction & HT_IOT_ACT_MGNT_USE_CCK_6M) rate = 0x0c; else rate = ieee->basic_rate & 0x7f; if (rate == 0) { if (ieee->mode == IEEE_A || ieee->mode == IEEE_N_5G || (ieee->mode == IEEE_N_24G && !pHTInfo->bCurSuppCCK)) rate = 0x0c; else rate = 0x02; } return rate; } inline void softmac_mgmt_xmit(struct sk_buff *skb, struct rtllib_device *ieee) { unsigned long flags; short single = ieee->softmac_features & IEEE_SOFTMAC_SINGLE_QUEUE; struct rtllib_hdr_3addr *header = (struct rtllib_hdr_3addr *) skb->data; struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + 8); spin_lock_irqsave(&ieee->lock, flags); /* called with 2nd param 0, no mgmt lock required */ rtllib_sta_wakeup(ieee, 0); if (header->frame_ctl == RTLLIB_STYPE_BEACON) tcb_desc->queue_index = BEACON_QUEUE; else tcb_desc->queue_index = MGNT_QUEUE; if (ieee->disable_mgnt_queue) tcb_desc->queue_index = HIGH_QUEUE; tcb_desc->data_rate = MgntQuery_MgntFrameTxRate(ieee); tcb_desc->RATRIndex = 7; tcb_desc->bTxDisableRateFallBack = 1; tcb_desc->bTxUseDriverAssingedRate = 1; if (single) { if (ieee->queue_stop) { enqueue_mgmt(ieee, skb); } else { header->seq_ctl = cpu_to_le16(ieee->seq_ctrl[0]<<4); if (ieee->seq_ctrl[0] == 0xFFF) ieee->seq_ctrl[0] = 0; else ieee->seq_ctrl[0]++; /* avoid watchdog triggers */ ieee->softmac_data_hard_start_xmit(skb, ieee->dev, ieee->basic_rate); } spin_unlock_irqrestore(&ieee->lock, flags); } else { spin_unlock_irqrestore(&ieee->lock, flags); spin_lock_irqsave(&ieee->mgmt_tx_lock, flags); header->seq_ctl = cpu_to_le16(ieee->seq_ctrl[0] << 4); if (ieee->seq_ctrl[0] == 0xFFF) ieee->seq_ctrl[0] = 0; else ieee->seq_ctrl[0]++; /* check wether the managed packet queued greater than 5 */ if (!ieee->check_nic_enough_desc(ieee->dev, tcb_desc->queue_index) || (skb_queue_len(&ieee->skb_waitQ[tcb_desc->queue_index]) != 0) || (ieee->queue_stop)) { /* insert the skb packet to the management queue */ /* as for the completion function, it does not need * to check it any more. * */ printk(KERN_INFO "%s():insert to waitqueue, queue_index" ":%d!\n", __func__, tcb_desc->queue_index); skb_queue_tail(&ieee->skb_waitQ[tcb_desc->queue_index], skb); } else { ieee->softmac_hard_start_xmit(skb, ieee->dev); } spin_unlock_irqrestore(&ieee->mgmt_tx_lock, flags); } } inline void softmac_ps_mgmt_xmit(struct sk_buff *skb, struct rtllib_device *ieee) { short single = ieee->softmac_features & IEEE_SOFTMAC_SINGLE_QUEUE; struct rtllib_hdr_3addr *header = (struct rtllib_hdr_3addr *) skb->data; u16 fc, type, stype; struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + 8); fc = header->frame_ctl; type = WLAN_FC_GET_TYPE(fc); stype = WLAN_FC_GET_STYPE(fc); if (stype != RTLLIB_STYPE_PSPOLL) tcb_desc->queue_index = MGNT_QUEUE; else tcb_desc->queue_index = HIGH_QUEUE; if (ieee->disable_mgnt_queue) tcb_desc->queue_index = HIGH_QUEUE; tcb_desc->data_rate = MgntQuery_MgntFrameTxRate(ieee); tcb_desc->RATRIndex = 7; tcb_desc->bTxDisableRateFallBack = 1; tcb_desc->bTxUseDriverAssingedRate = 1; if (single) { if (type != RTLLIB_FTYPE_CTL) { header->seq_ctl = cpu_to_le16(ieee->seq_ctrl[0] << 4); if (ieee->seq_ctrl[0] == 0xFFF) ieee->seq_ctrl[0] = 0; else ieee->seq_ctrl[0]++; } /* avoid watchdog triggers */ ieee->softmac_data_hard_start_xmit(skb, ieee->dev, ieee->basic_rate); } else { if (type != RTLLIB_FTYPE_CTL) { header->seq_ctl = cpu_to_le16(ieee->seq_ctrl[0] << 4); if (ieee->seq_ctrl[0] == 0xFFF) ieee->seq_ctrl[0] = 0; else ieee->seq_ctrl[0]++; } ieee->softmac_hard_start_xmit(skb, ieee->dev); } } inline struct sk_buff *rtllib_probe_req(struct rtllib_device *ieee) { unsigned int len, rate_len; u8 *tag; struct sk_buff *skb; struct rtllib_probe_request *req; len = ieee->current_network.ssid_len; rate_len = rtllib_MFIE_rate_len(ieee); skb = dev_alloc_skb(sizeof(struct rtllib_probe_request) + 2 + len + rate_len + ieee->tx_headroom); if (!skb) return NULL; skb_reserve(skb, ieee->tx_headroom); req = (struct rtllib_probe_request *) skb_put(skb, sizeof(struct rtllib_probe_request)); req->header.frame_ctl = cpu_to_le16(RTLLIB_STYPE_PROBE_REQ); req->header.duration_id = 0; memset(req->header.addr1, 0xff, ETH_ALEN); memcpy(req->header.addr2, ieee->dev->dev_addr, ETH_ALEN); memset(req->header.addr3, 0xff, ETH_ALEN); tag = (u8 *) skb_put(skb, len + 2 + rate_len); *tag++ = MFIE_TYPE_SSID; *tag++ = len; memcpy(tag, ieee->current_network.ssid, len); tag += len; rtllib_MFIE_Brate(ieee, &tag); rtllib_MFIE_Grate(ieee, &tag); return skb; } struct sk_buff *rtllib_get_beacon_(struct rtllib_device *ieee); static void rtllib_send_beacon(struct rtllib_device *ieee) { struct sk_buff *skb; if (!ieee->ieee_up) return; skb = rtllib_get_beacon_(ieee); if (skb) { softmac_mgmt_xmit(skb, ieee); ieee->softmac_stats.tx_beacons++; } if (ieee->beacon_txing && ieee->ieee_up) mod_timer(&ieee->beacon_timer, jiffies + (MSECS(ieee->current_network.beacon_interval - 5))); } static void rtllib_send_beacon_cb(unsigned long _ieee) { struct rtllib_device *ieee = (struct rtllib_device *) _ieee; unsigned long flags; spin_lock_irqsave(&ieee->beacon_lock, flags); rtllib_send_beacon(ieee); spin_unlock_irqrestore(&ieee->beacon_lock, flags); } /* * Description: * Enable network monitor mode, all rx packets will be received. */ void rtllib_EnableNetMonitorMode(struct net_device *dev, bool bInitState) { struct rtllib_device *ieee = netdev_priv_rsl(dev); printk(KERN_INFO "========>Enter Monitor Mode\n"); ieee->AllowAllDestAddrHandler(dev, true, !bInitState); } /* * Description: * Disable network network monitor mode, only packets destinated to * us will be received. */ void rtllib_DisableNetMonitorMode(struct net_device *dev, bool bInitState) { struct rtllib_device *ieee = netdev_priv_rsl(dev); printk(KERN_INFO "========>Exit Monitor Mode\n"); ieee->AllowAllDestAddrHandler(dev, false, !bInitState); } /* * Description: * This enables the specialized promiscuous mode required by Intel. * In this mode, Intel intends to hear traffics from/to other STAs in the * same BSS. Therefore we don't have to disable checking BSSID and we only need * to allow all dest. BUT: if we enable checking BSSID then we can't recv * packets from other STA. */ void rtllib_EnableIntelPromiscuousMode(struct net_device *dev, bool bInitState) { bool bFilterOutNonAssociatedBSSID = false; struct rtllib_device *ieee = netdev_priv_rsl(dev); printk(KERN_INFO "========>Enter Intel Promiscuous Mode\n"); ieee->AllowAllDestAddrHandler(dev, true, !bInitState); ieee->SetHwRegHandler(dev, HW_VAR_CECHK_BSSID, (u8 *)&bFilterOutNonAssociatedBSSID); ieee->bNetPromiscuousMode = true; } EXPORT_SYMBOL(rtllib_EnableIntelPromiscuousMode); /* * Description: * This disables the specialized promiscuous mode required by Intel. * See MgntEnableIntelPromiscuousMode for detail. */ void rtllib_DisableIntelPromiscuousMode(struct net_device *dev, bool bInitState) { bool bFilterOutNonAssociatedBSSID = true; struct rtllib_device *ieee = netdev_priv_rsl(dev); printk(KERN_INFO "========>Exit Intel Promiscuous Mode\n"); ieee->AllowAllDestAddrHandler(dev, false, !bInitState); ieee->SetHwRegHandler(dev, HW_VAR_CECHK_BSSID, (u8 *)&bFilterOutNonAssociatedBSSID); ieee->bNetPromiscuousMode = false; } EXPORT_SYMBOL(rtllib_DisableIntelPromiscuousMode); static void rtllib_send_probe(struct rtllib_device *ieee, u8 is_mesh) { struct sk_buff *skb; skb = rtllib_probe_req(ieee); if (skb) { softmac_mgmt_xmit(skb, ieee); ieee->softmac_stats.tx_probe_rq++; } } void rtllib_send_probe_requests(struct rtllib_device *ieee, u8 is_mesh) { if (ieee->active_scan && (ieee->softmac_features & IEEE_SOFTMAC_PROBERQ)) { rtllib_send_probe(ieee, 0); rtllib_send_probe(ieee, 0); } } static void rtllib_softmac_hint11d_wq(void *data) { } void rtllib_update_active_chan_map(struct rtllib_device *ieee) { memcpy(ieee->active_channel_map, GET_DOT11D_INFO(ieee)->channel_map, MAX_CHANNEL_NUMBER+1); } /* this performs syncro scan blocking the caller until all channels * in the allowed channel map has been checked. */ void rtllib_softmac_scan_syncro(struct rtllib_device *ieee, u8 is_mesh) { union iwreq_data wrqu; short ch = 0; rtllib_update_active_chan_map(ieee); ieee->be_scan_inprogress = true; down(&ieee->scan_sem); while (1) { do { ch++; if (ch > MAX_CHANNEL_NUMBER) goto out; /* scan completed */ } while (!ieee->active_channel_map[ch]); /* this fuction can be called in two situations * 1- We have switched to ad-hoc mode and we are * performing a complete syncro scan before conclude * there are no interesting cell and to create a * new one. In this case the link state is * RTLLIB_NOLINK until we found an interesting cell. * If so the ieee8021_new_net, called by the RX path * will set the state to RTLLIB_LINKED, so we stop * scanning * 2- We are linked and the root uses run iwlist scan. * So we switch to RTLLIB_LINKED_SCANNING to remember * that we are still logically linked (not interested in * new network events, despite for updating the net list, * but we are temporarly 'unlinked' as the driver shall * not filter RX frames and the channel is changing. * So the only situation in witch are interested is to check * if the state become LINKED because of the #1 situation */ if (ieee->state == RTLLIB_LINKED) goto out; if (ieee->sync_scan_hurryup) { printk(KERN_INFO "============>sync_scan_hurryup out\n"); goto out; } ieee->set_chan(ieee->dev, ch); if (ieee->active_channel_map[ch] == 1) rtllib_send_probe_requests(ieee, 0); /* this prevent excessive time wait when we * need to wait for a syncro scan to end.. */ msleep_interruptible_rsl(RTLLIB_SOFTMAC_SCAN_TIME); } out: ieee->actscanning = false; ieee->sync_scan_hurryup = 0; if (ieee->state >= RTLLIB_LINKED) { if (IS_DOT11D_ENABLE(ieee)) DOT11D_ScanComplete(ieee); } up(&ieee->scan_sem); ieee->be_scan_inprogress = false; memset(&wrqu, 0, sizeof(wrqu)); wireless_send_event(ieee->dev, SIOCGIWSCAN, &wrqu, NULL); } static void rtllib_softmac_scan_wq(void *data) { struct rtllib_device *ieee = container_of_dwork_rsl(data, struct rtllib_device, softmac_scan_wq); u8 last_channel = ieee->current_network.channel; rtllib_update_active_chan_map(ieee); if (!ieee->ieee_up) return; if (rtllib_act_scanning(ieee, true) == true) return; down(&ieee->scan_sem); if (ieee->eRFPowerState == eRfOff) { printk(KERN_INFO "======>%s():rf state is eRfOff, return\n", __func__); goto out1; } do { ieee->current_network.channel = (ieee->current_network.channel + 1) % MAX_CHANNEL_NUMBER; if (ieee->scan_watch_dog++ > MAX_CHANNEL_NUMBER) { if (!ieee->active_channel_map[ieee->current_network.channel]) ieee->current_network.channel = 6; goto out; /* no good chans */ } } while (!ieee->active_channel_map[ieee->current_network.channel]); if (ieee->scanning_continue == 0) goto out; ieee->set_chan(ieee->dev, ieee->current_network.channel); if (ieee->active_channel_map[ieee->current_network.channel] == 1) rtllib_send_probe_requests(ieee, 0); queue_delayed_work_rsl(ieee->wq, &ieee->softmac_scan_wq, MSECS(RTLLIB_SOFTMAC_SCAN_TIME)); up(&ieee->scan_sem); return; out: if (IS_DOT11D_ENABLE(ieee)) DOT11D_ScanComplete(ieee); ieee->current_network.channel = last_channel; out1: ieee->actscanning = false; ieee->scan_watch_dog = 0; ieee->scanning_continue = 0; up(&ieee->scan_sem); } static void rtllib_beacons_start(struct rtllib_device *ieee) { unsigned long flags; spin_lock_irqsave(&ieee->beacon_lock, flags); ieee->beacon_txing = 1; rtllib_send_beacon(ieee); spin_unlock_irqrestore(&ieee->beacon_lock, flags); } static void rtllib_beacons_stop(struct rtllib_device *ieee) { unsigned long flags; spin_lock_irqsave(&ieee->beacon_lock, flags); ieee->beacon_txing = 0; del_timer_sync(&ieee->beacon_timer); spin_unlock_irqrestore(&ieee->beacon_lock, flags); } void rtllib_stop_send_beacons(struct rtllib_device *ieee) { if (ieee->stop_send_beacons) ieee->stop_send_beacons(ieee->dev); if (ieee->softmac_features & IEEE_SOFTMAC_BEACONS) rtllib_beacons_stop(ieee); } EXPORT_SYMBOL(rtllib_stop_send_beacons); void rtllib_start_send_beacons(struct rtllib_device *ieee) { if (ieee->start_send_beacons) ieee->start_send_beacons(ieee->dev); if (ieee->softmac_features & IEEE_SOFTMAC_BEACONS) rtllib_beacons_start(ieee); } EXPORT_SYMBOL(rtllib_start_send_beacons); static void rtllib_softmac_stop_scan(struct rtllib_device *ieee) { down(&ieee->scan_sem); ieee->scan_watch_dog = 0; if (ieee->scanning_continue == 1) { ieee->scanning_continue = 0; ieee->actscanning = 0; cancel_delayed_work(&ieee->softmac_scan_wq); } up(&ieee->scan_sem); } void rtllib_stop_scan(struct rtllib_device *ieee) { if (ieee->softmac_features & IEEE_SOFTMAC_SCAN) { rtllib_softmac_stop_scan(ieee); } else { if (ieee->rtllib_stop_hw_scan) ieee->rtllib_stop_hw_scan(ieee->dev); } } EXPORT_SYMBOL(rtllib_stop_scan); void rtllib_stop_scan_syncro(struct rtllib_device *ieee) { if (ieee->softmac_features & IEEE_SOFTMAC_SCAN) { ieee->sync_scan_hurryup = 1; } else { if (ieee->rtllib_stop_hw_scan) ieee->rtllib_stop_hw_scan(ieee->dev); } } EXPORT_SYMBOL(rtllib_stop_scan_syncro); bool rtllib_act_scanning(struct rtllib_device *ieee, bool sync_scan) { if (ieee->softmac_features & IEEE_SOFTMAC_SCAN) { if (sync_scan) return ieee->be_scan_inprogress; else return ieee->actscanning || ieee->be_scan_inprogress; } else { return test_bit(STATUS_SCANNING, &ieee->status); } } EXPORT_SYMBOL(rtllib_act_scanning); /* called with ieee->lock held */ static void rtllib_start_scan(struct rtllib_device *ieee) { RT_TRACE(COMP_DBG, "===>%s()\n", __func__); if (ieee->rtllib_ips_leave_wq != NULL) ieee->rtllib_ips_leave_wq(ieee->dev); if (IS_DOT11D_ENABLE(ieee)) { if (IS_COUNTRY_IE_VALID(ieee)) RESET_CIE_WATCHDOG(ieee); } if (ieee->softmac_features & IEEE_SOFTMAC_SCAN) { if (ieee->scanning_continue == 0) { ieee->actscanning = true; ieee->scanning_continue = 1; queue_delayed_work_rsl(ieee->wq, &ieee->softmac_scan_wq, 0); } } else { if (ieee->rtllib_start_hw_scan) ieee->rtllib_start_hw_scan(ieee->dev); } } /* called with wx_sem held */ void rtllib_start_scan_syncro(struct rtllib_device *ieee, u8 is_mesh) { if (IS_DOT11D_ENABLE(ieee)) { if (IS_COUNTRY_IE_VALID(ieee)) RESET_CIE_WATCHDOG(ieee); } ieee->sync_scan_hurryup = 0; if (ieee->softmac_features & IEEE_SOFTMAC_SCAN) { rtllib_softmac_scan_syncro(ieee, is_mesh); } else { if (ieee->rtllib_start_hw_scan) ieee->rtllib_start_hw_scan(ieee->dev); } } EXPORT_SYMBOL(rtllib_start_scan_syncro); inline struct sk_buff *rtllib_authentication_req(struct rtllib_network *beacon, struct rtllib_device *ieee, int challengelen, u8 *daddr) { struct sk_buff *skb; struct rtllib_authentication *auth; int len = 0; len = sizeof(struct rtllib_authentication) + challengelen + ieee->tx_headroom + 4; skb = dev_alloc_skb(len); if (!skb) return NULL; skb_reserve(skb, ieee->tx_headroom); auth = (struct rtllib_authentication *) skb_put(skb, sizeof(struct rtllib_authentication)); auth->header.frame_ctl = RTLLIB_STYPE_AUTH; if (challengelen) auth->header.frame_ctl |= RTLLIB_FCTL_WEP; auth->header.duration_id = 0x013a; memcpy(auth->header.addr1, beacon->bssid, ETH_ALEN); memcpy(auth->header.addr2, ieee->dev->dev_addr, ETH_ALEN); memcpy(auth->header.addr3, beacon->bssid, ETH_ALEN); if (ieee->auth_mode == 0) auth->algorithm = WLAN_AUTH_OPEN; else if (ieee->auth_mode == 1) auth->algorithm = WLAN_AUTH_SHARED_KEY; else if (ieee->auth_mode == 2) auth->algorithm = WLAN_AUTH_OPEN; auth->transaction = cpu_to_le16(ieee->associate_seq); ieee->associate_seq++; auth->status = cpu_to_le16(WLAN_STATUS_SUCCESS); return skb; } static struct sk_buff *rtllib_probe_resp(struct rtllib_device *ieee, u8 *dest) { u8 *tag; int beacon_size; struct rtllib_probe_response *beacon_buf; struct sk_buff *skb = NULL; int encrypt; int atim_len, erp_len; struct lib80211_crypt_data *crypt; char *ssid = ieee->current_network.ssid; int ssid_len = ieee->current_network.ssid_len; int rate_len = ieee->current_network.rates_len+2; int rate_ex_len = ieee->current_network.rates_ex_len; int wpa_ie_len = ieee->wpa_ie_len; u8 erpinfo_content = 0; u8 *tmp_ht_cap_buf = NULL; u8 tmp_ht_cap_len = 0; u8 *tmp_ht_info_buf = NULL; u8 tmp_ht_info_len = 0; struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; u8 *tmp_generic_ie_buf = NULL; u8 tmp_generic_ie_len = 0; if (rate_ex_len > 0) rate_ex_len += 2; if (ieee->current_network.capability & WLAN_CAPABILITY_IBSS) atim_len = 4; else atim_len = 0; if ((ieee->current_network.mode == IEEE_G) || (ieee->current_network.mode == IEEE_N_24G && ieee->pHTInfo->bCurSuppCCK)) { erp_len = 3; erpinfo_content = 0; if (ieee->current_network.buseprotection) erpinfo_content |= ERP_UseProtection; } else erp_len = 0; crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx]; encrypt = ieee->host_encrypt && crypt && crypt->ops && ((0 == strcmp(crypt->ops->name, "R-WEP") || wpa_ie_len)); if (ieee->pHTInfo->bCurrentHTSupport) { tmp_ht_cap_buf = (u8 *) &(ieee->pHTInfo->SelfHTCap); tmp_ht_cap_len = sizeof(ieee->pHTInfo->SelfHTCap); tmp_ht_info_buf = (u8 *) &(ieee->pHTInfo->SelfHTInfo); tmp_ht_info_len = sizeof(ieee->pHTInfo->SelfHTInfo); HTConstructCapabilityElement(ieee, tmp_ht_cap_buf, &tmp_ht_cap_len, encrypt, false); HTConstructInfoElement(ieee, tmp_ht_info_buf, &tmp_ht_info_len, encrypt); if (pHTInfo->bRegRT2RTAggregation) { tmp_generic_ie_buf = ieee->pHTInfo->szRT2RTAggBuffer; tmp_generic_ie_len = sizeof(ieee->pHTInfo->szRT2RTAggBuffer); HTConstructRT2RTAggElement(ieee, tmp_generic_ie_buf, &tmp_generic_ie_len); } } beacon_size = sizeof(struct rtllib_probe_response)+2+ ssid_len + 3 + rate_len + rate_ex_len + atim_len + erp_len + wpa_ie_len + ieee->tx_headroom; skb = dev_alloc_skb(beacon_size); if (!skb) return NULL; skb_reserve(skb, ieee->tx_headroom); beacon_buf = (struct rtllib_probe_response *) skb_put(skb, (beacon_size - ieee->tx_headroom)); memcpy(beacon_buf->header.addr1, dest, ETH_ALEN); memcpy(beacon_buf->header.addr2, ieee->dev->dev_addr, ETH_ALEN); memcpy(beacon_buf->header.addr3, ieee->current_network.bssid, ETH_ALEN); beacon_buf->header.duration_id = 0; beacon_buf->beacon_interval = cpu_to_le16(ieee->current_network.beacon_interval); beacon_buf->capability = cpu_to_le16(ieee->current_network.capability & WLAN_CAPABILITY_IBSS); beacon_buf->capability |= cpu_to_le16(ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE); if (ieee->short_slot && (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_SLOT_TIME)) cpu_to_le16((beacon_buf->capability |= WLAN_CAPABILITY_SHORT_SLOT_TIME)); crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx]; if (encrypt) beacon_buf->capability |= cpu_to_le16(WLAN_CAPABILITY_PRIVACY); beacon_buf->header.frame_ctl = cpu_to_le16(RTLLIB_STYPE_PROBE_RESP); beacon_buf->info_element[0].id = MFIE_TYPE_SSID; beacon_buf->info_element[0].len = ssid_len; tag = (u8 *) beacon_buf->info_element[0].data; memcpy(tag, ssid, ssid_len); tag += ssid_len; *(tag++) = MFIE_TYPE_RATES; *(tag++) = rate_len-2; memcpy(tag, ieee->current_network.rates, rate_len-2); tag += rate_len-2; *(tag++) = MFIE_TYPE_DS_SET; *(tag++) = 1; *(tag++) = ieee->current_network.channel; if (atim_len) { u16 val16; *(tag++) = MFIE_TYPE_IBSS_SET; *(tag++) = 2; val16 = cpu_to_le16(ieee->current_network.atim_window); memcpy((u8 *)tag, (u8 *)&val16, 2); tag += 2; } if (erp_len) { *(tag++) = MFIE_TYPE_ERP; *(tag++) = 1; *(tag++) = erpinfo_content; } if (rate_ex_len) { *(tag++) = MFIE_TYPE_RATES_EX; *(tag++) = rate_ex_len-2; memcpy(tag, ieee->current_network.rates_ex, rate_ex_len-2); tag += rate_ex_len-2; } if (wpa_ie_len) { if (ieee->iw_mode == IW_MODE_ADHOC) memcpy(&ieee->wpa_ie[14], &ieee->wpa_ie[8], 4); memcpy(tag, ieee->wpa_ie, ieee->wpa_ie_len); tag += ieee->wpa_ie_len; } return skb; } static struct sk_buff *rtllib_assoc_resp(struct rtllib_device *ieee, u8 *dest) { struct sk_buff *skb; u8 *tag; struct lib80211_crypt_data *crypt; struct rtllib_assoc_response_frame *assoc; short encrypt; unsigned int rate_len = rtllib_MFIE_rate_len(ieee); int len = sizeof(struct rtllib_assoc_response_frame) + rate_len + ieee->tx_headroom; skb = dev_alloc_skb(len); if (!skb) return NULL; skb_reserve(skb, ieee->tx_headroom); assoc = (struct rtllib_assoc_response_frame *) skb_put(skb, sizeof(struct rtllib_assoc_response_frame)); assoc->header.frame_ctl = cpu_to_le16(RTLLIB_STYPE_ASSOC_RESP); memcpy(assoc->header.addr1, dest, ETH_ALEN); memcpy(assoc->header.addr3, ieee->dev->dev_addr, ETH_ALEN); memcpy(assoc->header.addr2, ieee->dev->dev_addr, ETH_ALEN); assoc->capability = cpu_to_le16(ieee->iw_mode == IW_MODE_MASTER ? WLAN_CAPABILITY_ESS : WLAN_CAPABILITY_IBSS); if (ieee->short_slot) assoc->capability |= cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME); if (ieee->host_encrypt) crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx]; else crypt = NULL; encrypt = (crypt && crypt->ops); if (encrypt) assoc->capability |= cpu_to_le16(WLAN_CAPABILITY_PRIVACY); assoc->status = 0; assoc->aid = cpu_to_le16(ieee->assoc_id); if (ieee->assoc_id == 0x2007) ieee->assoc_id = 0; else ieee->assoc_id++; tag = (u8 *) skb_put(skb, rate_len); rtllib_MFIE_Brate(ieee, &tag); rtllib_MFIE_Grate(ieee, &tag); return skb; } static struct sk_buff *rtllib_auth_resp(struct rtllib_device *ieee, int status, u8 *dest) { struct sk_buff *skb = NULL; struct rtllib_authentication *auth; int len = ieee->tx_headroom + sizeof(struct rtllib_authentication) + 1; skb = dev_alloc_skb(len); if (!skb) return NULL; skb->len = sizeof(struct rtllib_authentication); skb_reserve(skb, ieee->tx_headroom); auth = (struct rtllib_authentication *) skb_put(skb, sizeof(struct rtllib_authentication)); auth->status = cpu_to_le16(status); auth->transaction = cpu_to_le16(2); auth->algorithm = cpu_to_le16(WLAN_AUTH_OPEN); memcpy(auth->header.addr3, ieee->dev->dev_addr, ETH_ALEN); memcpy(auth->header.addr2, ieee->dev->dev_addr, ETH_ALEN); memcpy(auth->header.addr1, dest, ETH_ALEN); auth->header.frame_ctl = cpu_to_le16(RTLLIB_STYPE_AUTH); return skb; } static struct sk_buff *rtllib_null_func(struct rtllib_device *ieee, short pwr) { struct sk_buff *skb; struct rtllib_hdr_3addr *hdr; skb = dev_alloc_skb(sizeof(struct rtllib_hdr_3addr)+ieee->tx_headroom); if (!skb) return NULL; skb_reserve(skb, ieee->tx_headroom); hdr = (struct rtllib_hdr_3addr *)skb_put(skb, sizeof(struct rtllib_hdr_3addr)); memcpy(hdr->addr1, ieee->current_network.bssid, ETH_ALEN); memcpy(hdr->addr2, ieee->dev->dev_addr, ETH_ALEN); memcpy(hdr->addr3, ieee->current_network.bssid, ETH_ALEN); hdr->frame_ctl = cpu_to_le16(RTLLIB_FTYPE_DATA | RTLLIB_STYPE_NULLFUNC | RTLLIB_FCTL_TODS | (pwr ? RTLLIB_FCTL_PM : 0)); return skb; } static struct sk_buff *rtllib_pspoll_func(struct rtllib_device *ieee) { struct sk_buff *skb; struct rtllib_pspoll_hdr *hdr; skb = dev_alloc_skb(sizeof(struct rtllib_pspoll_hdr)+ieee->tx_headroom); if (!skb) return NULL; skb_reserve(skb, ieee->tx_headroom); hdr = (struct rtllib_pspoll_hdr *)skb_put(skb, sizeof(struct rtllib_pspoll_hdr)); memcpy(hdr->bssid, ieee->current_network.bssid, ETH_ALEN); memcpy(hdr->ta, ieee->dev->dev_addr, ETH_ALEN); hdr->aid = cpu_to_le16(ieee->assoc_id | 0xc000); hdr->frame_ctl = cpu_to_le16(RTLLIB_FTYPE_CTL | RTLLIB_STYPE_PSPOLL | RTLLIB_FCTL_PM); return skb; } static void rtllib_resp_to_assoc_rq(struct rtllib_device *ieee, u8 *dest) { struct sk_buff *buf = rtllib_assoc_resp(ieee, dest); if (buf) softmac_mgmt_xmit(buf, ieee); } static void rtllib_resp_to_auth(struct rtllib_device *ieee, int s, u8 *dest) { struct sk_buff *buf = rtllib_auth_resp(ieee, s, dest); if (buf) softmac_mgmt_xmit(buf, ieee); } static void rtllib_resp_to_probe(struct rtllib_device *ieee, u8 *dest) { struct sk_buff *buf = rtllib_probe_resp(ieee, dest); if (buf) softmac_mgmt_xmit(buf, ieee); } inline int SecIsInPMKIDList(struct rtllib_device *ieee, u8 *bssid) { int i = 0; do { if ((ieee->PMKIDList[i].bUsed) && (memcmp(ieee->PMKIDList[i].Bssid, bssid, ETH_ALEN) == 0)) break; else i++; } while (i < NUM_PMKID_CACHE); if (i == NUM_PMKID_CACHE) i = -1; return i; } inline struct sk_buff *rtllib_association_req(struct rtllib_network *beacon, struct rtllib_device *ieee) { struct sk_buff *skb; struct rtllib_assoc_request_frame *hdr; u8 *tag, *ies; int i; u8 *ht_cap_buf = NULL; u8 ht_cap_len = 0; u8 *realtek_ie_buf = NULL; u8 realtek_ie_len = 0; int wpa_ie_len = ieee->wpa_ie_len; int wps_ie_len = ieee->wps_ie_len; unsigned int ckip_ie_len = 0; unsigned int ccxrm_ie_len = 0; unsigned int cxvernum_ie_len = 0; struct lib80211_crypt_data *crypt; int encrypt; int PMKCacheIdx; unsigned int rate_len = (beacon->rates_len ? (beacon->rates_len + 2) : 0) + (beacon->rates_ex_len ? (beacon->rates_ex_len) + 2 : 0); unsigned int wmm_info_len = beacon->qos_data.supported ? 9 : 0; unsigned int turbo_info_len = beacon->Turbo_Enable ? 9 : 0; int len = 0; crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx]; if (crypt != NULL) encrypt = ieee->host_encrypt && crypt && crypt->ops && ((0 == strcmp(crypt->ops->name, "R-WEP") || wpa_ie_len)); else encrypt = 0; if ((ieee->rtllib_ap_sec_type && (ieee->rtllib_ap_sec_type(ieee) & SEC_ALG_TKIP)) || (ieee->bForcedBgMode == true)) { ieee->pHTInfo->bEnableHT = 0; ieee->mode = WIRELESS_MODE_G; } if (ieee->pHTInfo->bCurrentHTSupport && ieee->pHTInfo->bEnableHT) { ht_cap_buf = (u8 *)&(ieee->pHTInfo->SelfHTCap); ht_cap_len = sizeof(ieee->pHTInfo->SelfHTCap); HTConstructCapabilityElement(ieee, ht_cap_buf, &ht_cap_len, encrypt, true); if (ieee->pHTInfo->bCurrentRT2RTAggregation) { realtek_ie_buf = ieee->pHTInfo->szRT2RTAggBuffer; realtek_ie_len = sizeof(ieee->pHTInfo->szRT2RTAggBuffer); HTConstructRT2RTAggElement(ieee, realtek_ie_buf, &realtek_ie_len); } } if (beacon->bCkipSupported) ckip_ie_len = 30+2; if (beacon->bCcxRmEnable) ccxrm_ie_len = 6+2; if (beacon->BssCcxVerNumber >= 2) cxvernum_ie_len = 5+2; PMKCacheIdx = SecIsInPMKIDList(ieee, ieee->current_network.bssid); if (PMKCacheIdx >= 0) { wpa_ie_len += 18; printk(KERN_INFO "[PMK cache]: WPA2 IE length: %x\n", wpa_ie_len); } len = sizeof(struct rtllib_assoc_request_frame) + 2 + beacon->ssid_len + rate_len + wpa_ie_len + wps_ie_len + wmm_info_len + turbo_info_len + ht_cap_len + realtek_ie_len + ckip_ie_len + ccxrm_ie_len + cxvernum_ie_len + ieee->tx_headroom; skb = dev_alloc_skb(len); if (!skb) return NULL; skb_reserve(skb, ieee->tx_headroom); hdr = (struct rtllib_assoc_request_frame *) skb_put(skb, sizeof(struct rtllib_assoc_request_frame) + 2); hdr->header.frame_ctl = RTLLIB_STYPE_ASSOC_REQ; hdr->header.duration_id = 37; memcpy(hdr->header.addr1, beacon->bssid, ETH_ALEN); memcpy(hdr->header.addr2, ieee->dev->dev_addr, ETH_ALEN); memcpy(hdr->header.addr3, beacon->bssid, ETH_ALEN); memcpy(ieee->ap_mac_addr, beacon->bssid, ETH_ALEN); hdr->capability = cpu_to_le16(WLAN_CAPABILITY_ESS); if (beacon->capability & WLAN_CAPABILITY_PRIVACY) hdr->capability |= cpu_to_le16(WLAN_CAPABILITY_PRIVACY); if (beacon->capability & WLAN_CAPABILITY_SHORT_PREAMBLE) hdr->capability |= cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE); if (ieee->short_slot && (beacon->capability&WLAN_CAPABILITY_SHORT_SLOT_TIME)) hdr->capability |= cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME); hdr->listen_interval = beacon->listen_interval; hdr->info_element[0].id = MFIE_TYPE_SSID; hdr->info_element[0].len = beacon->ssid_len; tag = skb_put(skb, beacon->ssid_len); memcpy(tag, beacon->ssid, beacon->ssid_len); tag = skb_put(skb, rate_len); if (beacon->rates_len) { *tag++ = MFIE_TYPE_RATES; *tag++ = beacon->rates_len; for (i = 0; i < beacon->rates_len; i++) *tag++ = beacon->rates[i]; } if (beacon->rates_ex_len) { *tag++ = MFIE_TYPE_RATES_EX; *tag++ = beacon->rates_ex_len; for (i = 0; i < beacon->rates_ex_len; i++) *tag++ = beacon->rates_ex[i]; } if (beacon->bCkipSupported) { static u8 AironetIeOui[] = {0x00, 0x01, 0x66}; u8 CcxAironetBuf[30]; struct octet_string osCcxAironetIE; memset(CcxAironetBuf, 0, 30); osCcxAironetIE.Octet = CcxAironetBuf; osCcxAironetIE.Length = sizeof(CcxAironetBuf); memcpy(osCcxAironetIE.Octet, AironetIeOui, sizeof(AironetIeOui)); osCcxAironetIE.Octet[IE_CISCO_FLAG_POSITION] |= (SUPPORT_CKIP_PK|SUPPORT_CKIP_MIC); tag = skb_put(skb, ckip_ie_len); *tag++ = MFIE_TYPE_AIRONET; *tag++ = osCcxAironetIE.Length; memcpy(tag, osCcxAironetIE.Octet, osCcxAironetIE.Length); tag += osCcxAironetIE.Length; } if (beacon->bCcxRmEnable) { static u8 CcxRmCapBuf[] = {0x00, 0x40, 0x96, 0x01, 0x01, 0x00}; struct octet_string osCcxRmCap; osCcxRmCap.Octet = CcxRmCapBuf; osCcxRmCap.Length = sizeof(CcxRmCapBuf); tag = skb_put(skb, ccxrm_ie_len); *tag++ = MFIE_TYPE_GENERIC; *tag++ = osCcxRmCap.Length; memcpy(tag, osCcxRmCap.Octet, osCcxRmCap.Length); tag += osCcxRmCap.Length; } if (beacon->BssCcxVerNumber >= 2) { u8 CcxVerNumBuf[] = {0x00, 0x40, 0x96, 0x03, 0x00}; struct octet_string osCcxVerNum; CcxVerNumBuf[4] = beacon->BssCcxVerNumber; osCcxVerNum.Octet = CcxVerNumBuf; osCcxVerNum.Length = sizeof(CcxVerNumBuf); tag = skb_put(skb, cxvernum_ie_len); *tag++ = MFIE_TYPE_GENERIC; *tag++ = osCcxVerNum.Length; memcpy(tag, osCcxVerNum.Octet, osCcxVerNum.Length); tag += osCcxVerNum.Length; } if (ieee->pHTInfo->bCurrentHTSupport && ieee->pHTInfo->bEnableHT) { if (ieee->pHTInfo->ePeerHTSpecVer != HT_SPEC_VER_EWC) { tag = skb_put(skb, ht_cap_len); *tag++ = MFIE_TYPE_HT_CAP; *tag++ = ht_cap_len - 2; memcpy(tag, ht_cap_buf, ht_cap_len - 2); tag += ht_cap_len - 2; } } if (wpa_ie_len) { tag = skb_put(skb, ieee->wpa_ie_len); memcpy(tag, ieee->wpa_ie, ieee->wpa_ie_len); if (PMKCacheIdx >= 0) { tag = skb_put(skb, 18); *tag = 1; *(tag + 1) = 0; memcpy((tag + 2), &ieee->PMKIDList[PMKCacheIdx].PMKID, 16); } } if (wmm_info_len) { tag = skb_put(skb, wmm_info_len); rtllib_WMM_Info(ieee, &tag); } if (wps_ie_len && ieee->wps_ie) { tag = skb_put(skb, wps_ie_len); memcpy(tag, ieee->wps_ie, wps_ie_len); } tag = skb_put(skb, turbo_info_len); if (turbo_info_len) rtllib_TURBO_Info(ieee, &tag); if (ieee->pHTInfo->bCurrentHTSupport && ieee->pHTInfo->bEnableHT) { if (ieee->pHTInfo->ePeerHTSpecVer == HT_SPEC_VER_EWC) { tag = skb_put(skb, ht_cap_len); *tag++ = MFIE_TYPE_GENERIC; *tag++ = ht_cap_len - 2; memcpy(tag, ht_cap_buf, ht_cap_len - 2); tag += ht_cap_len - 2; } if (ieee->pHTInfo->bCurrentRT2RTAggregation) { tag = skb_put(skb, realtek_ie_len); *tag++ = MFIE_TYPE_GENERIC; *tag++ = realtek_ie_len - 2; memcpy(tag, realtek_ie_buf, realtek_ie_len - 2); } } kfree(ieee->assocreq_ies); ieee->assocreq_ies = NULL; ies = &(hdr->info_element[0].id); ieee->assocreq_ies_len = (skb->data + skb->len) - ies; ieee->assocreq_ies = kmalloc(ieee->assocreq_ies_len, GFP_ATOMIC); if (ieee->assocreq_ies) memcpy(ieee->assocreq_ies, ies, ieee->assocreq_ies_len); else { printk(KERN_INFO "%s()Warning: can't alloc memory for assocreq" "_ies\n", __func__); ieee->assocreq_ies_len = 0; } return skb; } void rtllib_associate_abort(struct rtllib_device *ieee) { unsigned long flags; spin_lock_irqsave(&ieee->lock, flags); ieee->associate_seq++; /* don't scan, and avoid to have the RX path possibily * try again to associate. Even do not react to AUTH or * ASSOC response. Just wait for the retry wq to be scheduled. * Here we will check if there are good nets to associate * with, so we retry or just get back to NO_LINK and scanning */ if (ieee->state == RTLLIB_ASSOCIATING_AUTHENTICATING) { RTLLIB_DEBUG_MGMT("Authentication failed\n"); ieee->softmac_stats.no_auth_rs++; } else { RTLLIB_DEBUG_MGMT("Association failed\n"); ieee->softmac_stats.no_ass_rs++; } ieee->state = RTLLIB_ASSOCIATING_RETRY; queue_delayed_work_rsl(ieee->wq, &ieee->associate_retry_wq, RTLLIB_SOFTMAC_ASSOC_RETRY_TIME); spin_unlock_irqrestore(&ieee->lock, flags); } static void rtllib_associate_abort_cb(unsigned long dev) { rtllib_associate_abort((struct rtllib_device *) dev); } static void rtllib_associate_step1(struct rtllib_device *ieee, u8 * daddr) { struct rtllib_network *beacon = &ieee->current_network; struct sk_buff *skb; RTLLIB_DEBUG_MGMT("Stopping scan\n"); ieee->softmac_stats.tx_auth_rq++; skb = rtllib_authentication_req(beacon, ieee, 0, daddr); if (!skb) rtllib_associate_abort(ieee); else { ieee->state = RTLLIB_ASSOCIATING_AUTHENTICATING ; RTLLIB_DEBUG_MGMT("Sending authentication request\n"); softmac_mgmt_xmit(skb, ieee); if (!timer_pending(&ieee->associate_timer)) { ieee->associate_timer.expires = jiffies + (HZ / 2); add_timer(&ieee->associate_timer); } } } static void rtllib_auth_challenge(struct rtllib_device *ieee, u8 *challenge, int chlen) { u8 *c; struct sk_buff *skb; struct rtllib_network *beacon = &ieee->current_network; ieee->associate_seq++; ieee->softmac_stats.tx_auth_rq++; skb = rtllib_authentication_req(beacon, ieee, chlen + 2, beacon->bssid); if (!skb) rtllib_associate_abort(ieee); else { c = skb_put(skb, chlen+2); *(c++) = MFIE_TYPE_CHALLENGE; *(c++) = chlen; memcpy(c, challenge, chlen); RTLLIB_DEBUG_MGMT("Sending authentication challenge " "response\n"); rtllib_encrypt_fragment(ieee, skb, sizeof(struct rtllib_hdr_3addr)); softmac_mgmt_xmit(skb, ieee); mod_timer(&ieee->associate_timer, jiffies + (HZ/2)); } kfree(challenge); } static void rtllib_associate_step2(struct rtllib_device *ieee) { struct sk_buff *skb; struct rtllib_network *beacon = &ieee->current_network; del_timer_sync(&ieee->associate_timer); RTLLIB_DEBUG_MGMT("Sending association request\n"); ieee->softmac_stats.tx_ass_rq++; skb = rtllib_association_req(beacon, ieee); if (!skb) rtllib_associate_abort(ieee); else { softmac_mgmt_xmit(skb, ieee); mod_timer(&ieee->associate_timer, jiffies + (HZ/2)); } } #define CANCELLED 2 static void rtllib_associate_complete_wq(void *data) { struct rtllib_device *ieee = (struct rtllib_device *) container_of_work_rsl(data, struct rtllib_device, associate_complete_wq); struct rt_pwr_save_ctrl *pPSC = (struct rt_pwr_save_ctrl *) (&(ieee->PowerSaveControl)); printk(KERN_INFO "Associated successfully\n"); if (ieee->is_silent_reset == 0) { printk(KERN_INFO "normal associate\n"); notify_wx_assoc_event(ieee); } netif_carrier_on(ieee->dev); ieee->is_roaming = false; if (rtllib_is_54g(&ieee->current_network) && (ieee->modulation & RTLLIB_OFDM_MODULATION)) { ieee->rate = 108; printk(KERN_INFO"Using G rates:%d\n", ieee->rate); } else { ieee->rate = 22; ieee->SetWirelessMode(ieee->dev, IEEE_B); printk(KERN_INFO"Using B rates:%d\n", ieee->rate); } if (ieee->pHTInfo->bCurrentHTSupport && ieee->pHTInfo->bEnableHT) { printk(KERN_INFO "Successfully associated, ht enabled\n"); HTOnAssocRsp(ieee); } else { printk(KERN_INFO "Successfully associated, ht not " "enabled(%d, %d)\n", ieee->pHTInfo->bCurrentHTSupport, ieee->pHTInfo->bEnableHT); memset(ieee->dot11HTOperationalRateSet, 0, 16); } ieee->LinkDetectInfo.SlotNum = 2 * (1 + ieee->current_network.beacon_interval / 500); if (ieee->LinkDetectInfo.NumRecvBcnInPeriod == 0 || ieee->LinkDetectInfo.NumRecvDataInPeriod == 0) { ieee->LinkDetectInfo.NumRecvBcnInPeriod = 1; ieee->LinkDetectInfo.NumRecvDataInPeriod = 1; } pPSC->LpsIdleCount = 0; ieee->link_change(ieee->dev); if (ieee->is_silent_reset == 1) { printk(KERN_INFO "silent reset associate\n"); ieee->is_silent_reset = 0; } if (ieee->data_hard_resume) ieee->data_hard_resume(ieee->dev); } static void rtllib_sta_send_associnfo(struct rtllib_device *ieee) { } static void rtllib_associate_complete(struct rtllib_device *ieee) { del_timer_sync(&ieee->associate_timer); ieee->state = RTLLIB_LINKED; rtllib_sta_send_associnfo(ieee); queue_work_rsl(ieee->wq, &ieee->associate_complete_wq); } static void rtllib_associate_procedure_wq(void *data) { struct rtllib_device *ieee = container_of_dwork_rsl(data, struct rtllib_device, associate_procedure_wq); rtllib_stop_scan_syncro(ieee); if (ieee->rtllib_ips_leave != NULL) ieee->rtllib_ips_leave(ieee->dev); down(&ieee->wx_sem); if (ieee->data_hard_stop) ieee->data_hard_stop(ieee->dev); rtllib_stop_scan(ieee); RT_TRACE(COMP_DBG, "===>%s(), chan:%d\n", __func__, ieee->current_network.channel); HTSetConnectBwMode(ieee, HT_CHANNEL_WIDTH_20, HT_EXTCHNL_OFFSET_NO_EXT); if (ieee->eRFPowerState == eRfOff) { RT_TRACE(COMP_DBG, "=============>%s():Rf state is eRfOff," " schedule ipsleave wq again,return\n", __func__); if (ieee->rtllib_ips_leave_wq != NULL) ieee->rtllib_ips_leave_wq(ieee->dev); up(&ieee->wx_sem); return; } ieee->associate_seq = 1; rtllib_associate_step1(ieee, ieee->current_network.bssid); up(&ieee->wx_sem); } inline void rtllib_softmac_new_net(struct rtllib_device *ieee, struct rtllib_network *net) { u8 tmp_ssid[IW_ESSID_MAX_SIZE + 1]; int tmp_ssid_len = 0; short apset, ssidset, ssidbroad, apmatch, ssidmatch; /* we are interested in new new only if we are not associated * and we are not associating / authenticating */ if (ieee->state != RTLLIB_NOLINK) return; if ((ieee->iw_mode == IW_MODE_INFRA) && !(net->capability & WLAN_CAPABILITY_ESS)) return; if ((ieee->iw_mode == IW_MODE_ADHOC) && !(net->capability & WLAN_CAPABILITY_IBSS)) return; if ((ieee->iw_mode == IW_MODE_ADHOC) && (net->channel > ieee->ibss_maxjoin_chal)) return; if (ieee->iw_mode == IW_MODE_INFRA || ieee->iw_mode == IW_MODE_ADHOC) { /* if the user specified the AP MAC, we need also the essid * This could be obtained by beacons or, if the network does not * broadcast it, it can be put manually. */ apset = ieee->wap_set; ssidset = ieee->ssid_set; ssidbroad = !(net->ssid_len == 0 || net->ssid[0] == '\0'); apmatch = (memcmp(ieee->current_network.bssid, net->bssid, ETH_ALEN) == 0); if (!ssidbroad) { ssidmatch = (ieee->current_network.ssid_len == net->hidden_ssid_len) && (!strncmp(ieee->current_network.ssid, net->hidden_ssid, net->hidden_ssid_len)); if (net->hidden_ssid_len > 0) { strncpy(net->ssid, net->hidden_ssid, net->hidden_ssid_len); net->ssid_len = net->hidden_ssid_len; ssidbroad = 1; } } else ssidmatch = (ieee->current_network.ssid_len == net->ssid_len) && (!strncmp(ieee->current_network.ssid, net->ssid, net->ssid_len)); /* if the user set the AP check if match. * if the network does not broadcast essid we check the * user supplyed ANY essid * if the network does broadcast and the user does not set * essid it is OK * if the network does broadcast and the user did set essid * check if essid match * if the ap is not set, check that the user set the bssid * and the network does bradcast and that those two bssid match */ if ((apset && apmatch && ((ssidset && ssidbroad && ssidmatch) || (ssidbroad && !ssidset) || (!ssidbroad && ssidset))) || (!apset && ssidset && ssidbroad && ssidmatch) || (ieee->is_roaming && ssidset && ssidbroad && ssidmatch)) { /* if the essid is hidden replace it with the * essid provided by the user. */ if (!ssidbroad) { strncpy(tmp_ssid, ieee->current_network.ssid, IW_ESSID_MAX_SIZE); tmp_ssid_len = ieee->current_network.ssid_len; } memcpy(&ieee->current_network, net, sizeof(struct rtllib_network)); if (!ssidbroad) { strncpy(ieee->current_network.ssid, tmp_ssid, IW_ESSID_MAX_SIZE); ieee->current_network.ssid_len = tmp_ssid_len; } printk(KERN_INFO"Linking with %s,channel:%d, qos:%d, " "myHT:%d, networkHT:%d, mode:%x cur_net.flags" ":0x%x\n", ieee->current_network.ssid, ieee->current_network.channel, ieee->current_network.qos_data.supported, ieee->pHTInfo->bEnableHT, ieee->current_network.bssht.bdSupportHT, ieee->current_network.mode, ieee->current_network.flags); if ((rtllib_act_scanning(ieee, false)) && !(ieee->softmac_features & IEEE_SOFTMAC_SCAN)) rtllib_stop_scan_syncro(ieee); ieee->hwscan_ch_bk = ieee->current_network.channel; HTResetIOTSetting(ieee->pHTInfo); ieee->wmm_acm = 0; if (ieee->iw_mode == IW_MODE_INFRA) { /* Join the network for the first time */ ieee->AsocRetryCount = 0; if ((ieee->current_network.qos_data.supported == 1) && ieee->current_network.bssht.bdSupportHT) HTResetSelfAndSavePeerSetting(ieee, &(ieee->current_network)); else ieee->pHTInfo->bCurrentHTSupport = false; ieee->state = RTLLIB_ASSOCIATING; if (ieee->LedControlHandler != NULL) ieee->LedControlHandler(ieee->dev, LED_CTL_START_TO_LINK); queue_delayed_work_rsl(ieee->wq, &ieee->associate_procedure_wq, 0); } else { if (rtllib_is_54g(&ieee->current_network) && (ieee->modulation & RTLLIB_OFDM_MODULATION)) { ieee->rate = 108; ieee->SetWirelessMode(ieee->dev, IEEE_G); printk(KERN_INFO"Using G rates\n"); } else { ieee->rate = 22; ieee->SetWirelessMode(ieee->dev, IEEE_B); printk(KERN_INFO"Using B rates\n"); } memset(ieee->dot11HTOperationalRateSet, 0, 16); ieee->state = RTLLIB_LINKED; } } } } void rtllib_softmac_check_all_nets(struct rtllib_device *ieee) { unsigned long flags; struct rtllib_network *target; spin_lock_irqsave(&ieee->lock, flags); list_for_each_entry(target, &ieee->network_list, list) { /* if the state become different that NOLINK means * we had found what we are searching for */ if (ieee->state != RTLLIB_NOLINK) break; if (ieee->scan_age == 0 || time_after(target->last_scanned + ieee->scan_age, jiffies)) rtllib_softmac_new_net(ieee, target); } spin_unlock_irqrestore(&ieee->lock, flags); } static inline u16 auth_parse(struct sk_buff *skb, u8** challenge, int *chlen) { struct rtllib_authentication *a; u8 *t; if (skb->len < (sizeof(struct rtllib_authentication) - sizeof(struct rtllib_info_element))) { RTLLIB_DEBUG_MGMT("invalid len in auth resp: %d\n", skb->len); return 0xcafe; } *challenge = NULL; a = (struct rtllib_authentication *) skb->data; if (skb->len > (sizeof(struct rtllib_authentication) + 3)) { t = skb->data + sizeof(struct rtllib_authentication); if (*(t++) == MFIE_TYPE_CHALLENGE) { *chlen = *(t++); *challenge = kmalloc(*chlen, GFP_ATOMIC); memcpy(*challenge, t, *chlen); /*TODO - check here*/ } } return cpu_to_le16(a->status); } static int auth_rq_parse(struct sk_buff *skb, u8 *dest) { struct rtllib_authentication *a; if (skb->len < (sizeof(struct rtllib_authentication) - sizeof(struct rtllib_info_element))) { RTLLIB_DEBUG_MGMT("invalid len in auth request: %d\n", skb->len); return -1; } a = (struct rtllib_authentication *) skb->data; memcpy(dest, a->header.addr2, ETH_ALEN); if (le16_to_cpu(a->algorithm) != WLAN_AUTH_OPEN) return WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG; return WLAN_STATUS_SUCCESS; } static short probe_rq_parse(struct rtllib_device *ieee, struct sk_buff *skb, u8 *src) { u8 *tag; u8 *skbend; u8 *ssid = NULL; u8 ssidlen = 0; struct rtllib_hdr_3addr *header = (struct rtllib_hdr_3addr *) skb->data; bool bssid_match; if (skb->len < sizeof(struct rtllib_hdr_3addr)) return -1; /* corrupted */ bssid_match = (memcmp(header->addr3, ieee->current_network.bssid, ETH_ALEN) != 0) && (memcmp(header->addr3, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0); if (bssid_match) return -1; memcpy(src, header->addr2, ETH_ALEN); skbend = (u8 *)skb->data + skb->len; tag = skb->data + sizeof(struct rtllib_hdr_3addr); while (tag + 1 < skbend) { if (*tag == 0) { ssid = tag + 2; ssidlen = *(tag + 1); break; } tag++; /* point to the len field */ tag = tag + *(tag); /* point to the last data byte of the tag */ tag++; /* point to the next tag */ } if (ssidlen == 0) return 1; if (!ssid) return 1; /* ssid not found in tagged param */ return !strncmp(ssid, ieee->current_network.ssid, ssidlen); } static int assoc_rq_parse(struct sk_buff *skb, u8 *dest) { struct rtllib_assoc_request_frame *a; if (skb->len < (sizeof(struct rtllib_assoc_request_frame) - sizeof(struct rtllib_info_element))) { RTLLIB_DEBUG_MGMT("invalid len in auth request:%d\n", skb->len); return -1; } a = (struct rtllib_assoc_request_frame *) skb->data; memcpy(dest, a->header.addr2, ETH_ALEN); return 0; } static inline u16 assoc_parse(struct rtllib_device *ieee, struct sk_buff *skb, int *aid) { struct rtllib_assoc_response_frame *response_head; u16 status_code; if (skb->len < sizeof(struct rtllib_assoc_response_frame)) { RTLLIB_DEBUG_MGMT("invalid len in auth resp: %d\n", skb->len); return 0xcafe; } response_head = (struct rtllib_assoc_response_frame *) skb->data; *aid = le16_to_cpu(response_head->aid) & 0x3fff; status_code = le16_to_cpu(response_head->status); if ((status_code == WLAN_STATUS_ASSOC_DENIED_RATES || status_code == WLAN_STATUS_CAPS_UNSUPPORTED) && ((ieee->mode == IEEE_G) && (ieee->current_network.mode == IEEE_N_24G) && (ieee->AsocRetryCount++ < (RT_ASOC_RETRY_LIMIT-1)))) { ieee->pHTInfo->IOTAction |= HT_IOT_ACT_PURE_N_MODE; } else { ieee->AsocRetryCount = 0; } return le16_to_cpu(response_head->status); } void rtllib_rx_probe_rq(struct rtllib_device *ieee, struct sk_buff *skb) { u8 dest[ETH_ALEN]; ieee->softmac_stats.rx_probe_rq++; if (probe_rq_parse(ieee, skb, dest) > 0) { ieee->softmac_stats.tx_probe_rs++; rtllib_resp_to_probe(ieee, dest); } } static inline void rtllib_rx_auth_rq(struct rtllib_device *ieee, struct sk_buff *skb) { u8 dest[ETH_ALEN]; int status; ieee->softmac_stats.rx_auth_rq++; status = auth_rq_parse(skb, dest); if (status != -1) rtllib_resp_to_auth(ieee, status, dest); } static inline void rtllib_rx_assoc_rq(struct rtllib_device *ieee, struct sk_buff *skb) { u8 dest[ETH_ALEN]; ieee->softmac_stats.rx_ass_rq++; if (assoc_rq_parse(skb, dest) != -1) rtllib_resp_to_assoc_rq(ieee, dest); printk(KERN_INFO"New client associated: %pM\n", dest); } void rtllib_sta_ps_send_null_frame(struct rtllib_device *ieee, short pwr) { struct sk_buff *buf = rtllib_null_func(ieee, pwr); if (buf) softmac_ps_mgmt_xmit(buf, ieee); } EXPORT_SYMBOL(rtllib_sta_ps_send_null_frame); void rtllib_sta_ps_send_pspoll_frame(struct rtllib_device *ieee) { struct sk_buff *buf = rtllib_pspoll_func(ieee); if (buf) softmac_ps_mgmt_xmit(buf, ieee); } static short rtllib_sta_ps_sleep(struct rtllib_device *ieee, u64 *time) { int timeout = ieee->ps_timeout; u8 dtim; struct rt_pwr_save_ctrl *pPSC = (struct rt_pwr_save_ctrl *) (&(ieee->PowerSaveControl)); if (ieee->LPSDelayCnt) { ieee->LPSDelayCnt--; return 0; } dtim = ieee->current_network.dtim_data; if (!(dtim & RTLLIB_DTIM_VALID)) return 0; timeout = ieee->current_network.beacon_interval; ieee->current_network.dtim_data = RTLLIB_DTIM_INVALID; /* there's no need to nofity AP that I find you buffered * with broadcast packet */ if (dtim & (RTLLIB_DTIM_UCAST & ieee->ps)) return 2; if (!time_after(jiffies, ieee->dev->trans_start + MSECS(timeout))) return 0; if (!time_after(jiffies, ieee->last_rx_ps_time + MSECS(timeout))) return 0; if ((ieee->softmac_features & IEEE_SOFTMAC_SINGLE_QUEUE) && (ieee->mgmt_queue_tail != ieee->mgmt_queue_head)) return 0; if (time) { if (ieee->bAwakePktSent == true) { pPSC->LPSAwakeIntvl = 1; } else { u8 MaxPeriod = 1; if (pPSC->LPSAwakeIntvl == 0) pPSC->LPSAwakeIntvl = 1; if (pPSC->RegMaxLPSAwakeIntvl == 0) MaxPeriod = 1; else if (pPSC->RegMaxLPSAwakeIntvl == 0xFF) MaxPeriod = ieee->current_network.dtim_period; else MaxPeriod = pPSC->RegMaxLPSAwakeIntvl; pPSC->LPSAwakeIntvl = (pPSC->LPSAwakeIntvl >= MaxPeriod) ? MaxPeriod : (pPSC->LPSAwakeIntvl + 1); } { u8 LPSAwakeIntvl_tmp = 0; u8 period = ieee->current_network.dtim_period; u8 count = ieee->current_network.tim.tim_count; if (count == 0) { if (pPSC->LPSAwakeIntvl > period) LPSAwakeIntvl_tmp = period + (pPSC->LPSAwakeIntvl - period) - ((pPSC->LPSAwakeIntvl-period) % period); else LPSAwakeIntvl_tmp = pPSC->LPSAwakeIntvl; } else { if (pPSC->LPSAwakeIntvl > ieee->current_network.tim.tim_count) LPSAwakeIntvl_tmp = count + (pPSC->LPSAwakeIntvl - count) - ((pPSC->LPSAwakeIntvl-count)%period); else LPSAwakeIntvl_tmp = pPSC->LPSAwakeIntvl; } *time = ieee->current_network.last_dtim_sta_time + MSECS(ieee->current_network.beacon_interval * LPSAwakeIntvl_tmp); } } return 1; } static inline void rtllib_sta_ps(struct rtllib_device *ieee) { u64 time; short sleep; unsigned long flags, flags2; spin_lock_irqsave(&ieee->lock, flags); if ((ieee->ps == RTLLIB_PS_DISABLED || ieee->iw_mode != IW_MODE_INFRA || ieee->state != RTLLIB_LINKED)) { RT_TRACE(COMP_DBG, "=====>%s(): no need to ps,wake up!! " "ieee->ps is %d, ieee->iw_mode is %d, ieee->state" " is %d\n", __func__, ieee->ps, ieee->iw_mode, ieee->state); spin_lock_irqsave(&ieee->mgmt_tx_lock, flags2); rtllib_sta_wakeup(ieee, 1); spin_unlock_irqrestore(&ieee->mgmt_tx_lock, flags2); } sleep = rtllib_sta_ps_sleep(ieee, &time); /* 2 wake, 1 sleep, 0 do nothing */ if (sleep == 0) goto out; if (sleep == 1) { if (ieee->sta_sleep == LPS_IS_SLEEP) { ieee->enter_sleep_state(ieee->dev, time); } else if (ieee->sta_sleep == LPS_IS_WAKE) { spin_lock_irqsave(&ieee->mgmt_tx_lock, flags2); if (ieee->ps_is_queue_empty(ieee->dev)) { ieee->sta_sleep = LPS_WAIT_NULL_DATA_SEND; ieee->ack_tx_to_ieee = 1; rtllib_sta_ps_send_null_frame(ieee, 1); ieee->ps_time = time; } spin_unlock_irqrestore(&ieee->mgmt_tx_lock, flags2); } ieee->bAwakePktSent = false; } else if (sleep == 2) { spin_lock_irqsave(&ieee->mgmt_tx_lock, flags2); rtllib_sta_wakeup(ieee, 1); spin_unlock_irqrestore(&ieee->mgmt_tx_lock, flags2); } out: spin_unlock_irqrestore(&ieee->lock, flags); } void rtllib_sta_wakeup(struct rtllib_device *ieee, short nl) { if (ieee->sta_sleep == LPS_IS_WAKE) { if (nl) { if (ieee->pHTInfo->IOTAction & HT_IOT_ACT_NULL_DATA_POWER_SAVING) { ieee->ack_tx_to_ieee = 1; rtllib_sta_ps_send_null_frame(ieee, 0); } else { ieee->ack_tx_to_ieee = 1; rtllib_sta_ps_send_pspoll_frame(ieee); } } return; } if (ieee->sta_sleep == LPS_IS_SLEEP) ieee->sta_wake_up(ieee->dev); if (nl) { if (ieee->pHTInfo->IOTAction & HT_IOT_ACT_NULL_DATA_POWER_SAVING) { ieee->ack_tx_to_ieee = 1; rtllib_sta_ps_send_null_frame(ieee, 0); } else { ieee->ack_tx_to_ieee = 1; ieee->polling = true; rtllib_sta_ps_send_pspoll_frame(ieee); } } else { ieee->sta_sleep = LPS_IS_WAKE; ieee->polling = false; } } void rtllib_ps_tx_ack(struct rtllib_device *ieee, short success) { unsigned long flags, flags2; spin_lock_irqsave(&ieee->lock, flags); if (ieee->sta_sleep == LPS_WAIT_NULL_DATA_SEND) { /* Null frame with PS bit set */ if (success) { ieee->sta_sleep = LPS_IS_SLEEP; ieee->enter_sleep_state(ieee->dev, ieee->ps_time); } /* if the card report not success we can't be sure the AP * has not RXed so we can't assume the AP believe us awake */ } else {/* 21112005 - tx again null without PS bit if lost */ if ((ieee->sta_sleep == LPS_IS_WAKE) && !success) { spin_lock_irqsave(&ieee->mgmt_tx_lock, flags2); if (ieee->pHTInfo->IOTAction & HT_IOT_ACT_NULL_DATA_POWER_SAVING) rtllib_sta_ps_send_null_frame(ieee, 0); else rtllib_sta_ps_send_pspoll_frame(ieee); spin_unlock_irqrestore(&ieee->mgmt_tx_lock, flags2); } } spin_unlock_irqrestore(&ieee->lock, flags); } EXPORT_SYMBOL(rtllib_ps_tx_ack); static void rtllib_process_action(struct rtllib_device *ieee, struct sk_buff *skb) { struct rtllib_hdr_3addr *header = (struct rtllib_hdr_3addr *) skb->data; u8 *act = rtllib_get_payload((struct rtllib_hdr *)header); u8 category = 0; if (act == NULL) { RTLLIB_DEBUG(RTLLIB_DL_ERR, "error to get payload of " "action frame\n"); return; } category = *act; act++; switch (category) { case ACT_CAT_BA: switch (*act) { case ACT_ADDBAREQ: rtllib_rx_ADDBAReq(ieee, skb); break; case ACT_ADDBARSP: rtllib_rx_ADDBARsp(ieee, skb); break; case ACT_DELBA: rtllib_rx_DELBA(ieee, skb); break; } break; default: break; } return; } inline int rtllib_rx_assoc_resp(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats) { u16 errcode; int aid; u8 *ies; struct rtllib_assoc_response_frame *assoc_resp; struct rtllib_hdr_3addr *header = (struct rtllib_hdr_3addr *) skb->data; RTLLIB_DEBUG_MGMT("received [RE]ASSOCIATION RESPONSE (%d)\n", WLAN_FC_GET_STYPE(header->frame_ctl)); if ((ieee->softmac_features & IEEE_SOFTMAC_ASSOCIATE) && ieee->state == RTLLIB_ASSOCIATING_AUTHENTICATED && (ieee->iw_mode == IW_MODE_INFRA)) { errcode = assoc_parse(ieee, skb, &aid); if (0 == errcode) { struct rtllib_network *network = kzalloc(sizeof(struct rtllib_network), GFP_ATOMIC); if (!network) return 1; ieee->state = RTLLIB_LINKED; ieee->assoc_id = aid; ieee->softmac_stats.rx_ass_ok++; /* station support qos */ /* Let the register setting default with Legacy station */ assoc_resp = (struct rtllib_assoc_response_frame *)skb->data; if (ieee->current_network.qos_data.supported == 1) { if (rtllib_parse_info_param(ieee, assoc_resp->info_element, rx_stats->len - sizeof(*assoc_resp), network, rx_stats)) { kfree(network); return 1; } else { memcpy(ieee->pHTInfo->PeerHTCapBuf, network->bssht.bdHTCapBuf, network->bssht.bdHTCapLen); memcpy(ieee->pHTInfo->PeerHTInfoBuf, network->bssht.bdHTInfoBuf, network->bssht.bdHTInfoLen); } if (ieee->handle_assoc_response != NULL) ieee->handle_assoc_response(ieee->dev, (struct rtllib_assoc_response_frame *)header, network); } kfree(network); kfree(ieee->assocresp_ies); ieee->assocresp_ies = NULL; ies = &(assoc_resp->info_element[0].id); ieee->assocresp_ies_len = (skb->data + skb->len) - ies; ieee->assocresp_ies = kmalloc(ieee->assocresp_ies_len, GFP_ATOMIC); if (ieee->assocresp_ies) memcpy(ieee->assocresp_ies, ies, ieee->assocresp_ies_len); else { printk(KERN_INFO "%s()Warning: can't alloc " "memory for assocresp_ies\n", __func__); ieee->assocresp_ies_len = 0; } rtllib_associate_complete(ieee); } else { /* aid could not been allocated */ ieee->softmac_stats.rx_ass_err++; printk(KERN_INFO "Association response status code 0x%x\n", errcode); RTLLIB_DEBUG_MGMT( "Association response status code 0x%x\n", errcode); if (ieee->AsocRetryCount < RT_ASOC_RETRY_LIMIT) queue_delayed_work_rsl(ieee->wq, &ieee->associate_procedure_wq, 0); else rtllib_associate_abort(ieee); } } return 0; } inline int rtllib_rx_auth(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats) { u16 errcode; u8 *challenge; int chlen = 0; bool bSupportNmode = true, bHalfSupportNmode = false; if (ieee->softmac_features & IEEE_SOFTMAC_ASSOCIATE) { if (ieee->state == RTLLIB_ASSOCIATING_AUTHENTICATING && (ieee->iw_mode == IW_MODE_INFRA)) { RTLLIB_DEBUG_MGMT("Received authentication response"); errcode = auth_parse(skb, &challenge, &chlen); if (0 == errcode) { if (ieee->open_wep || !challenge) { ieee->state = RTLLIB_ASSOCIATING_AUTHENTICATED; ieee->softmac_stats.rx_auth_rs_ok++; if (!(ieee->pHTInfo->IOTAction & HT_IOT_ACT_PURE_N_MODE)) { if (!ieee->GetNmodeSupportBySecCfg(ieee->dev)) { if (IsHTHalfNmodeAPs(ieee)) { bSupportNmode = true; bHalfSupportNmode = true; } else { bSupportNmode = false; bHalfSupportNmode = false; } } } /* Dummy wirless mode setting to avoid * encryption issue */ if (bSupportNmode) { ieee->SetWirelessMode(ieee->dev, ieee->current_network.mode); } else { /*TODO*/ ieee->SetWirelessMode(ieee->dev, IEEE_G); } if (ieee->current_network.mode == IEEE_N_24G && bHalfSupportNmode == true) { printk(KERN_INFO "======>enter " "half N mode\n"); ieee->bHalfWirelessN24GMode = true; } else ieee->bHalfWirelessN24GMode = false; rtllib_associate_step2(ieee); } else { rtllib_auth_challenge(ieee, challenge, chlen); } } else { ieee->softmac_stats.rx_auth_rs_err++; RTLLIB_DEBUG_MGMT("Authentication respose" " status code 0x%x", errcode); printk(KERN_INFO "Authentication respose " "status code 0x%x", errcode); rtllib_associate_abort(ieee); } } else if (ieee->iw_mode == IW_MODE_MASTER) { rtllib_rx_auth_rq(ieee, skb); } } return 0; } inline int rtllib_rx_deauth(struct rtllib_device *ieee, struct sk_buff *skb) { struct rtllib_hdr_3addr *header = (struct rtllib_hdr_3addr *) skb->data; if (memcmp(header->addr3, ieee->current_network.bssid, ETH_ALEN) != 0) return 0; /* FIXME for now repeat all the association procedure * both for disassociation and deauthentication */ if ((ieee->softmac_features & IEEE_SOFTMAC_ASSOCIATE) && ieee->state == RTLLIB_LINKED && (ieee->iw_mode == IW_MODE_INFRA)) { printk(KERN_INFO "==========>received disassoc/deauth(%x) " "frame, reason code:%x\n", WLAN_FC_GET_STYPE(header->frame_ctl), ((struct rtllib_disassoc *)skb->data)->reason); ieee->state = RTLLIB_ASSOCIATING; ieee->softmac_stats.reassoc++; ieee->is_roaming = true; ieee->LinkDetectInfo.bBusyTraffic = false; rtllib_disassociate(ieee); RemovePeerTS(ieee, header->addr2); if (ieee->LedControlHandler != NULL) ieee->LedControlHandler(ieee->dev, LED_CTL_START_TO_LINK); if (!(ieee->rtllib_ap_sec_type(ieee) & (SEC_ALG_CCMP|SEC_ALG_TKIP))) queue_delayed_work_rsl(ieee->wq, &ieee->associate_procedure_wq, 5); } return 0; } inline int rtllib_rx_frame_softmac(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats, u16 type, u16 stype) { struct rtllib_hdr_3addr *header = (struct rtllib_hdr_3addr *) skb->data; if (!ieee->proto_started) return 0; switch (WLAN_FC_GET_STYPE(header->frame_ctl)) { case RTLLIB_STYPE_ASSOC_RESP: case RTLLIB_STYPE_REASSOC_RESP: if (rtllib_rx_assoc_resp(ieee, skb, rx_stats) == 1) return 1; break; case RTLLIB_STYPE_ASSOC_REQ: case RTLLIB_STYPE_REASSOC_REQ: if ((ieee->softmac_features & IEEE_SOFTMAC_ASSOCIATE) && ieee->iw_mode == IW_MODE_MASTER) rtllib_rx_assoc_rq(ieee, skb); break; case RTLLIB_STYPE_AUTH: rtllib_rx_auth(ieee, skb, rx_stats); break; case RTLLIB_STYPE_DISASSOC: case RTLLIB_STYPE_DEAUTH: rtllib_rx_deauth(ieee, skb); break; case RTLLIB_STYPE_MANAGE_ACT: rtllib_process_action(ieee, skb); break; default: return -1; break; } return 0; } /* following are for a simplier TX queue management. * Instead of using netif_[stop/wake]_queue the driver * will uses these two function (plus a reset one), that * will internally uses the kernel netif_* and takes * care of the ieee802.11 fragmentation. * So the driver receives a fragment per time and might * call the stop function when it want without take care * to have enought room to TX an entire packet. * This might be useful if each fragment need it's own * descriptor, thus just keep a total free memory > than * the max fragmentation treshold is not enought.. If the * ieee802.11 stack passed a TXB struct then you needed * to keep N free descriptors where * N = MAX_PACKET_SIZE / MIN_FRAG_TRESHOLD * In this way you need just one and the 802.11 stack * will take care of buffering fragments and pass them to * to the driver later, when it wakes the queue. */ void rtllib_softmac_xmit(struct rtllib_txb *txb, struct rtllib_device *ieee) { unsigned int queue_index = txb->queue_index; unsigned long flags; int i; struct cb_desc *tcb_desc = NULL; unsigned long queue_len = 0; spin_lock_irqsave(&ieee->lock, flags); /* called with 2nd parm 0, no tx mgmt lock required */ rtllib_sta_wakeup(ieee, 0); /* update the tx status */ tcb_desc = (struct cb_desc *)(txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE); if (tcb_desc->bMulticast) ieee->stats.multicast++; /* if xmit available, just xmit it immediately, else just insert it to * the wait queue */ for (i = 0; i < txb->nr_frags; i++) { queue_len = skb_queue_len(&ieee->skb_waitQ[queue_index]); if ((queue_len != 0) ||\ (!ieee->check_nic_enough_desc(ieee->dev, queue_index)) || (ieee->queue_stop)) { /* insert the skb packet to the wait queue */ /* as for the completion function, it does not need * to check it any more. * */ if (queue_len < 200) skb_queue_tail(&ieee->skb_waitQ[queue_index], txb->fragments[i]); else kfree_skb(txb->fragments[i]); } else { ieee->softmac_data_hard_start_xmit( txb->fragments[i], ieee->dev, ieee->rate); } } rtllib_txb_free(txb); spin_unlock_irqrestore(&ieee->lock, flags); } /* called with ieee->lock acquired */ static void rtllib_resume_tx(struct rtllib_device *ieee) { int i; for (i = ieee->tx_pending.frag; i < ieee->tx_pending.txb->nr_frags; i++) { if (ieee->queue_stop) { ieee->tx_pending.frag = i; return; } else { ieee->softmac_data_hard_start_xmit( ieee->tx_pending.txb->fragments[i], ieee->dev, ieee->rate); ieee->stats.tx_packets++; } } rtllib_txb_free(ieee->tx_pending.txb); ieee->tx_pending.txb = NULL; } void rtllib_reset_queue(struct rtllib_device *ieee) { unsigned long flags; spin_lock_irqsave(&ieee->lock, flags); init_mgmt_queue(ieee); if (ieee->tx_pending.txb) { rtllib_txb_free(ieee->tx_pending.txb); ieee->tx_pending.txb = NULL; } ieee->queue_stop = 0; spin_unlock_irqrestore(&ieee->lock, flags); } EXPORT_SYMBOL(rtllib_reset_queue); void rtllib_wake_queue(struct rtllib_device *ieee) { unsigned long flags; struct sk_buff *skb; struct rtllib_hdr_3addr *header; spin_lock_irqsave(&ieee->lock, flags); if (!ieee->queue_stop) goto exit; ieee->queue_stop = 0; if (ieee->softmac_features & IEEE_SOFTMAC_SINGLE_QUEUE) { while (!ieee->queue_stop && (skb = dequeue_mgmt(ieee))) { header = (struct rtllib_hdr_3addr *) skb->data; header->seq_ctl = cpu_to_le16(ieee->seq_ctrl[0] << 4); if (ieee->seq_ctrl[0] == 0xFFF) ieee->seq_ctrl[0] = 0; else ieee->seq_ctrl[0]++; ieee->softmac_data_hard_start_xmit(skb, ieee->dev, ieee->basic_rate); } } if (!ieee->queue_stop && ieee->tx_pending.txb) rtllib_resume_tx(ieee); if (!ieee->queue_stop && netif_queue_stopped(ieee->dev)) { ieee->softmac_stats.swtxawake++; netif_wake_queue(ieee->dev); } exit: spin_unlock_irqrestore(&ieee->lock, flags); } void rtllib_stop_queue(struct rtllib_device *ieee) { if (!netif_queue_stopped(ieee->dev)) { netif_stop_queue(ieee->dev); ieee->softmac_stats.swtxstop++; } ieee->queue_stop = 1; } void rtllib_stop_all_queues(struct rtllib_device *ieee) { unsigned int i; for (i = 0; i < ieee->dev->num_tx_queues; i++) netdev_get_tx_queue(ieee->dev, i)->trans_start = jiffies; netif_tx_stop_all_queues(ieee->dev); } void rtllib_wake_all_queues(struct rtllib_device *ieee) { netif_tx_wake_all_queues(ieee->dev); } inline void rtllib_randomize_cell(struct rtllib_device *ieee) { get_random_bytes(ieee->current_network.bssid, ETH_ALEN); /* an IBSS cell address must have the two less significant * bits of the first byte = 2 */ ieee->current_network.bssid[0] &= ~0x01; ieee->current_network.bssid[0] |= 0x02; } /* called in user context only */ void rtllib_start_master_bss(struct rtllib_device *ieee) { ieee->assoc_id = 1; if (ieee->current_network.ssid_len == 0) { strncpy(ieee->current_network.ssid, RTLLIB_DEFAULT_TX_ESSID, IW_ESSID_MAX_SIZE); ieee->current_network.ssid_len = strlen(RTLLIB_DEFAULT_TX_ESSID); ieee->ssid_set = 1; } memcpy(ieee->current_network.bssid, ieee->dev->dev_addr, ETH_ALEN); ieee->set_chan(ieee->dev, ieee->current_network.channel); ieee->state = RTLLIB_LINKED; ieee->link_change(ieee->dev); notify_wx_assoc_event(ieee); if (ieee->data_hard_resume) ieee->data_hard_resume(ieee->dev); netif_carrier_on(ieee->dev); } static void rtllib_start_monitor_mode(struct rtllib_device *ieee) { /* reset hardware status */ if (ieee->raw_tx) { if (ieee->data_hard_resume) ieee->data_hard_resume(ieee->dev); netif_carrier_on(ieee->dev); } } static void rtllib_start_ibss_wq(void *data) { struct rtllib_device *ieee = container_of_dwork_rsl(data, struct rtllib_device, start_ibss_wq); /* iwconfig mode ad-hoc will schedule this and return * on the other hand this will block further iwconfig SET * operations because of the wx_sem hold. * Anyway some most set operations set a flag to speed-up * (abort) this wq (when syncro scanning) before sleeping * on the semaphore */ if (!ieee->proto_started) { printk(KERN_INFO "==========oh driver down return\n"); return; } down(&ieee->wx_sem); if (ieee->current_network.ssid_len == 0) { strcpy(ieee->current_network.ssid, RTLLIB_DEFAULT_TX_ESSID); ieee->current_network.ssid_len = strlen(RTLLIB_DEFAULT_TX_ESSID); ieee->ssid_set = 1; } ieee->state = RTLLIB_NOLINK; ieee->mode = IEEE_G; /* check if we have this cell in our network list */ rtllib_softmac_check_all_nets(ieee); /* if not then the state is not linked. Maybe the user swithced to * ad-hoc mode just after being in monitor mode, or just after * being very few time in managed mode (so the card have had no * time to scan all the chans..) or we have just run up the iface * after setting ad-hoc mode. So we have to give another try.. * Here, in ibss mode, should be safe to do this without extra care * (in bss mode we had to make sure no-one tryed to associate when * we had just checked the ieee->state and we was going to start the * scan) beacause in ibss mode the rtllib_new_net function, when * finds a good net, just set the ieee->state to RTLLIB_LINKED, * so, at worst, we waste a bit of time to initiate an unneeded syncro * scan, that will stop at the first round because it sees the state * associated. */ if (ieee->state == RTLLIB_NOLINK) rtllib_start_scan_syncro(ieee, 0); /* the network definitively is not here.. create a new cell */ if (ieee->state == RTLLIB_NOLINK) { printk(KERN_INFO "creating new IBSS cell\n"); ieee->current_network.channel = ieee->IbssStartChnl; if (!ieee->wap_set) rtllib_randomize_cell(ieee); if (ieee->modulation & RTLLIB_CCK_MODULATION) { ieee->current_network.rates_len = 4; ieee->current_network.rates[0] = RTLLIB_BASIC_RATE_MASK | RTLLIB_CCK_RATE_1MB; ieee->current_network.rates[1] = RTLLIB_BASIC_RATE_MASK | RTLLIB_CCK_RATE_2MB; ieee->current_network.rates[2] = RTLLIB_BASIC_RATE_MASK | RTLLIB_CCK_RATE_5MB; ieee->current_network.rates[3] = RTLLIB_BASIC_RATE_MASK | RTLLIB_CCK_RATE_11MB; } else ieee->current_network.rates_len = 0; if (ieee->modulation & RTLLIB_OFDM_MODULATION) { ieee->current_network.rates_ex_len = 8; ieee->current_network.rates_ex[0] = RTLLIB_OFDM_RATE_6MB; ieee->current_network.rates_ex[1] = RTLLIB_OFDM_RATE_9MB; ieee->current_network.rates_ex[2] = RTLLIB_OFDM_RATE_12MB; ieee->current_network.rates_ex[3] = RTLLIB_OFDM_RATE_18MB; ieee->current_network.rates_ex[4] = RTLLIB_OFDM_RATE_24MB; ieee->current_network.rates_ex[5] = RTLLIB_OFDM_RATE_36MB; ieee->current_network.rates_ex[6] = RTLLIB_OFDM_RATE_48MB; ieee->current_network.rates_ex[7] = RTLLIB_OFDM_RATE_54MB; ieee->rate = 108; } else { ieee->current_network.rates_ex_len = 0; ieee->rate = 22; } ieee->current_network.qos_data.supported = 0; ieee->SetWirelessMode(ieee->dev, IEEE_G); ieee->current_network.mode = ieee->mode; ieee->current_network.atim_window = 0; ieee->current_network.capability = WLAN_CAPABILITY_IBSS; } printk(KERN_INFO "%s(): ieee->mode = %d\n", __func__, ieee->mode); if ((ieee->mode == IEEE_N_24G) || (ieee->mode == IEEE_N_5G)) HTUseDefaultSetting(ieee); else ieee->pHTInfo->bCurrentHTSupport = false; ieee->SetHwRegHandler(ieee->dev, HW_VAR_MEDIA_STATUS, (u8 *)(&ieee->state)); ieee->state = RTLLIB_LINKED; ieee->link_change(ieee->dev); HTSetConnectBwMode(ieee, HT_CHANNEL_WIDTH_20, HT_EXTCHNL_OFFSET_NO_EXT); if (ieee->LedControlHandler != NULL) ieee->LedControlHandler(ieee->dev, LED_CTL_LINK); rtllib_start_send_beacons(ieee); notify_wx_assoc_event(ieee); if (ieee->data_hard_resume) ieee->data_hard_resume(ieee->dev); netif_carrier_on(ieee->dev); up(&ieee->wx_sem); } inline void rtllib_start_ibss(struct rtllib_device *ieee) { queue_delayed_work_rsl(ieee->wq, &ieee->start_ibss_wq, MSECS(150)); } /* this is called only in user context, with wx_sem held */ void rtllib_start_bss(struct rtllib_device *ieee) { unsigned long flags; if (IS_DOT11D_ENABLE(ieee) && !IS_COUNTRY_IE_VALID(ieee)) { if (!ieee->bGlobalDomain) return; } /* check if we have already found the net we * are interested in (if any). * if not (we are disassociated and we are not * in associating / authenticating phase) start the background scanning. */ rtllib_softmac_check_all_nets(ieee); /* ensure no-one start an associating process (thus setting * the ieee->state to rtllib_ASSOCIATING) while we * have just cheked it and we are going to enable scan. * The rtllib_new_net function is always called with * lock held (from both rtllib_softmac_check_all_nets and * the rx path), so we cannot be in the middle of such function */ spin_lock_irqsave(&ieee->lock, flags); if (ieee->state == RTLLIB_NOLINK) rtllib_start_scan(ieee); spin_unlock_irqrestore(&ieee->lock, flags); } static void rtllib_link_change_wq(void *data) { struct rtllib_device *ieee = container_of_dwork_rsl(data, struct rtllib_device, link_change_wq); ieee->link_change(ieee->dev); } /* called only in userspace context */ void rtllib_disassociate(struct rtllib_device *ieee) { netif_carrier_off(ieee->dev); if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) rtllib_reset_queue(ieee); if (ieee->data_hard_stop) ieee->data_hard_stop(ieee->dev); if (IS_DOT11D_ENABLE(ieee)) Dot11d_Reset(ieee); ieee->state = RTLLIB_NOLINK; ieee->is_set_key = false; ieee->wap_set = 0; queue_delayed_work_rsl(ieee->wq, &ieee->link_change_wq, 0); notify_wx_assoc_event(ieee); } static void rtllib_associate_retry_wq(void *data) { struct rtllib_device *ieee = container_of_dwork_rsl(data, struct rtllib_device, associate_retry_wq); unsigned long flags; down(&ieee->wx_sem); if (!ieee->proto_started) goto exit; if (ieee->state != RTLLIB_ASSOCIATING_RETRY) goto exit; /* until we do not set the state to RTLLIB_NOLINK * there are no possibility to have someone else trying * to start an association procdure (we get here with * ieee->state = RTLLIB_ASSOCIATING). * When we set the state to RTLLIB_NOLINK it is possible * that the RX path run an attempt to associate, but * both rtllib_softmac_check_all_nets and the * RX path works with ieee->lock held so there are no * problems. If we are still disassociated then start a scan. * the lock here is necessary to ensure no one try to start * an association procedure when we have just checked the * state and we are going to start the scan. */ ieee->beinretry = true; ieee->state = RTLLIB_NOLINK; rtllib_softmac_check_all_nets(ieee); spin_lock_irqsave(&ieee->lock, flags); if (ieee->state == RTLLIB_NOLINK) rtllib_start_scan(ieee); spin_unlock_irqrestore(&ieee->lock, flags); ieee->beinretry = false; exit: up(&ieee->wx_sem); } struct sk_buff *rtllib_get_beacon_(struct rtllib_device *ieee) { u8 broadcast_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; struct sk_buff *skb; struct rtllib_probe_response *b; skb = rtllib_probe_resp(ieee, broadcast_addr); if (!skb) return NULL; b = (struct rtllib_probe_response *) skb->data; b->header.frame_ctl = cpu_to_le16(RTLLIB_STYPE_BEACON); return skb; } struct sk_buff *rtllib_get_beacon(struct rtllib_device *ieee) { struct sk_buff *skb; struct rtllib_probe_response *b; skb = rtllib_get_beacon_(ieee); if (!skb) return NULL; b = (struct rtllib_probe_response *) skb->data; b->header.seq_ctl = cpu_to_le16(ieee->seq_ctrl[0] << 4); if (ieee->seq_ctrl[0] == 0xFFF) ieee->seq_ctrl[0] = 0; else ieee->seq_ctrl[0]++; return skb; } EXPORT_SYMBOL(rtllib_get_beacon); void rtllib_softmac_stop_protocol(struct rtllib_device *ieee, u8 mesh_flag, u8 shutdown) { rtllib_stop_scan_syncro(ieee); down(&ieee->wx_sem); rtllib_stop_protocol(ieee, shutdown); up(&ieee->wx_sem); } EXPORT_SYMBOL(rtllib_softmac_stop_protocol); void rtllib_stop_protocol(struct rtllib_device *ieee, u8 shutdown) { if (!ieee->proto_started) return; if (shutdown) { ieee->proto_started = 0; ieee->proto_stoppping = 1; if (ieee->rtllib_ips_leave != NULL) ieee->rtllib_ips_leave(ieee->dev); } rtllib_stop_send_beacons(ieee); del_timer_sync(&ieee->associate_timer); cancel_delayed_work(&ieee->associate_retry_wq); cancel_delayed_work(&ieee->start_ibss_wq); cancel_delayed_work(&ieee->link_change_wq); rtllib_stop_scan(ieee); if (ieee->state <= RTLLIB_ASSOCIATING_AUTHENTICATED) ieee->state = RTLLIB_NOLINK; if (ieee->state == RTLLIB_LINKED) { if (ieee->iw_mode == IW_MODE_INFRA) SendDisassociation(ieee, 1, deauth_lv_ss); rtllib_disassociate(ieee); } if (shutdown) { RemoveAllTS(ieee); ieee->proto_stoppping = 0; } kfree(ieee->assocreq_ies); ieee->assocreq_ies = NULL; ieee->assocreq_ies_len = 0; kfree(ieee->assocresp_ies); ieee->assocresp_ies = NULL; ieee->assocresp_ies_len = 0; } void rtllib_softmac_start_protocol(struct rtllib_device *ieee, u8 mesh_flag) { down(&ieee->wx_sem); rtllib_start_protocol(ieee); up(&ieee->wx_sem); } EXPORT_SYMBOL(rtllib_softmac_start_protocol); void rtllib_start_protocol(struct rtllib_device *ieee) { short ch = 0; int i = 0; rtllib_update_active_chan_map(ieee); if (ieee->proto_started) return; ieee->proto_started = 1; if (ieee->current_network.channel == 0) { do { ch++; if (ch > MAX_CHANNEL_NUMBER) return; /* no channel found */ } while (!ieee->active_channel_map[ch]); ieee->current_network.channel = ch; } if (ieee->current_network.beacon_interval == 0) ieee->current_network.beacon_interval = 100; for (i = 0; i < 17; i++) { ieee->last_rxseq_num[i] = -1; ieee->last_rxfrag_num[i] = -1; ieee->last_packet_time[i] = 0; } if (ieee->UpdateBeaconInterruptHandler) ieee->UpdateBeaconInterruptHandler(ieee->dev, false); ieee->wmm_acm = 0; /* if the user set the MAC of the ad-hoc cell and then * switch to managed mode, shall we make sure that association * attempts does not fail just because the user provide the essid * and the nic is still checking for the AP MAC ?? */ if (ieee->iw_mode == IW_MODE_INFRA) { rtllib_start_bss(ieee); } else if (ieee->iw_mode == IW_MODE_ADHOC) { if (ieee->UpdateBeaconInterruptHandler) ieee->UpdateBeaconInterruptHandler(ieee->dev, true); rtllib_start_ibss(ieee); } else if (ieee->iw_mode == IW_MODE_MASTER) { rtllib_start_master_bss(ieee); } else if (ieee->iw_mode == IW_MODE_MONITOR) { rtllib_start_monitor_mode(ieee); } } void rtllib_softmac_init(struct rtllib_device *ieee) { int i; memset(&ieee->current_network, 0, sizeof(struct rtllib_network)); ieee->state = RTLLIB_NOLINK; for (i = 0; i < 5; i++) ieee->seq_ctrl[i] = 0; ieee->pDot11dInfo = kzalloc(sizeof(struct rt_dot11d_info), GFP_ATOMIC); if (!ieee->pDot11dInfo) RTLLIB_DEBUG(RTLLIB_DL_ERR, "can't alloc memory for DOT11D\n"); ieee->LinkDetectInfo.SlotIndex = 0; ieee->LinkDetectInfo.SlotNum = 2; ieee->LinkDetectInfo.NumRecvBcnInPeriod = 0; ieee->LinkDetectInfo.NumRecvDataInPeriod = 0; ieee->LinkDetectInfo.NumTxOkInPeriod = 0; ieee->LinkDetectInfo.NumRxOkInPeriod = 0; ieee->LinkDetectInfo.NumRxUnicastOkInPeriod = 0; ieee->bIsAggregateFrame = false; ieee->assoc_id = 0; ieee->queue_stop = 0; ieee->scanning_continue = 0; ieee->softmac_features = 0; ieee->wap_set = 0; ieee->ssid_set = 0; ieee->proto_started = 0; ieee->proto_stoppping = 0; ieee->basic_rate = RTLLIB_DEFAULT_BASIC_RATE; ieee->rate = 22; ieee->ps = RTLLIB_PS_DISABLED; ieee->sta_sleep = LPS_IS_WAKE; ieee->Regdot11HTOperationalRateSet[0] = 0xff; ieee->Regdot11HTOperationalRateSet[1] = 0xff; ieee->Regdot11HTOperationalRateSet[4] = 0x01; ieee->Regdot11TxHTOperationalRateSet[0] = 0xff; ieee->Regdot11TxHTOperationalRateSet[1] = 0xff; ieee->Regdot11TxHTOperationalRateSet[4] = 0x01; ieee->FirstIe_InScan = false; ieee->actscanning = false; ieee->beinretry = false; ieee->is_set_key = false; init_mgmt_queue(ieee); ieee->sta_edca_param[0] = 0x0000A403; ieee->sta_edca_param[1] = 0x0000A427; ieee->sta_edca_param[2] = 0x005E4342; ieee->sta_edca_param[3] = 0x002F3262; ieee->aggregation = true; ieee->enable_rx_imm_BA = 1; ieee->tx_pending.txb = NULL; _setup_timer(&ieee->associate_timer, rtllib_associate_abort_cb, (unsigned long) ieee); _setup_timer(&ieee->beacon_timer, rtllib_send_beacon_cb, (unsigned long) ieee); ieee->wq = create_workqueue(DRV_NAME); INIT_DELAYED_WORK_RSL(&ieee->link_change_wq, (void *)rtllib_link_change_wq, ieee); INIT_DELAYED_WORK_RSL(&ieee->start_ibss_wq, (void *)rtllib_start_ibss_wq, ieee); INIT_WORK_RSL(&ieee->associate_complete_wq, (void *)rtllib_associate_complete_wq, ieee); INIT_DELAYED_WORK_RSL(&ieee->associate_procedure_wq, (void *)rtllib_associate_procedure_wq, ieee); INIT_DELAYED_WORK_RSL(&ieee->softmac_scan_wq, (void *)rtllib_softmac_scan_wq, ieee); INIT_DELAYED_WORK_RSL(&ieee->softmac_hint11d_wq, (void *)rtllib_softmac_hint11d_wq, ieee); INIT_DELAYED_WORK_RSL(&ieee->associate_retry_wq, (void *)rtllib_associate_retry_wq, ieee); INIT_WORK_RSL(&ieee->wx_sync_scan_wq, (void *)rtllib_wx_sync_scan_wq, ieee); sema_init(&ieee->wx_sem, 1); sema_init(&ieee->scan_sem, 1); sema_init(&ieee->ips_sem, 1); spin_lock_init(&ieee->mgmt_tx_lock); spin_lock_init(&ieee->beacon_lock); tasklet_init(&ieee->ps_task, (void(*)(unsigned long)) rtllib_sta_ps, (unsigned long)ieee); } void rtllib_softmac_free(struct rtllib_device *ieee) { down(&ieee->wx_sem); kfree(ieee->pDot11dInfo); ieee->pDot11dInfo = NULL; del_timer_sync(&ieee->associate_timer); cancel_delayed_work(&ieee->associate_retry_wq); destroy_workqueue(ieee->wq); up(&ieee->wx_sem); } /******************************************************** * Start of WPA code. * * this is stolen from the ipw2200 driver * ********************************************************/ static int rtllib_wpa_enable(struct rtllib_device *ieee, int value) { /* This is called when wpa_supplicant loads and closes the driver * interface. */ printk(KERN_INFO "%s WPA\n", value ? "enabling" : "disabling"); ieee->wpa_enabled = value; memset(ieee->ap_mac_addr, 0, 6); return 0; } static void rtllib_wpa_assoc_frame(struct rtllib_device *ieee, char *wpa_ie, int wpa_ie_len) { /* make sure WPA is enabled */ rtllib_wpa_enable(ieee, 1); rtllib_disassociate(ieee); } static int rtllib_wpa_mlme(struct rtllib_device *ieee, int command, int reason) { int ret = 0; switch (command) { case IEEE_MLME_STA_DEAUTH: break; case IEEE_MLME_STA_DISASSOC: rtllib_disassociate(ieee); break; default: printk(KERN_INFO "Unknown MLME request: %d\n", command); ret = -EOPNOTSUPP; } return ret; } static int rtllib_wpa_set_wpa_ie(struct rtllib_device *ieee, struct ieee_param *param, int plen) { u8 *buf; if (param->u.wpa_ie.len > MAX_WPA_IE_LEN || (param->u.wpa_ie.len && param->u.wpa_ie.data == NULL)) return -EINVAL; if (param->u.wpa_ie.len) { buf = kmemdup(param->u.wpa_ie.data, param->u.wpa_ie.len, GFP_KERNEL); if (buf == NULL) return -ENOMEM; kfree(ieee->wpa_ie); ieee->wpa_ie = buf; ieee->wpa_ie_len = param->u.wpa_ie.len; } else { kfree(ieee->wpa_ie); ieee->wpa_ie = NULL; ieee->wpa_ie_len = 0; } rtllib_wpa_assoc_frame(ieee, ieee->wpa_ie, ieee->wpa_ie_len); return 0; } #define AUTH_ALG_OPEN_SYSTEM 0x1 #define AUTH_ALG_SHARED_KEY 0x2 #define AUTH_ALG_LEAP 0x4 static int rtllib_wpa_set_auth_algs(struct rtllib_device *ieee, int value) { struct rtllib_security sec = { .flags = SEC_AUTH_MODE, }; int ret = 0; if (value & AUTH_ALG_SHARED_KEY) { sec.auth_mode = WLAN_AUTH_SHARED_KEY; ieee->open_wep = 0; ieee->auth_mode = 1; } else if (value & AUTH_ALG_OPEN_SYSTEM) { sec.auth_mode = WLAN_AUTH_OPEN; ieee->open_wep = 1; ieee->auth_mode = 0; } else if (value & AUTH_ALG_LEAP) { sec.auth_mode = WLAN_AUTH_LEAP >> 6; ieee->open_wep = 1; ieee->auth_mode = 2; } if (ieee->set_security) ieee->set_security(ieee->dev, &sec); return ret; } static int rtllib_wpa_set_param(struct rtllib_device *ieee, u8 name, u32 value) { int ret = 0; unsigned long flags; switch (name) { case IEEE_PARAM_WPA_ENABLED: ret = rtllib_wpa_enable(ieee, value); break; case IEEE_PARAM_TKIP_COUNTERMEASURES: ieee->tkip_countermeasures = value; break; case IEEE_PARAM_DROP_UNENCRYPTED: { /* HACK: * * wpa_supplicant calls set_wpa_enabled when the driver * is loaded and unloaded, regardless of if WPA is being * used. No other calls are made which can be used to * determine if encryption will be used or not prior to * association being expected. If encryption is not being * used, drop_unencrypted is set to false, else true -- we * can use this to determine if the CAP_PRIVACY_ON bit should * be set. */ struct rtllib_security sec = { .flags = SEC_ENABLED, .enabled = value, }; ieee->drop_unencrypted = value; /* We only change SEC_LEVEL for open mode. Others * are set by ipw_wpa_set_encryption. */ if (!value) { sec.flags |= SEC_LEVEL; sec.level = SEC_LEVEL_0; } else { sec.flags |= SEC_LEVEL; sec.level = SEC_LEVEL_1; } if (ieee->set_security) ieee->set_security(ieee->dev, &sec); break; } case IEEE_PARAM_PRIVACY_INVOKED: ieee->privacy_invoked = value; break; case IEEE_PARAM_AUTH_ALGS: ret = rtllib_wpa_set_auth_algs(ieee, value); break; case IEEE_PARAM_IEEE_802_1X: ieee->ieee802_1x = value; break; case IEEE_PARAM_WPAX_SELECT: spin_lock_irqsave(&ieee->wpax_suitlist_lock, flags); spin_unlock_irqrestore(&ieee->wpax_suitlist_lock, flags); break; default: printk(KERN_INFO "Unknown WPA param: %d\n", name); ret = -EOPNOTSUPP; } return ret; } /* implementation borrowed from hostap driver */ static int rtllib_wpa_set_encryption(struct rtllib_device *ieee, struct ieee_param *param, int param_len, u8 is_mesh) { int ret = 0; struct lib80211_crypto_ops *ops; struct lib80211_crypt_data **crypt; struct rtllib_security sec = { .flags = 0, }; param->u.crypt.err = 0; param->u.crypt.alg[IEEE_CRYPT_ALG_NAME_LEN - 1] = '\0'; if (param_len != (int) ((char *) param->u.crypt.key - (char *) param) + param->u.crypt.key_len) { printk(KERN_INFO "Len mismatch %d, %d\n", param_len, param->u.crypt.key_len); return -EINVAL; } if (param->sta_addr[0] == 0xff && param->sta_addr[1] == 0xff && param->sta_addr[2] == 0xff && param->sta_addr[3] == 0xff && param->sta_addr[4] == 0xff && param->sta_addr[5] == 0xff) { if (param->u.crypt.idx >= NUM_WEP_KEYS) return -EINVAL; crypt = &ieee->crypt_info.crypt[param->u.crypt.idx]; } else { return -EINVAL; } if (strcmp(param->u.crypt.alg, "none") == 0) { if (crypt) { sec.enabled = 0; sec.level = SEC_LEVEL_0; sec.flags |= SEC_ENABLED | SEC_LEVEL; lib80211_crypt_delayed_deinit(&ieee->crypt_info, crypt); } goto done; } sec.enabled = 1; sec.flags |= SEC_ENABLED; /* IPW HW cannot build TKIP MIC, host decryption still needed. */ if (!(ieee->host_encrypt || ieee->host_decrypt) && strcmp(param->u.crypt.alg, "R-TKIP")) goto skip_host_crypt; ops = lib80211_get_crypto_ops(param->u.crypt.alg); if (ops == NULL && strcmp(param->u.crypt.alg, "R-WEP") == 0) { request_module("rtllib_crypt_wep"); ops = lib80211_get_crypto_ops(param->u.crypt.alg); } else if (ops == NULL && strcmp(param->u.crypt.alg, "R-TKIP") == 0) { request_module("rtllib_crypt_tkip"); ops = lib80211_get_crypto_ops(param->u.crypt.alg); } else if (ops == NULL && strcmp(param->u.crypt.alg, "R-CCMP") == 0) { request_module("rtllib_crypt_ccmp"); ops = lib80211_get_crypto_ops(param->u.crypt.alg); } if (ops == NULL) { printk(KERN_INFO "unknown crypto alg '%s'\n", param->u.crypt.alg); param->u.crypt.err = IEEE_CRYPT_ERR_UNKNOWN_ALG; ret = -EINVAL; goto done; } if (*crypt == NULL || (*crypt)->ops != ops) { struct lib80211_crypt_data *new_crypt; lib80211_crypt_delayed_deinit(&ieee->crypt_info, crypt); new_crypt = (struct lib80211_crypt_data *) kmalloc(sizeof(*new_crypt), GFP_KERNEL); if (new_crypt == NULL) { ret = -ENOMEM; goto done; } memset(new_crypt, 0, sizeof(struct lib80211_crypt_data)); new_crypt->ops = ops; if (new_crypt->ops) new_crypt->priv = new_crypt->ops->init(param->u.crypt.idx); if (new_crypt->priv == NULL) { kfree(new_crypt); param->u.crypt.err = IEEE_CRYPT_ERR_CRYPT_INIT_FAILED; ret = -EINVAL; goto done; } *crypt = new_crypt; } if (param->u.crypt.key_len > 0 && (*crypt)->ops->set_key && (*crypt)->ops->set_key(param->u.crypt.key, param->u.crypt.key_len, param->u.crypt.seq, (*crypt)->priv) < 0) { printk(KERN_INFO "key setting failed\n"); param->u.crypt.err = IEEE_CRYPT_ERR_KEY_SET_FAILED; ret = -EINVAL; goto done; } skip_host_crypt: if (param->u.crypt.set_tx) { ieee->crypt_info.tx_keyidx = param->u.crypt.idx; sec.active_key = param->u.crypt.idx; sec.flags |= SEC_ACTIVE_KEY; } else sec.flags &= ~SEC_ACTIVE_KEY; if (param->u.crypt.alg != NULL) { memcpy(sec.keys[param->u.crypt.idx], param->u.crypt.key, param->u.crypt.key_len); sec.key_sizes[param->u.crypt.idx] = param->u.crypt.key_len; sec.flags |= (1 << param->u.crypt.idx); if (strcmp(param->u.crypt.alg, "R-WEP") == 0) { sec.flags |= SEC_LEVEL; sec.level = SEC_LEVEL_1; } else if (strcmp(param->u.crypt.alg, "R-TKIP") == 0) { sec.flags |= SEC_LEVEL; sec.level = SEC_LEVEL_2; } else if (strcmp(param->u.crypt.alg, "R-CCMP") == 0) { sec.flags |= SEC_LEVEL; sec.level = SEC_LEVEL_3; } } done: if (ieee->set_security) ieee->set_security(ieee->dev, &sec); /* Do not reset port if card is in Managed mode since resetting will * generate new IEEE 802.11 authentication which may end up in looping * with IEEE 802.1X. If your hardware requires a reset after WEP * configuration (for example... Prism2), implement the reset_port in * the callbacks structures used to initialize the 802.11 stack. */ if (ieee->reset_on_keychange && ieee->iw_mode != IW_MODE_INFRA && ieee->reset_port && ieee->reset_port(ieee->dev)) { printk(KERN_INFO "reset_port failed\n"); param->u.crypt.err = IEEE_CRYPT_ERR_CARD_CONF_FAILED; return -EINVAL; } return ret; } inline struct sk_buff *rtllib_disauth_skb(struct rtllib_network *beacon, struct rtllib_device *ieee, u16 asRsn) { struct sk_buff *skb; struct rtllib_disauth *disauth; int len = sizeof(struct rtllib_disauth) + ieee->tx_headroom; skb = dev_alloc_skb(len); if (!skb) return NULL; skb_reserve(skb, ieee->tx_headroom); disauth = (struct rtllib_disauth *) skb_put(skb, sizeof(struct rtllib_disauth)); disauth->header.frame_ctl = cpu_to_le16(RTLLIB_STYPE_DEAUTH); disauth->header.duration_id = 0; memcpy(disauth->header.addr1, beacon->bssid, ETH_ALEN); memcpy(disauth->header.addr2, ieee->dev->dev_addr, ETH_ALEN); memcpy(disauth->header.addr3, beacon->bssid, ETH_ALEN); disauth->reason = cpu_to_le16(asRsn); return skb; } inline struct sk_buff *rtllib_disassociate_skb(struct rtllib_network *beacon, struct rtllib_device *ieee, u16 asRsn) { struct sk_buff *skb; struct rtllib_disassoc *disass; int len = sizeof(struct rtllib_disassoc) + ieee->tx_headroom; skb = dev_alloc_skb(len); if (!skb) return NULL; skb_reserve(skb, ieee->tx_headroom); disass = (struct rtllib_disassoc *) skb_put(skb, sizeof(struct rtllib_disassoc)); disass->header.frame_ctl = cpu_to_le16(RTLLIB_STYPE_DISASSOC); disass->header.duration_id = 0; memcpy(disass->header.addr1, beacon->bssid, ETH_ALEN); memcpy(disass->header.addr2, ieee->dev->dev_addr, ETH_ALEN); memcpy(disass->header.addr3, beacon->bssid, ETH_ALEN); disass->reason = cpu_to_le16(asRsn); return skb; } void SendDisassociation(struct rtllib_device *ieee, bool deauth, u16 asRsn) { struct rtllib_network *beacon = &ieee->current_network; struct sk_buff *skb; if (deauth) skb = rtllib_disauth_skb(beacon, ieee, asRsn); else skb = rtllib_disassociate_skb(beacon, ieee, asRsn); if (skb) softmac_mgmt_xmit(skb, ieee); } u8 rtllib_ap_sec_type(struct rtllib_device *ieee) { static u8 ccmp_ie[4] = {0x00, 0x50, 0xf2, 0x04}; static u8 ccmp_rsn_ie[4] = {0x00, 0x0f, 0xac, 0x04}; int wpa_ie_len = ieee->wpa_ie_len; struct lib80211_crypt_data *crypt; int encrypt; crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx]; encrypt = (ieee->current_network.capability & WLAN_CAPABILITY_PRIVACY) || (ieee->host_encrypt && crypt && crypt->ops && (0 == strcmp(crypt->ops->name, "R-WEP"))); /* simply judge */ if (encrypt && (wpa_ie_len == 0)) { return SEC_ALG_WEP; } else if ((wpa_ie_len != 0)) { if (((ieee->wpa_ie[0] == 0xdd) && (!memcmp(&(ieee->wpa_ie[14]), ccmp_ie, 4))) || ((ieee->wpa_ie[0] == 0x30) && (!memcmp(&ieee->wpa_ie[10], ccmp_rsn_ie, 4)))) return SEC_ALG_CCMP; else return SEC_ALG_TKIP; } else { return SEC_ALG_NONE; } } int rtllib_wpa_supplicant_ioctl(struct rtllib_device *ieee, struct iw_point *p, u8 is_mesh) { struct ieee_param *param; int ret = 0; down(&ieee->wx_sem); if (p->length < sizeof(struct ieee_param) || !p->pointer) { ret = -EINVAL; goto out; } param = kmalloc(p->length, GFP_KERNEL); if (param == NULL) { ret = -ENOMEM; goto out; } if (copy_from_user(param, p->pointer, p->length)) { kfree(param); ret = -EFAULT; goto out; } switch (param->cmd) { case IEEE_CMD_SET_WPA_PARAM: ret = rtllib_wpa_set_param(ieee, param->u.wpa_param.name, param->u.wpa_param.value); break; case IEEE_CMD_SET_WPA_IE: ret = rtllib_wpa_set_wpa_ie(ieee, param, p->length); break; case IEEE_CMD_SET_ENCRYPTION: ret = rtllib_wpa_set_encryption(ieee, param, p->length, 0); break; case IEEE_CMD_MLME: ret = rtllib_wpa_mlme(ieee, param->u.mlme.command, param->u.mlme.reason_code); break; default: printk(KERN_INFO "Unknown WPA supplicant request: %d\n", param->cmd); ret = -EOPNOTSUPP; break; } if (ret == 0 && copy_to_user(p->pointer, param, p->length)) ret = -EFAULT; kfree(param); out: up(&ieee->wx_sem); return ret; } EXPORT_SYMBOL(rtllib_wpa_supplicant_ioctl); void rtllib_MgntDisconnectIBSS(struct rtllib_device *rtllib) { u8 OpMode; u8 i; bool bFilterOutNonAssociatedBSSID = false; rtllib->state = RTLLIB_NOLINK; for (i = 0; i < 6; i++) rtllib->current_network.bssid[i] = 0x55; rtllib->OpMode = RT_OP_MODE_NO_LINK; rtllib->SetHwRegHandler(rtllib->dev, HW_VAR_BSSID, rtllib->current_network.bssid); OpMode = RT_OP_MODE_NO_LINK; rtllib->SetHwRegHandler(rtllib->dev, HW_VAR_MEDIA_STATUS, &OpMode); rtllib_stop_send_beacons(rtllib); bFilterOutNonAssociatedBSSID = false; rtllib->SetHwRegHandler(rtllib->dev, HW_VAR_CECHK_BSSID, (u8 *)(&bFilterOutNonAssociatedBSSID)); notify_wx_assoc_event(rtllib); } void rtllib_MlmeDisassociateRequest(struct rtllib_device *rtllib, u8 *asSta, u8 asRsn) { u8 i; u8 OpMode; RemovePeerTS(rtllib, asSta); if (memcpy(rtllib->current_network.bssid, asSta, 6) == NULL) { rtllib->state = RTLLIB_NOLINK; for (i = 0; i < 6; i++) rtllib->current_network.bssid[i] = 0x22; OpMode = RT_OP_MODE_NO_LINK; rtllib->OpMode = RT_OP_MODE_NO_LINK; rtllib->SetHwRegHandler(rtllib->dev, HW_VAR_MEDIA_STATUS, (u8 *)(&OpMode)); rtllib_disassociate(rtllib); rtllib->SetHwRegHandler(rtllib->dev, HW_VAR_BSSID, rtllib->current_network.bssid); } } void rtllib_MgntDisconnectAP( struct rtllib_device *rtllib, u8 asRsn ) { bool bFilterOutNonAssociatedBSSID = false; bFilterOutNonAssociatedBSSID = false; rtllib->SetHwRegHandler(rtllib->dev, HW_VAR_CECHK_BSSID, (u8 *)(&bFilterOutNonAssociatedBSSID)); rtllib_MlmeDisassociateRequest(rtllib, rtllib->current_network.bssid, asRsn); rtllib->state = RTLLIB_NOLINK; } bool rtllib_MgntDisconnect(struct rtllib_device *rtllib, u8 asRsn) { if (rtllib->ps != RTLLIB_PS_DISABLED) rtllib->sta_wake_up(rtllib->dev); if (rtllib->state == RTLLIB_LINKED) { if (rtllib->iw_mode == IW_MODE_ADHOC) rtllib_MgntDisconnectIBSS(rtllib); if (rtllib->iw_mode == IW_MODE_INFRA) rtllib_MgntDisconnectAP(rtllib, asRsn); } return true; } EXPORT_SYMBOL(rtllib_MgntDisconnect); void notify_wx_assoc_event(struct rtllib_device *ieee) { union iwreq_data wrqu; if (ieee->cannot_notify) return; wrqu.ap_addr.sa_family = ARPHRD_ETHER; if (ieee->state == RTLLIB_LINKED) memcpy(wrqu.ap_addr.sa_data, ieee->current_network.bssid, ETH_ALEN); else { printk(KERN_INFO "%s(): Tell user space disconnected\n", __func__); memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN); } wireless_send_event(ieee->dev, SIOCGIWAP, &wrqu, NULL); } EXPORT_SYMBOL(notify_wx_assoc_event);