/* * $Id: synclinkmp.c,v 4.38 2005/07/15 13:29:44 paulkf Exp $ * * Device driver for Microgate SyncLink Multiport * high speed multiprotocol serial adapter. * * written by Paul Fulghum for Microgate Corporation * paulkf@microgate.com * * Microgate and SyncLink are trademarks of Microgate Corporation * * Derived from serial.c written by Theodore Ts'o and Linus Torvalds * This code is released under the GNU General Public License (GPL) * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. */ #define VERSION(ver,rel,seq) (((ver)<<16) | ((rel)<<8) | (seq)) #if defined(__i386__) # define BREAKPOINT() asm(" int $3"); #else # define BREAKPOINT() { } #endif #define MAX_DEVICES 12 #include <linux/module.h> #include <linux/errno.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/timer.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/serial.h> #include <linux/major.h> #include <linux/string.h> #include <linux/fcntl.h> #include <linux/ptrace.h> #include <linux/ioport.h> #include <linux/mm.h> #include <linux/seq_file.h> #include <linux/slab.h> #include <linux/netdevice.h> #include <linux/vmalloc.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/ioctl.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/dma.h> #include <linux/bitops.h> #include <asm/types.h> #include <linux/termios.h> #include <linux/workqueue.h> #include <linux/hdlc.h> #include <linux/synclink.h> #if defined(CONFIG_HDLC) || (defined(CONFIG_HDLC_MODULE) && defined(CONFIG_SYNCLINKMP_MODULE)) #define SYNCLINK_GENERIC_HDLC 1 #else #define SYNCLINK_GENERIC_HDLC 0 #endif #define GET_USER(error,value,addr) error = get_user(value,addr) #define COPY_FROM_USER(error,dest,src,size) error = copy_from_user(dest,src,size) ? -EFAULT : 0 #define PUT_USER(error,value,addr) error = put_user(value,addr) #define COPY_TO_USER(error,dest,src,size) error = copy_to_user(dest,src,size) ? -EFAULT : 0 #include <asm/uaccess.h> static MGSL_PARAMS default_params = { MGSL_MODE_HDLC, /* unsigned long mode */ 0, /* unsigned char loopback; */ HDLC_FLAG_UNDERRUN_ABORT15, /* unsigned short flags; */ HDLC_ENCODING_NRZI_SPACE, /* unsigned char encoding; */ 0, /* unsigned long clock_speed; */ 0xff, /* unsigned char addr_filter; */ HDLC_CRC_16_CCITT, /* unsigned short crc_type; */ HDLC_PREAMBLE_LENGTH_8BITS, /* unsigned char preamble_length; */ HDLC_PREAMBLE_PATTERN_NONE, /* unsigned char preamble; */ 9600, /* unsigned long data_rate; */ 8, /* unsigned char data_bits; */ 1, /* unsigned char stop_bits; */ ASYNC_PARITY_NONE /* unsigned char parity; */ }; /* size in bytes of DMA data buffers */ #define SCABUFSIZE 1024 #define SCA_MEM_SIZE 0x40000 #define SCA_BASE_SIZE 512 #define SCA_REG_SIZE 16 #define SCA_MAX_PORTS 4 #define SCAMAXDESC 128 #define BUFFERLISTSIZE 4096 /* SCA-I style DMA buffer descriptor */ typedef struct _SCADESC { u16 next; /* lower l6 bits of next descriptor addr */ u16 buf_ptr; /* lower 16 bits of buffer addr */ u8 buf_base; /* upper 8 bits of buffer addr */ u8 pad1; u16 length; /* length of buffer */ u8 status; /* status of buffer */ u8 pad2; } SCADESC, *PSCADESC; typedef struct _SCADESC_EX { /* device driver bookkeeping section */ char *virt_addr; /* virtual address of data buffer */ u16 phys_entry; /* lower 16-bits of physical address of this descriptor */ } SCADESC_EX, *PSCADESC_EX; /* The queue of BH actions to be performed */ #define BH_RECEIVE 1 #define BH_TRANSMIT 2 #define BH_STATUS 4 #define IO_PIN_SHUTDOWN_LIMIT 100 struct _input_signal_events { int ri_up; int ri_down; int dsr_up; int dsr_down; int dcd_up; int dcd_down; int cts_up; int cts_down; }; /* * Device instance data structure */ typedef struct _synclinkmp_info { void *if_ptr; /* General purpose pointer (used by SPPP) */ int magic; struct tty_port port; int line; unsigned short close_delay; unsigned short closing_wait; /* time to wait before closing */ struct mgsl_icount icount; int timeout; int x_char; /* xon/xoff character */ u16 read_status_mask1; /* break detection (SR1 indications) */ u16 read_status_mask2; /* parity/framing/overun (SR2 indications) */ unsigned char ignore_status_mask1; /* break detection (SR1 indications) */ unsigned char ignore_status_mask2; /* parity/framing/overun (SR2 indications) */ unsigned char *tx_buf; int tx_put; int tx_get; int tx_count; wait_queue_head_t status_event_wait_q; wait_queue_head_t event_wait_q; struct timer_list tx_timer; /* HDLC transmit timeout timer */ struct _synclinkmp_info *next_device; /* device list link */ struct timer_list status_timer; /* input signal status check timer */ spinlock_t lock; /* spinlock for synchronizing with ISR */ struct work_struct task; /* task structure for scheduling bh */ u32 max_frame_size; /* as set by device config */ u32 pending_bh; bool bh_running; /* Protection from multiple */ int isr_overflow; bool bh_requested; int dcd_chkcount; /* check counts to prevent */ int cts_chkcount; /* too many IRQs if a signal */ int dsr_chkcount; /* is floating */ int ri_chkcount; char *buffer_list; /* virtual address of Rx & Tx buffer lists */ unsigned long buffer_list_phys; unsigned int rx_buf_count; /* count of total allocated Rx buffers */ SCADESC *rx_buf_list; /* list of receive buffer entries */ SCADESC_EX rx_buf_list_ex[SCAMAXDESC]; /* list of receive buffer entries */ unsigned int current_rx_buf; unsigned int tx_buf_count; /* count of total allocated Tx buffers */ SCADESC *tx_buf_list; /* list of transmit buffer entries */ SCADESC_EX tx_buf_list_ex[SCAMAXDESC]; /* list of transmit buffer entries */ unsigned int last_tx_buf; unsigned char *tmp_rx_buf; unsigned int tmp_rx_buf_count; bool rx_enabled; bool rx_overflow; bool tx_enabled; bool tx_active; u32 idle_mode; unsigned char ie0_value; unsigned char ie1_value; unsigned char ie2_value; unsigned char ctrlreg_value; unsigned char old_signals; char device_name[25]; /* device instance name */ int port_count; int adapter_num; int port_num; struct _synclinkmp_info *port_array[SCA_MAX_PORTS]; unsigned int bus_type; /* expansion bus type (ISA,EISA,PCI) */ unsigned int irq_level; /* interrupt level */ unsigned long irq_flags; bool irq_requested; /* true if IRQ requested */ MGSL_PARAMS params; /* communications parameters */ unsigned char serial_signals; /* current serial signal states */ bool irq_occurred; /* for diagnostics use */ unsigned int init_error; /* Initialization startup error */ u32 last_mem_alloc; unsigned char* memory_base; /* shared memory address (PCI only) */ u32 phys_memory_base; int shared_mem_requested; unsigned char* sca_base; /* HD64570 SCA Memory address */ u32 phys_sca_base; u32 sca_offset; bool sca_base_requested; unsigned char* lcr_base; /* local config registers (PCI only) */ u32 phys_lcr_base; u32 lcr_offset; int lcr_mem_requested; unsigned char* statctrl_base; /* status/control register memory */ u32 phys_statctrl_base; u32 statctrl_offset; bool sca_statctrl_requested; u32 misc_ctrl_value; char flag_buf[MAX_ASYNC_BUFFER_SIZE]; char char_buf[MAX_ASYNC_BUFFER_SIZE]; bool drop_rts_on_tx_done; struct _input_signal_events input_signal_events; /* SPPP/Cisco HDLC device parts */ int netcount; spinlock_t netlock; #if SYNCLINK_GENERIC_HDLC struct net_device *netdev; #endif } SLMP_INFO; #define MGSL_MAGIC 0x5401 /* * define serial signal status change macros */ #define MISCSTATUS_DCD_LATCHED (SerialSignal_DCD<<8) /* indicates change in DCD */ #define MISCSTATUS_RI_LATCHED (SerialSignal_RI<<8) /* indicates change in RI */ #define MISCSTATUS_CTS_LATCHED (SerialSignal_CTS<<8) /* indicates change in CTS */ #define MISCSTATUS_DSR_LATCHED (SerialSignal_DSR<<8) /* change in DSR */ /* Common Register macros */ #define LPR 0x00 #define PABR0 0x02 #define PABR1 0x03 #define WCRL 0x04 #define WCRM 0x05 #define WCRH 0x06 #define DPCR 0x08 #define DMER 0x09 #define ISR0 0x10 #define ISR1 0x11 #define ISR2 0x12 #define IER0 0x14 #define IER1 0x15 #define IER2 0x16 #define ITCR 0x18 #define INTVR 0x1a #define IMVR 0x1c /* MSCI Register macros */ #define TRB 0x20 #define TRBL 0x20 #define TRBH 0x21 #define SR0 0x22 #define SR1 0x23 #define SR2 0x24 #define SR3 0x25 #define FST 0x26 #define IE0 0x28 #define IE1 0x29 #define IE2 0x2a #define FIE 0x2b #define CMD 0x2c #define MD0 0x2e #define MD1 0x2f #define MD2 0x30 #define CTL 0x31 #define SA0 0x32 #define SA1 0x33 #define IDL 0x34 #define TMC 0x35 #define RXS 0x36 #define TXS 0x37 #define TRC0 0x38 #define TRC1 0x39 #define RRC 0x3a #define CST0 0x3c #define CST1 0x3d /* Timer Register Macros */ #define TCNT 0x60 #define TCNTL 0x60 #define TCNTH 0x61 #define TCONR 0x62 #define TCONRL 0x62 #define TCONRH 0x63 #define TMCS 0x64 #define TEPR 0x65 /* DMA Controller Register macros */ #define DARL 0x80 #define DARH 0x81 #define DARB 0x82 #define BAR 0x80 #define BARL 0x80 #define BARH 0x81 #define BARB 0x82 #define SAR 0x84 #define SARL 0x84 #define SARH 0x85 #define SARB 0x86 #define CPB 0x86 #define CDA 0x88 #define CDAL 0x88 #define CDAH 0x89 #define EDA 0x8a #define EDAL 0x8a #define EDAH 0x8b #define BFL 0x8c #define BFLL 0x8c #define BFLH 0x8d #define BCR 0x8e #define BCRL 0x8e #define BCRH 0x8f #define DSR 0x90 #define DMR 0x91 #define FCT 0x93 #define DIR 0x94 #define DCMD 0x95 /* combine with timer or DMA register address */ #define TIMER0 0x00 #define TIMER1 0x08 #define TIMER2 0x10 #define TIMER3 0x18 #define RXDMA 0x00 #define TXDMA 0x20 /* SCA Command Codes */ #define NOOP 0x00 #define TXRESET 0x01 #define TXENABLE 0x02 #define TXDISABLE 0x03 #define TXCRCINIT 0x04 #define TXCRCEXCL 0x05 #define TXEOM 0x06 #define TXABORT 0x07 #define MPON 0x08 #define TXBUFCLR 0x09 #define RXRESET 0x11 #define RXENABLE 0x12 #define RXDISABLE 0x13 #define RXCRCINIT 0x14 #define RXREJECT 0x15 #define SEARCHMP 0x16 #define RXCRCEXCL 0x17 #define RXCRCCALC 0x18 #define CHRESET 0x21 #define HUNT 0x31 /* DMA command codes */ #define SWABORT 0x01 #define FEICLEAR 0x02 /* IE0 */ #define TXINTE BIT7 #define RXINTE BIT6 #define TXRDYE BIT1 #define RXRDYE BIT0 /* IE1 & SR1 */ #define UDRN BIT7 #define IDLE BIT6 #define SYNCD BIT4 #define FLGD BIT4 #define CCTS BIT3 #define CDCD BIT2 #define BRKD BIT1 #define ABTD BIT1 #define GAPD BIT1 #define BRKE BIT0 #define IDLD BIT0 /* IE2 & SR2 */ #define EOM BIT7 #define PMP BIT6 #define SHRT BIT6 #define PE BIT5 #define ABT BIT5 #define FRME BIT4 #define RBIT BIT4 #define OVRN BIT3 #define CRCE BIT2 /* * Global linked list of SyncLink devices */ static SLMP_INFO *synclinkmp_device_list = NULL; static int synclinkmp_adapter_count = -1; static int synclinkmp_device_count = 0; /* * Set this param to non-zero to load eax with the * .text section address and breakpoint on module load. * This is useful for use with gdb and add-symbol-file command. */ static bool break_on_load = 0; /* * Driver major number, defaults to zero to get auto * assigned major number. May be forced as module parameter. */ static int ttymajor = 0; /* * Array of user specified options for ISA adapters. */ static int debug_level = 0; static int maxframe[MAX_DEVICES] = {0,}; module_param(break_on_load, bool, 0); module_param(ttymajor, int, 0); module_param(debug_level, int, 0); module_param_array(maxframe, int, NULL, 0); static char *driver_name = "SyncLink MultiPort driver"; static char *driver_version = "$Revision: 4.38 $"; static int synclinkmp_init_one(struct pci_dev *dev,const struct pci_device_id *ent); static void synclinkmp_remove_one(struct pci_dev *dev); static struct pci_device_id synclinkmp_pci_tbl[] = { { PCI_VENDOR_ID_MICROGATE, PCI_DEVICE_ID_MICROGATE_SCA, PCI_ANY_ID, PCI_ANY_ID, }, { 0, }, /* terminate list */ }; MODULE_DEVICE_TABLE(pci, synclinkmp_pci_tbl); MODULE_LICENSE("GPL"); static struct pci_driver synclinkmp_pci_driver = { .name = "synclinkmp", .id_table = synclinkmp_pci_tbl, .probe = synclinkmp_init_one, .remove = __devexit_p(synclinkmp_remove_one), }; static struct tty_driver *serial_driver; /* number of characters left in xmit buffer before we ask for more */ #define WAKEUP_CHARS 256 /* tty callbacks */ static int open(struct tty_struct *tty, struct file * filp); static void close(struct tty_struct *tty, struct file * filp); static void hangup(struct tty_struct *tty); static void set_termios(struct tty_struct *tty, struct ktermios *old_termios); static int write(struct tty_struct *tty, const unsigned char *buf, int count); static int put_char(struct tty_struct *tty, unsigned char ch); static void send_xchar(struct tty_struct *tty, char ch); static void wait_until_sent(struct tty_struct *tty, int timeout); static int write_room(struct tty_struct *tty); static void flush_chars(struct tty_struct *tty); static void flush_buffer(struct tty_struct *tty); static void tx_hold(struct tty_struct *tty); static void tx_release(struct tty_struct *tty); static int ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg); static int chars_in_buffer(struct tty_struct *tty); static void throttle(struct tty_struct * tty); static void unthrottle(struct tty_struct * tty); static int set_break(struct tty_struct *tty, int break_state); #if SYNCLINK_GENERIC_HDLC #define dev_to_port(D) (dev_to_hdlc(D)->priv) static void hdlcdev_tx_done(SLMP_INFO *info); static void hdlcdev_rx(SLMP_INFO *info, char *buf, int size); static int hdlcdev_init(SLMP_INFO *info); static void hdlcdev_exit(SLMP_INFO *info); #endif /* ioctl handlers */ static int get_stats(SLMP_INFO *info, struct mgsl_icount __user *user_icount); static int get_params(SLMP_INFO *info, MGSL_PARAMS __user *params); static int set_params(SLMP_INFO *info, MGSL_PARAMS __user *params); static int get_txidle(SLMP_INFO *info, int __user *idle_mode); static int set_txidle(SLMP_INFO *info, int idle_mode); static int tx_enable(SLMP_INFO *info, int enable); static int tx_abort(SLMP_INFO *info); static int rx_enable(SLMP_INFO *info, int enable); static int modem_input_wait(SLMP_INFO *info,int arg); static int wait_mgsl_event(SLMP_INFO *info, int __user *mask_ptr); static int tiocmget(struct tty_struct *tty); static int tiocmset(struct tty_struct *tty, unsigned int set, unsigned int clear); static int set_break(struct tty_struct *tty, int break_state); static void add_device(SLMP_INFO *info); static void device_init(int adapter_num, struct pci_dev *pdev); static int claim_resources(SLMP_INFO *info); static void release_resources(SLMP_INFO *info); static int startup(SLMP_INFO *info); static int block_til_ready(struct tty_struct *tty, struct file * filp,SLMP_INFO *info); static int carrier_raised(struct tty_port *port); static void shutdown(SLMP_INFO *info); static void program_hw(SLMP_INFO *info); static void change_params(SLMP_INFO *info); static bool init_adapter(SLMP_INFO *info); static bool register_test(SLMP_INFO *info); static bool irq_test(SLMP_INFO *info); static bool loopback_test(SLMP_INFO *info); static int adapter_test(SLMP_INFO *info); static bool memory_test(SLMP_INFO *info); static void reset_adapter(SLMP_INFO *info); static void reset_port(SLMP_INFO *info); static void async_mode(SLMP_INFO *info); static void hdlc_mode(SLMP_INFO *info); static void rx_stop(SLMP_INFO *info); static void rx_start(SLMP_INFO *info); static void rx_reset_buffers(SLMP_INFO *info); static void rx_free_frame_buffers(SLMP_INFO *info, unsigned int first, unsigned int last); static bool rx_get_frame(SLMP_INFO *info); static void tx_start(SLMP_INFO *info); static void tx_stop(SLMP_INFO *info); static void tx_load_fifo(SLMP_INFO *info); static void tx_set_idle(SLMP_INFO *info); static void tx_load_dma_buffer(SLMP_INFO *info, const char *buf, unsigned int count); static void get_signals(SLMP_INFO *info); static void set_signals(SLMP_INFO *info); static void enable_loopback(SLMP_INFO *info, int enable); static void set_rate(SLMP_INFO *info, u32 data_rate); static int bh_action(SLMP_INFO *info); static void bh_handler(struct work_struct *work); static void bh_receive(SLMP_INFO *info); static void bh_transmit(SLMP_INFO *info); static void bh_status(SLMP_INFO *info); static void isr_timer(SLMP_INFO *info); static void isr_rxint(SLMP_INFO *info); static void isr_rxrdy(SLMP_INFO *info); static void isr_txint(SLMP_INFO *info); static void isr_txrdy(SLMP_INFO *info); static void isr_rxdmaok(SLMP_INFO *info); static void isr_rxdmaerror(SLMP_INFO *info); static void isr_txdmaok(SLMP_INFO *info); static void isr_txdmaerror(SLMP_INFO *info); static void isr_io_pin(SLMP_INFO *info, u16 status); static int alloc_dma_bufs(SLMP_INFO *info); static void free_dma_bufs(SLMP_INFO *info); static int alloc_buf_list(SLMP_INFO *info); static int alloc_frame_bufs(SLMP_INFO *info, SCADESC *list, SCADESC_EX *list_ex,int count); static int alloc_tmp_rx_buf(SLMP_INFO *info); static void free_tmp_rx_buf(SLMP_INFO *info); static void load_pci_memory(SLMP_INFO *info, char* dest, const char* src, unsigned short count); static void trace_block(SLMP_INFO *info, const char* data, int count, int xmit); static void tx_timeout(unsigned long context); static void status_timeout(unsigned long context); static unsigned char read_reg(SLMP_INFO *info, unsigned char addr); static void write_reg(SLMP_INFO *info, unsigned char addr, unsigned char val); static u16 read_reg16(SLMP_INFO *info, unsigned char addr); static void write_reg16(SLMP_INFO *info, unsigned char addr, u16 val); static unsigned char read_status_reg(SLMP_INFO * info); static void write_control_reg(SLMP_INFO * info); static unsigned char rx_active_fifo_level = 16; // rx request FIFO activation level in bytes static unsigned char tx_active_fifo_level = 16; // tx request FIFO activation level in bytes static unsigned char tx_negate_fifo_level = 32; // tx request FIFO negation level in bytes static u32 misc_ctrl_value = 0x007e4040; static u32 lcr1_brdr_value = 0x00800028; static u32 read_ahead_count = 8; /* DPCR, DMA Priority Control * * 07..05 Not used, must be 0 * 04 BRC, bus release condition: 0=all transfers complete * 1=release after 1 xfer on all channels * 03 CCC, channel change condition: 0=every cycle * 1=after each channel completes all xfers * 02..00 PR<2..0>, priority 100=round robin * * 00000100 = 0x00 */ static unsigned char dma_priority = 0x04; // Number of bytes that can be written to shared RAM // in a single write operation static u32 sca_pci_load_interval = 64; /* * 1st function defined in .text section. Calling this function in * init_module() followed by a breakpoint allows a remote debugger * (gdb) to get the .text address for the add-symbol-file command. * This allows remote debugging of dynamically loadable modules. */ static void* synclinkmp_get_text_ptr(void); static void* synclinkmp_get_text_ptr(void) {return synclinkmp_get_text_ptr;} static inline int sanity_check(SLMP_INFO *info, char *name, const char *routine) { #ifdef SANITY_CHECK static const char *badmagic = "Warning: bad magic number for synclinkmp_struct (%s) in %s\n"; static const char *badinfo = "Warning: null synclinkmp_struct for (%s) in %s\n"; if (!info) { printk(badinfo, name, routine); return 1; } if (info->magic != MGSL_MAGIC) { printk(badmagic, name, routine); return 1; } #else if (!info) return 1; #endif return 0; } /** * line discipline callback wrappers * * The wrappers maintain line discipline references * while calling into the line discipline. * * ldisc_receive_buf - pass receive data to line discipline */ static void ldisc_receive_buf(struct tty_struct *tty, const __u8 *data, char *flags, int count) { struct tty_ldisc *ld; if (!tty) return; ld = tty_ldisc_ref(tty); if (ld) { if (ld->ops->receive_buf) ld->ops->receive_buf(tty, data, flags, count); tty_ldisc_deref(ld); } } /* tty callbacks */ /* Called when a port is opened. Init and enable port. */ static int open(struct tty_struct *tty, struct file *filp) { SLMP_INFO *info; int retval, line; unsigned long flags; line = tty->index; if (line >= synclinkmp_device_count) { printk("%s(%d): open with invalid line #%d.\n", __FILE__,__LINE__,line); return -ENODEV; } info = synclinkmp_device_list; while(info && info->line != line) info = info->next_device; if (sanity_check(info, tty->name, "open")) return -ENODEV; if ( info->init_error ) { printk("%s(%d):%s device is not allocated, init error=%d\n", __FILE__,__LINE__,info->device_name,info->init_error); return -ENODEV; } tty->driver_data = info; info->port.tty = tty; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s open(), old ref count = %d\n", __FILE__,__LINE__,tty->driver->name, info->port.count); /* If port is closing, signal caller to try again */ if (tty_hung_up_p(filp) || info->port.flags & ASYNC_CLOSING){ if (info->port.flags & ASYNC_CLOSING) interruptible_sleep_on(&info->port.close_wait); retval = ((info->port.flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); goto cleanup; } info->port.tty->low_latency = (info->port.flags & ASYNC_LOW_LATENCY) ? 1 : 0; spin_lock_irqsave(&info->netlock, flags); if (info->netcount) { retval = -EBUSY; spin_unlock_irqrestore(&info->netlock, flags); goto cleanup; } info->port.count++; spin_unlock_irqrestore(&info->netlock, flags); if (info->port.count == 1) { /* 1st open on this device, init hardware */ retval = startup(info); if (retval < 0) goto cleanup; } retval = block_til_ready(tty, filp, info); if (retval) { if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s block_til_ready() returned %d\n", __FILE__,__LINE__, info->device_name, retval); goto cleanup; } if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s open() success\n", __FILE__,__LINE__, info->device_name); retval = 0; cleanup: if (retval) { if (tty->count == 1) info->port.tty = NULL; /* tty layer will release tty struct */ if(info->port.count) info->port.count--; } return retval; } /* Called when port is closed. Wait for remaining data to be * sent. Disable port and free resources. */ static void close(struct tty_struct *tty, struct file *filp) { SLMP_INFO * info = tty->driver_data; if (sanity_check(info, tty->name, "close")) return; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s close() entry, count=%d\n", __FILE__,__LINE__, info->device_name, info->port.count); if (tty_port_close_start(&info->port, tty, filp) == 0) goto cleanup; mutex_lock(&info->port.mutex); if (info->port.flags & ASYNC_INITIALIZED) wait_until_sent(tty, info->timeout); flush_buffer(tty); tty_ldisc_flush(tty); shutdown(info); mutex_unlock(&info->port.mutex); tty_port_close_end(&info->port, tty); info->port.tty = NULL; cleanup: if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s close() exit, count=%d\n", __FILE__,__LINE__, tty->driver->name, info->port.count); } /* Called by tty_hangup() when a hangup is signaled. * This is the same as closing all open descriptors for the port. */ static void hangup(struct tty_struct *tty) { SLMP_INFO *info = tty->driver_data; unsigned long flags; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s hangup()\n", __FILE__,__LINE__, info->device_name ); if (sanity_check(info, tty->name, "hangup")) return; mutex_lock(&info->port.mutex); flush_buffer(tty); shutdown(info); spin_lock_irqsave(&info->port.lock, flags); info->port.count = 0; info->port.flags &= ~ASYNC_NORMAL_ACTIVE; info->port.tty = NULL; spin_unlock_irqrestore(&info->port.lock, flags); mutex_unlock(&info->port.mutex); wake_up_interruptible(&info->port.open_wait); } /* Set new termios settings */ static void set_termios(struct tty_struct *tty, struct ktermios *old_termios) { SLMP_INFO *info = tty->driver_data; unsigned long flags; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s set_termios()\n", __FILE__,__LINE__, tty->driver->name ); change_params(info); /* Handle transition to B0 status */ if (old_termios->c_cflag & CBAUD && !(tty->termios->c_cflag & CBAUD)) { info->serial_signals &= ~(SerialSignal_RTS + SerialSignal_DTR); spin_lock_irqsave(&info->lock,flags); set_signals(info); spin_unlock_irqrestore(&info->lock,flags); } /* Handle transition away from B0 status */ if (!(old_termios->c_cflag & CBAUD) && tty->termios->c_cflag & CBAUD) { info->serial_signals |= SerialSignal_DTR; if (!(tty->termios->c_cflag & CRTSCTS) || !test_bit(TTY_THROTTLED, &tty->flags)) { info->serial_signals |= SerialSignal_RTS; } spin_lock_irqsave(&info->lock,flags); set_signals(info); spin_unlock_irqrestore(&info->lock,flags); } /* Handle turning off CRTSCTS */ if (old_termios->c_cflag & CRTSCTS && !(tty->termios->c_cflag & CRTSCTS)) { tty->hw_stopped = 0; tx_release(tty); } } /* Send a block of data * * Arguments: * * tty pointer to tty information structure * buf pointer to buffer containing send data * count size of send data in bytes * * Return Value: number of characters written */ static int write(struct tty_struct *tty, const unsigned char *buf, int count) { int c, ret = 0; SLMP_INFO *info = tty->driver_data; unsigned long flags; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s write() count=%d\n", __FILE__,__LINE__,info->device_name,count); if (sanity_check(info, tty->name, "write")) goto cleanup; if (!info->tx_buf) goto cleanup; if (info->params.mode == MGSL_MODE_HDLC) { if (count > info->max_frame_size) { ret = -EIO; goto cleanup; } if (info->tx_active) goto cleanup; if (info->tx_count) { /* send accumulated data from send_char() calls */ /* as frame and wait before accepting more data. */ tx_load_dma_buffer(info, info->tx_buf, info->tx_count); goto start; } ret = info->tx_count = count; tx_load_dma_buffer(info, buf, count); goto start; } for (;;) { c = min_t(int, count, min(info->max_frame_size - info->tx_count - 1, info->max_frame_size - info->tx_put)); if (c <= 0) break; memcpy(info->tx_buf + info->tx_put, buf, c); spin_lock_irqsave(&info->lock,flags); info->tx_put += c; if (info->tx_put >= info->max_frame_size) info->tx_put -= info->max_frame_size; info->tx_count += c; spin_unlock_irqrestore(&info->lock,flags); buf += c; count -= c; ret += c; } if (info->params.mode == MGSL_MODE_HDLC) { if (count) { ret = info->tx_count = 0; goto cleanup; } tx_load_dma_buffer(info, info->tx_buf, info->tx_count); } start: if (info->tx_count && !tty->stopped && !tty->hw_stopped) { spin_lock_irqsave(&info->lock,flags); if (!info->tx_active) tx_start(info); spin_unlock_irqrestore(&info->lock,flags); } cleanup: if (debug_level >= DEBUG_LEVEL_INFO) printk( "%s(%d):%s write() returning=%d\n", __FILE__,__LINE__,info->device_name,ret); return ret; } /* Add a character to the transmit buffer. */ static int put_char(struct tty_struct *tty, unsigned char ch) { SLMP_INFO *info = tty->driver_data; unsigned long flags; int ret = 0; if ( debug_level >= DEBUG_LEVEL_INFO ) { printk( "%s(%d):%s put_char(%d)\n", __FILE__,__LINE__,info->device_name,ch); } if (sanity_check(info, tty->name, "put_char")) return 0; if (!info->tx_buf) return 0; spin_lock_irqsave(&info->lock,flags); if ( (info->params.mode != MGSL_MODE_HDLC) || !info->tx_active ) { if (info->tx_count < info->max_frame_size - 1) { info->tx_buf[info->tx_put++] = ch; if (info->tx_put >= info->max_frame_size) info->tx_put -= info->max_frame_size; info->tx_count++; ret = 1; } } spin_unlock_irqrestore(&info->lock,flags); return ret; } /* Send a high-priority XON/XOFF character */ static void send_xchar(struct tty_struct *tty, char ch) { SLMP_INFO *info = tty->driver_data; unsigned long flags; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s send_xchar(%d)\n", __FILE__,__LINE__, info->device_name, ch ); if (sanity_check(info, tty->name, "send_xchar")) return; info->x_char = ch; if (ch) { /* Make sure transmit interrupts are on */ spin_lock_irqsave(&info->lock,flags); if (!info->tx_enabled) tx_start(info); spin_unlock_irqrestore(&info->lock,flags); } } /* Wait until the transmitter is empty. */ static void wait_until_sent(struct tty_struct *tty, int timeout) { SLMP_INFO * info = tty->driver_data; unsigned long orig_jiffies, char_time; if (!info ) return; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s wait_until_sent() entry\n", __FILE__,__LINE__, info->device_name ); if (sanity_check(info, tty->name, "wait_until_sent")) return; if (!test_bit(ASYNCB_INITIALIZED, &info->port.flags)) goto exit; orig_jiffies = jiffies; /* Set check interval to 1/5 of estimated time to * send a character, and make it at least 1. The check * interval should also be less than the timeout. * Note: use tight timings here to satisfy the NIST-PCTS. */ if ( info->params.data_rate ) { char_time = info->timeout/(32 * 5); if (!char_time) char_time++; } else char_time = 1; if (timeout) char_time = min_t(unsigned long, char_time, timeout); if ( info->params.mode == MGSL_MODE_HDLC ) { while (info->tx_active) { msleep_interruptible(jiffies_to_msecs(char_time)); if (signal_pending(current)) break; if (timeout && time_after(jiffies, orig_jiffies + timeout)) break; } } else { /* * TODO: determine if there is something similar to USC16C32 * TXSTATUS_ALL_SENT status */ while ( info->tx_active && info->tx_enabled) { msleep_interruptible(jiffies_to_msecs(char_time)); if (signal_pending(current)) break; if (timeout && time_after(jiffies, orig_jiffies + timeout)) break; } } exit: if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s wait_until_sent() exit\n", __FILE__,__LINE__, info->device_name ); } /* Return the count of free bytes in transmit buffer */ static int write_room(struct tty_struct *tty) { SLMP_INFO *info = tty->driver_data; int ret; if (sanity_check(info, tty->name, "write_room")) return 0; if (info->params.mode == MGSL_MODE_HDLC) { ret = (info->tx_active) ? 0 : HDLC_MAX_FRAME_SIZE; } else { ret = info->max_frame_size - info->tx_count - 1; if (ret < 0) ret = 0; } if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s write_room()=%d\n", __FILE__, __LINE__, info->device_name, ret); return ret; } /* enable transmitter and send remaining buffered characters */ static void flush_chars(struct tty_struct *tty) { SLMP_INFO *info = tty->driver_data; unsigned long flags; if ( debug_level >= DEBUG_LEVEL_INFO ) printk( "%s(%d):%s flush_chars() entry tx_count=%d\n", __FILE__,__LINE__,info->device_name,info->tx_count); if (sanity_check(info, tty->name, "flush_chars")) return; if (info->tx_count <= 0 || tty->stopped || tty->hw_stopped || !info->tx_buf) return; if ( debug_level >= DEBUG_LEVEL_INFO ) printk( "%s(%d):%s flush_chars() entry, starting transmitter\n", __FILE__,__LINE__,info->device_name ); spin_lock_irqsave(&info->lock,flags); if (!info->tx_active) { if ( (info->params.mode == MGSL_MODE_HDLC) && info->tx_count ) { /* operating in synchronous (frame oriented) mode */ /* copy data from circular tx_buf to */ /* transmit DMA buffer. */ tx_load_dma_buffer(info, info->tx_buf,info->tx_count); } tx_start(info); } spin_unlock_irqrestore(&info->lock,flags); } /* Discard all data in the send buffer */ static void flush_buffer(struct tty_struct *tty) { SLMP_INFO *info = tty->driver_data; unsigned long flags; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s flush_buffer() entry\n", __FILE__,__LINE__, info->device_name ); if (sanity_check(info, tty->name, "flush_buffer")) return; spin_lock_irqsave(&info->lock,flags); info->tx_count = info->tx_put = info->tx_get = 0; del_timer(&info->tx_timer); spin_unlock_irqrestore(&info->lock,flags); tty_wakeup(tty); } /* throttle (stop) transmitter */ static void tx_hold(struct tty_struct *tty) { SLMP_INFO *info = tty->driver_data; unsigned long flags; if (sanity_check(info, tty->name, "tx_hold")) return; if ( debug_level >= DEBUG_LEVEL_INFO ) printk("%s(%d):%s tx_hold()\n", __FILE__,__LINE__,info->device_name); spin_lock_irqsave(&info->lock,flags); if (info->tx_enabled) tx_stop(info); spin_unlock_irqrestore(&info->lock,flags); } /* release (start) transmitter */ static void tx_release(struct tty_struct *tty) { SLMP_INFO *info = tty->driver_data; unsigned long flags; if (sanity_check(info, tty->name, "tx_release")) return; if ( debug_level >= DEBUG_LEVEL_INFO ) printk("%s(%d):%s tx_release()\n", __FILE__,__LINE__,info->device_name); spin_lock_irqsave(&info->lock,flags); if (!info->tx_enabled) tx_start(info); spin_unlock_irqrestore(&info->lock,flags); } /* Service an IOCTL request * * Arguments: * * tty pointer to tty instance data * cmd IOCTL command code * arg command argument/context * * Return Value: 0 if success, otherwise error code */ static int ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg) { SLMP_INFO *info = tty->driver_data; void __user *argp = (void __user *)arg; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s ioctl() cmd=%08X\n", __FILE__,__LINE__, info->device_name, cmd ); if (sanity_check(info, tty->name, "ioctl")) return -ENODEV; if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && (cmd != TIOCMIWAIT)) { if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; } switch (cmd) { case MGSL_IOCGPARAMS: return get_params(info, argp); case MGSL_IOCSPARAMS: return set_params(info, argp); case MGSL_IOCGTXIDLE: return get_txidle(info, argp); case MGSL_IOCSTXIDLE: return set_txidle(info, (int)arg); case MGSL_IOCTXENABLE: return tx_enable(info, (int)arg); case MGSL_IOCRXENABLE: return rx_enable(info, (int)arg); case MGSL_IOCTXABORT: return tx_abort(info); case MGSL_IOCGSTATS: return get_stats(info, argp); case MGSL_IOCWAITEVENT: return wait_mgsl_event(info, argp); case MGSL_IOCLOOPTXDONE: return 0; // TODO: Not supported, need to document /* Wait for modem input (DCD,RI,DSR,CTS) change * as specified by mask in arg (TIOCM_RNG/DSR/CD/CTS) */ case TIOCMIWAIT: return modem_input_wait(info,(int)arg); /* * Get counter of input serial line interrupts (DCD,RI,DSR,CTS) * Return: write counters to the user passed counter struct * NB: both 1->0 and 0->1 transitions are counted except for * RI where only 0->1 is counted. */ default: return -ENOIOCTLCMD; } return 0; } static int get_icount(struct tty_struct *tty, struct serial_icounter_struct *icount) { SLMP_INFO *info = tty->driver_data; struct mgsl_icount cnow; /* kernel counter temps */ unsigned long flags; spin_lock_irqsave(&info->lock,flags); cnow = info->icount; spin_unlock_irqrestore(&info->lock,flags); icount->cts = cnow.cts; icount->dsr = cnow.dsr; icount->rng = cnow.rng; icount->dcd = cnow.dcd; icount->rx = cnow.rx; icount->tx = cnow.tx; icount->frame = cnow.frame; icount->overrun = cnow.overrun; icount->parity = cnow.parity; icount->brk = cnow.brk; icount->buf_overrun = cnow.buf_overrun; return 0; } /* * /proc fs routines.... */ static inline void line_info(struct seq_file *m, SLMP_INFO *info) { char stat_buf[30]; unsigned long flags; seq_printf(m, "%s: SCABase=%08x Mem=%08X StatusControl=%08x LCR=%08X\n" "\tIRQ=%d MaxFrameSize=%u\n", info->device_name, info->phys_sca_base, info->phys_memory_base, info->phys_statctrl_base, info->phys_lcr_base, info->irq_level, info->max_frame_size ); /* output current serial signal states */ spin_lock_irqsave(&info->lock,flags); get_signals(info); spin_unlock_irqrestore(&info->lock,flags); stat_buf[0] = 0; stat_buf[1] = 0; if (info->serial_signals & SerialSignal_RTS) strcat(stat_buf, "|RTS"); if (info->serial_signals & SerialSignal_CTS) strcat(stat_buf, "|CTS"); if (info->serial_signals & SerialSignal_DTR) strcat(stat_buf, "|DTR"); if (info->serial_signals & SerialSignal_DSR) strcat(stat_buf, "|DSR"); if (info->serial_signals & SerialSignal_DCD) strcat(stat_buf, "|CD"); if (info->serial_signals & SerialSignal_RI) strcat(stat_buf, "|RI"); if (info->params.mode == MGSL_MODE_HDLC) { seq_printf(m, "\tHDLC txok:%d rxok:%d", info->icount.txok, info->icount.rxok); if (info->icount.txunder) seq_printf(m, " txunder:%d", info->icount.txunder); if (info->icount.txabort) seq_printf(m, " txabort:%d", info->icount.txabort); if (info->icount.rxshort) seq_printf(m, " rxshort:%d", info->icount.rxshort); if (info->icount.rxlong) seq_printf(m, " rxlong:%d", info->icount.rxlong); if (info->icount.rxover) seq_printf(m, " rxover:%d", info->icount.rxover); if (info->icount.rxcrc) seq_printf(m, " rxlong:%d", info->icount.rxcrc); } else { seq_printf(m, "\tASYNC tx:%d rx:%d", info->icount.tx, info->icount.rx); if (info->icount.frame) seq_printf(m, " fe:%d", info->icount.frame); if (info->icount.parity) seq_printf(m, " pe:%d", info->icount.parity); if (info->icount.brk) seq_printf(m, " brk:%d", info->icount.brk); if (info->icount.overrun) seq_printf(m, " oe:%d", info->icount.overrun); } /* Append serial signal status to end */ seq_printf(m, " %s\n", stat_buf+1); seq_printf(m, "\ttxactive=%d bh_req=%d bh_run=%d pending_bh=%x\n", info->tx_active,info->bh_requested,info->bh_running, info->pending_bh); } /* Called to print information about devices */ static int synclinkmp_proc_show(struct seq_file *m, void *v) { SLMP_INFO *info; seq_printf(m, "synclinkmp driver:%s\n", driver_version); info = synclinkmp_device_list; while( info ) { line_info(m, info); info = info->next_device; } return 0; } static int synclinkmp_proc_open(struct inode *inode, struct file *file) { return single_open(file, synclinkmp_proc_show, NULL); } static const struct file_operations synclinkmp_proc_fops = { .owner = THIS_MODULE, .open = synclinkmp_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; /* Return the count of bytes in transmit buffer */ static int chars_in_buffer(struct tty_struct *tty) { SLMP_INFO *info = tty->driver_data; if (sanity_check(info, tty->name, "chars_in_buffer")) return 0; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s chars_in_buffer()=%d\n", __FILE__, __LINE__, info->device_name, info->tx_count); return info->tx_count; } /* Signal remote device to throttle send data (our receive data) */ static void throttle(struct tty_struct * tty) { SLMP_INFO *info = tty->driver_data; unsigned long flags; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s throttle() entry\n", __FILE__,__LINE__, info->device_name ); if (sanity_check(info, tty->name, "throttle")) return; if (I_IXOFF(tty)) send_xchar(tty, STOP_CHAR(tty)); if (tty->termios->c_cflag & CRTSCTS) { spin_lock_irqsave(&info->lock,flags); info->serial_signals &= ~SerialSignal_RTS; set_signals(info); spin_unlock_irqrestore(&info->lock,flags); } } /* Signal remote device to stop throttling send data (our receive data) */ static void unthrottle(struct tty_struct * tty) { SLMP_INFO *info = tty->driver_data; unsigned long flags; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s unthrottle() entry\n", __FILE__,__LINE__, info->device_name ); if (sanity_check(info, tty->name, "unthrottle")) return; if (I_IXOFF(tty)) { if (info->x_char) info->x_char = 0; else send_xchar(tty, START_CHAR(tty)); } if (tty->termios->c_cflag & CRTSCTS) { spin_lock_irqsave(&info->lock,flags); info->serial_signals |= SerialSignal_RTS; set_signals(info); spin_unlock_irqrestore(&info->lock,flags); } } /* set or clear transmit break condition * break_state -1=set break condition, 0=clear */ static int set_break(struct tty_struct *tty, int break_state) { unsigned char RegValue; SLMP_INFO * info = tty->driver_data; unsigned long flags; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s set_break(%d)\n", __FILE__,__LINE__, info->device_name, break_state); if (sanity_check(info, tty->name, "set_break")) return -EINVAL; spin_lock_irqsave(&info->lock,flags); RegValue = read_reg(info, CTL); if (break_state == -1) RegValue |= BIT3; else RegValue &= ~BIT3; write_reg(info, CTL, RegValue); spin_unlock_irqrestore(&info->lock,flags); return 0; } #if SYNCLINK_GENERIC_HDLC /** * called by generic HDLC layer when protocol selected (PPP, frame relay, etc.) * set encoding and frame check sequence (FCS) options * * dev pointer to network device structure * encoding serial encoding setting * parity FCS setting * * returns 0 if success, otherwise error code */ static int hdlcdev_attach(struct net_device *dev, unsigned short encoding, unsigned short parity) { SLMP_INFO *info = dev_to_port(dev); unsigned char new_encoding; unsigned short new_crctype; /* return error if TTY interface open */ if (info->port.count) return -EBUSY; switch (encoding) { case ENCODING_NRZ: new_encoding = HDLC_ENCODING_NRZ; break; case ENCODING_NRZI: new_encoding = HDLC_ENCODING_NRZI_SPACE; break; case ENCODING_FM_MARK: new_encoding = HDLC_ENCODING_BIPHASE_MARK; break; case ENCODING_FM_SPACE: new_encoding = HDLC_ENCODING_BIPHASE_SPACE; break; case ENCODING_MANCHESTER: new_encoding = HDLC_ENCODING_BIPHASE_LEVEL; break; default: return -EINVAL; } switch (parity) { case PARITY_NONE: new_crctype = HDLC_CRC_NONE; break; case PARITY_CRC16_PR1_CCITT: new_crctype = HDLC_CRC_16_CCITT; break; case PARITY_CRC32_PR1_CCITT: new_crctype = HDLC_CRC_32_CCITT; break; default: return -EINVAL; } info->params.encoding = new_encoding; info->params.crc_type = new_crctype; /* if network interface up, reprogram hardware */ if (info->netcount) program_hw(info); return 0; } /** * called by generic HDLC layer to send frame * * skb socket buffer containing HDLC frame * dev pointer to network device structure */ static netdev_tx_t hdlcdev_xmit(struct sk_buff *skb, struct net_device *dev) { SLMP_INFO *info = dev_to_port(dev); unsigned long flags; if (debug_level >= DEBUG_LEVEL_INFO) printk(KERN_INFO "%s:hdlc_xmit(%s)\n",__FILE__,dev->name); /* stop sending until this frame completes */ netif_stop_queue(dev); /* copy data to device buffers */ info->tx_count = skb->len; tx_load_dma_buffer(info, skb->data, skb->len); /* update network statistics */ dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; /* done with socket buffer, so free it */ dev_kfree_skb(skb); /* save start time for transmit timeout detection */ dev->trans_start = jiffies; /* start hardware transmitter if necessary */ spin_lock_irqsave(&info->lock,flags); if (!info->tx_active) tx_start(info); spin_unlock_irqrestore(&info->lock,flags); return NETDEV_TX_OK; } /** * called by network layer when interface enabled * claim resources and initialize hardware * * dev pointer to network device structure * * returns 0 if success, otherwise error code */ static int hdlcdev_open(struct net_device *dev) { SLMP_INFO *info = dev_to_port(dev); int rc; unsigned long flags; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s:hdlcdev_open(%s)\n",__FILE__,dev->name); /* generic HDLC layer open processing */ if ((rc = hdlc_open(dev))) return rc; /* arbitrate between network and tty opens */ spin_lock_irqsave(&info->netlock, flags); if (info->port.count != 0 || info->netcount != 0) { printk(KERN_WARNING "%s: hdlc_open returning busy\n", dev->name); spin_unlock_irqrestore(&info->netlock, flags); return -EBUSY; } info->netcount=1; spin_unlock_irqrestore(&info->netlock, flags); /* claim resources and init adapter */ if ((rc = startup(info)) != 0) { spin_lock_irqsave(&info->netlock, flags); info->netcount=0; spin_unlock_irqrestore(&info->netlock, flags); return rc; } /* assert DTR and RTS, apply hardware settings */ info->serial_signals |= SerialSignal_RTS + SerialSignal_DTR; program_hw(info); /* enable network layer transmit */ dev->trans_start = jiffies; netif_start_queue(dev); /* inform generic HDLC layer of current DCD status */ spin_lock_irqsave(&info->lock, flags); get_signals(info); spin_unlock_irqrestore(&info->lock, flags); if (info->serial_signals & SerialSignal_DCD) netif_carrier_on(dev); else netif_carrier_off(dev); return 0; } /** * called by network layer when interface is disabled * shutdown hardware and release resources * * dev pointer to network device structure * * returns 0 if success, otherwise error code */ static int hdlcdev_close(struct net_device *dev) { SLMP_INFO *info = dev_to_port(dev); unsigned long flags; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s:hdlcdev_close(%s)\n",__FILE__,dev->name); netif_stop_queue(dev); /* shutdown adapter and release resources */ shutdown(info); hdlc_close(dev); spin_lock_irqsave(&info->netlock, flags); info->netcount=0; spin_unlock_irqrestore(&info->netlock, flags); return 0; } /** * called by network layer to process IOCTL call to network device * * dev pointer to network device structure * ifr pointer to network interface request structure * cmd IOCTL command code * * returns 0 if success, otherwise error code */ static int hdlcdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { const size_t size = sizeof(sync_serial_settings); sync_serial_settings new_line; sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync; SLMP_INFO *info = dev_to_port(dev); unsigned int flags; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s:hdlcdev_ioctl(%s)\n",__FILE__,dev->name); /* return error if TTY interface open */ if (info->port.count) return -EBUSY; if (cmd != SIOCWANDEV) return hdlc_ioctl(dev, ifr, cmd); switch(ifr->ifr_settings.type) { case IF_GET_IFACE: /* return current sync_serial_settings */ ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL; if (ifr->ifr_settings.size < size) { ifr->ifr_settings.size = size; /* data size wanted */ return -ENOBUFS; } flags = info->params.flags & (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL | HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN | HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL | HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); switch (flags){ case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN): new_line.clock_type = CLOCK_EXT; break; case (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_INT; break; case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_TXINT; break; case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN): new_line.clock_type = CLOCK_TXFROMRX; break; default: new_line.clock_type = CLOCK_DEFAULT; } new_line.clock_rate = info->params.clock_speed; new_line.loopback = info->params.loopback ? 1:0; if (copy_to_user(line, &new_line, size)) return -EFAULT; return 0; case IF_IFACE_SYNC_SERIAL: /* set sync_serial_settings */ if(!capable(CAP_NET_ADMIN)) return -EPERM; if (copy_from_user(&new_line, line, size)) return -EFAULT; switch (new_line.clock_type) { case CLOCK_EXT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN; break; case CLOCK_TXFROMRX: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN; break; case CLOCK_INT: flags = HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG; break; case CLOCK_TXINT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG; break; case CLOCK_DEFAULT: flags = info->params.flags & (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL | HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN | HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL | HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); break; default: return -EINVAL; } if (new_line.loopback != 0 && new_line.loopback != 1) return -EINVAL; info->params.flags &= ~(HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL | HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN | HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL | HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); info->params.flags |= flags; info->params.loopback = new_line.loopback; if (flags & (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG)) info->params.clock_speed = new_line.clock_rate; else info->params.clock_speed = 0; /* if network interface up, reprogram hardware */ if (info->netcount) program_hw(info); return 0; default: return hdlc_ioctl(dev, ifr, cmd); } } /** * called by network layer when transmit timeout is detected * * dev pointer to network device structure */ static void hdlcdev_tx_timeout(struct net_device *dev) { SLMP_INFO *info = dev_to_port(dev); unsigned long flags; if (debug_level >= DEBUG_LEVEL_INFO) printk("hdlcdev_tx_timeout(%s)\n",dev->name); dev->stats.tx_errors++; dev->stats.tx_aborted_errors++; spin_lock_irqsave(&info->lock,flags); tx_stop(info); spin_unlock_irqrestore(&info->lock,flags); netif_wake_queue(dev); } /** * called by device driver when transmit completes * reenable network layer transmit if stopped * * info pointer to device instance information */ static void hdlcdev_tx_done(SLMP_INFO *info) { if (netif_queue_stopped(info->netdev)) netif_wake_queue(info->netdev); } /** * called by device driver when frame received * pass frame to network layer * * info pointer to device instance information * buf pointer to buffer contianing frame data * size count of data bytes in buf */ static void hdlcdev_rx(SLMP_INFO *info, char *buf, int size) { struct sk_buff *skb = dev_alloc_skb(size); struct net_device *dev = info->netdev; if (debug_level >= DEBUG_LEVEL_INFO) printk("hdlcdev_rx(%s)\n",dev->name); if (skb == NULL) { printk(KERN_NOTICE "%s: can't alloc skb, dropping packet\n", dev->name); dev->stats.rx_dropped++; return; } memcpy(skb_put(skb, size), buf, size); skb->protocol = hdlc_type_trans(skb, dev); dev->stats.rx_packets++; dev->stats.rx_bytes += size; netif_rx(skb); } static const struct net_device_ops hdlcdev_ops = { .ndo_open = hdlcdev_open, .ndo_stop = hdlcdev_close, .ndo_change_mtu = hdlc_change_mtu, .ndo_start_xmit = hdlc_start_xmit, .ndo_do_ioctl = hdlcdev_ioctl, .ndo_tx_timeout = hdlcdev_tx_timeout, }; /** * called by device driver when adding device instance * do generic HDLC initialization * * info pointer to device instance information * * returns 0 if success, otherwise error code */ static int hdlcdev_init(SLMP_INFO *info) { int rc; struct net_device *dev; hdlc_device *hdlc; /* allocate and initialize network and HDLC layer objects */ if (!(dev = alloc_hdlcdev(info))) { printk(KERN_ERR "%s:hdlc device allocation failure\n",__FILE__); return -ENOMEM; } /* for network layer reporting purposes only */ dev->mem_start = info->phys_sca_base; dev->mem_end = info->phys_sca_base + SCA_BASE_SIZE - 1; dev->irq = info->irq_level; /* network layer callbacks and settings */ dev->netdev_ops = &hdlcdev_ops; dev->watchdog_timeo = 10 * HZ; dev->tx_queue_len = 50; /* generic HDLC layer callbacks and settings */ hdlc = dev_to_hdlc(dev); hdlc->attach = hdlcdev_attach; hdlc->xmit = hdlcdev_xmit; /* register objects with HDLC layer */ if ((rc = register_hdlc_device(dev))) { printk(KERN_WARNING "%s:unable to register hdlc device\n",__FILE__); free_netdev(dev); return rc; } info->netdev = dev; return 0; } /** * called by device driver when removing device instance * do generic HDLC cleanup * * info pointer to device instance information */ static void hdlcdev_exit(SLMP_INFO *info) { unregister_hdlc_device(info->netdev); free_netdev(info->netdev); info->netdev = NULL; } #endif /* CONFIG_HDLC */ /* Return next bottom half action to perform. * Return Value: BH action code or 0 if nothing to do. */ static int bh_action(SLMP_INFO *info) { unsigned long flags; int rc = 0; spin_lock_irqsave(&info->lock,flags); if (info->pending_bh & BH_RECEIVE) { info->pending_bh &= ~BH_RECEIVE; rc = BH_RECEIVE; } else if (info->pending_bh & BH_TRANSMIT) { info->pending_bh &= ~BH_TRANSMIT; rc = BH_TRANSMIT; } else if (info->pending_bh & BH_STATUS) { info->pending_bh &= ~BH_STATUS; rc = BH_STATUS; } if (!rc) { /* Mark BH routine as complete */ info->bh_running = false; info->bh_requested = false; } spin_unlock_irqrestore(&info->lock,flags); return rc; } /* Perform bottom half processing of work items queued by ISR. */ static void bh_handler(struct work_struct *work) { SLMP_INFO *info = container_of(work, SLMP_INFO, task); int action; if (!info) return; if ( debug_level >= DEBUG_LEVEL_BH ) printk( "%s(%d):%s bh_handler() entry\n", __FILE__,__LINE__,info->device_name); info->bh_running = true; while((action = bh_action(info)) != 0) { /* Process work item */ if ( debug_level >= DEBUG_LEVEL_BH ) printk( "%s(%d):%s bh_handler() work item action=%d\n", __FILE__,__LINE__,info->device_name, action); switch (action) { case BH_RECEIVE: bh_receive(info); break; case BH_TRANSMIT: bh_transmit(info); break; case BH_STATUS: bh_status(info); break; default: /* unknown work item ID */ printk("%s(%d):%s Unknown work item ID=%08X!\n", __FILE__,__LINE__,info->device_name,action); break; } } if ( debug_level >= DEBUG_LEVEL_BH ) printk( "%s(%d):%s bh_handler() exit\n", __FILE__,__LINE__,info->device_name); } static void bh_receive(SLMP_INFO *info) { if ( debug_level >= DEBUG_LEVEL_BH ) printk( "%s(%d):%s bh_receive()\n", __FILE__,__LINE__,info->device_name); while( rx_get_frame(info) ); } static void bh_transmit(SLMP_INFO *info) { struct tty_struct *tty = info->port.tty; if ( debug_level >= DEBUG_LEVEL_BH ) printk( "%s(%d):%s bh_transmit() entry\n", __FILE__,__LINE__,info->device_name); if (tty) tty_wakeup(tty); } static void bh_status(SLMP_INFO *info) { if ( debug_level >= DEBUG_LEVEL_BH ) printk( "%s(%d):%s bh_status() entry\n", __FILE__,__LINE__,info->device_name); info->ri_chkcount = 0; info->dsr_chkcount = 0; info->dcd_chkcount = 0; info->cts_chkcount = 0; } static void isr_timer(SLMP_INFO * info) { unsigned char timer = (info->port_num & 1) ? TIMER2 : TIMER0; /* IER2<7..4> = timer<3..0> interrupt enables (0=disabled) */ write_reg(info, IER2, 0); /* TMCS, Timer Control/Status Register * * 07 CMF, Compare match flag (read only) 1=match * 06 ECMI, CMF Interrupt Enable: 0=disabled * 05 Reserved, must be 0 * 04 TME, Timer Enable * 03..00 Reserved, must be 0 * * 0000 0000 */ write_reg(info, (unsigned char)(timer + TMCS), 0); info->irq_occurred = true; if ( debug_level >= DEBUG_LEVEL_ISR ) printk("%s(%d):%s isr_timer()\n", __FILE__,__LINE__,info->device_name); } static void isr_rxint(SLMP_INFO * info) { struct tty_struct *tty = info->port.tty; struct mgsl_icount *icount = &info->icount; unsigned char status = read_reg(info, SR1) & info->ie1_value & (FLGD + IDLD + CDCD + BRKD); unsigned char status2 = read_reg(info, SR2) & info->ie2_value & OVRN; /* clear status bits */ if (status) write_reg(info, SR1, status); if (status2) write_reg(info, SR2, status2); if ( debug_level >= DEBUG_LEVEL_ISR ) printk("%s(%d):%s isr_rxint status=%02X %02x\n", __FILE__,__LINE__,info->device_name,status,status2); if (info->params.mode == MGSL_MODE_ASYNC) { if (status & BRKD) { icount->brk++; /* process break detection if tty control * is not set to ignore it */ if ( tty ) { if (!(status & info->ignore_status_mask1)) { if (info->read_status_mask1 & BRKD) { tty_insert_flip_char(tty, 0, TTY_BREAK); if (info->port.flags & ASYNC_SAK) do_SAK(tty); } } } } } else { if (status & (FLGD|IDLD)) { if (status & FLGD) info->icount.exithunt++; else if (status & IDLD) info->icount.rxidle++; wake_up_interruptible(&info->event_wait_q); } } if (status & CDCD) { /* simulate a common modem status change interrupt * for our handler */ get_signals( info ); isr_io_pin(info, MISCSTATUS_DCD_LATCHED|(info->serial_signals&SerialSignal_DCD)); } } /* * handle async rx data interrupts */ static void isr_rxrdy(SLMP_INFO * info) { u16 status; unsigned char DataByte; struct tty_struct *tty = info->port.tty; struct mgsl_icount *icount = &info->icount; if ( debug_level >= DEBUG_LEVEL_ISR ) printk("%s(%d):%s isr_rxrdy\n", __FILE__,__LINE__,info->device_name); while((status = read_reg(info,CST0)) & BIT0) { int flag = 0; bool over = false; DataByte = read_reg(info,TRB); icount->rx++; if ( status & (PE + FRME + OVRN) ) { printk("%s(%d):%s rxerr=%04X\n", __FILE__,__LINE__,info->device_name,status); /* update error statistics */ if (status & PE) icount->parity++; else if (status & FRME) icount->frame++; else if (status & OVRN) icount->overrun++; /* discard char if tty control flags say so */ if (status & info->ignore_status_mask2) continue; status &= info->read_status_mask2; if ( tty ) { if (status & PE) flag = TTY_PARITY; else if (status & FRME) flag = TTY_FRAME; if (status & OVRN) { /* Overrun is special, since it's * reported immediately, and doesn't * affect the current character */ over = true; } } } /* end of if (error) */ if ( tty ) { tty_insert_flip_char(tty, DataByte, flag); if (over) tty_insert_flip_char(tty, 0, TTY_OVERRUN); } } if ( debug_level >= DEBUG_LEVEL_ISR ) { printk("%s(%d):%s rx=%d brk=%d parity=%d frame=%d overrun=%d\n", __FILE__,__LINE__,info->device_name, icount->rx,icount->brk,icount->parity, icount->frame,icount->overrun); } if ( tty ) tty_flip_buffer_push(tty); } static void isr_txeom(SLMP_INFO * info, unsigned char status) { if ( debug_level >= DEBUG_LEVEL_ISR ) printk("%s(%d):%s isr_txeom status=%02x\n", __FILE__,__LINE__,info->device_name,status); write_reg(info, TXDMA + DIR, 0x00); /* disable Tx DMA IRQs */ write_reg(info, TXDMA + DSR, 0xc0); /* clear IRQs and disable DMA */ write_reg(info, TXDMA + DCMD, SWABORT); /* reset/init DMA channel */ if (status & UDRN) { write_reg(info, CMD, TXRESET); write_reg(info, CMD, TXENABLE); } else write_reg(info, CMD, TXBUFCLR); /* disable and clear tx interrupts */ info->ie0_value &= ~TXRDYE; info->ie1_value &= ~(IDLE + UDRN); write_reg16(info, IE0, (unsigned short)((info->ie1_value << 8) + info->ie0_value)); write_reg(info, SR1, (unsigned char)(UDRN + IDLE)); if ( info->tx_active ) { if (info->params.mode != MGSL_MODE_ASYNC) { if (status & UDRN) info->icount.txunder++; else if (status & IDLE) info->icount.txok++; } info->tx_active = false; info->tx_count = info->tx_put = info->tx_get = 0; del_timer(&info->tx_timer); if (info->params.mode != MGSL_MODE_ASYNC && info->drop_rts_on_tx_done ) { info->serial_signals &= ~SerialSignal_RTS; info->drop_rts_on_tx_done = false; set_signals(info); } #if SYNCLINK_GENERIC_HDLC if (info->netcount) hdlcdev_tx_done(info); else #endif { if (info->port.tty && (info->port.tty->stopped || info->port.tty->hw_stopped)) { tx_stop(info); return; } info->pending_bh |= BH_TRANSMIT; } } } /* * handle tx status interrupts */ static void isr_txint(SLMP_INFO * info) { unsigned char status = read_reg(info, SR1) & info->ie1_value & (UDRN + IDLE + CCTS); /* clear status bits */ write_reg(info, SR1, status); if ( debug_level >= DEBUG_LEVEL_ISR ) printk("%s(%d):%s isr_txint status=%02x\n", __FILE__,__LINE__,info->device_name,status); if (status & (UDRN + IDLE)) isr_txeom(info, status); if (status & CCTS) { /* simulate a common modem status change interrupt * for our handler */ get_signals( info ); isr_io_pin(info, MISCSTATUS_CTS_LATCHED|(info->serial_signals&SerialSignal_CTS)); } } /* * handle async tx data interrupts */ static void isr_txrdy(SLMP_INFO * info) { if ( debug_level >= DEBUG_LEVEL_ISR ) printk("%s(%d):%s isr_txrdy() tx_count=%d\n", __FILE__,__LINE__,info->device_name,info->tx_count); if (info->params.mode != MGSL_MODE_ASYNC) { /* disable TXRDY IRQ, enable IDLE IRQ */ info->ie0_value &= ~TXRDYE; info->ie1_value |= IDLE; write_reg16(info, IE0, (unsigned short)((info->ie1_value << 8) + info->ie0_value)); return; } if (info->port.tty && (info->port.tty->stopped || info->port.tty->hw_stopped)) { tx_stop(info); return; } if ( info->tx_count ) tx_load_fifo( info ); else { info->tx_active = false; info->ie0_value &= ~TXRDYE; write_reg(info, IE0, info->ie0_value); } if (info->tx_count < WAKEUP_CHARS) info->pending_bh |= BH_TRANSMIT; } static void isr_rxdmaok(SLMP_INFO * info) { /* BIT7 = EOT (end of transfer) * BIT6 = EOM (end of message/frame) */ unsigned char status = read_reg(info,RXDMA + DSR) & 0xc0; /* clear IRQ (BIT0 must be 1 to prevent clearing DE bit) */ write_reg(info, RXDMA + DSR, (unsigned char)(status | 1)); if ( debug_level >= DEBUG_LEVEL_ISR ) printk("%s(%d):%s isr_rxdmaok(), status=%02x\n", __FILE__,__LINE__,info->device_name,status); info->pending_bh |= BH_RECEIVE; } static void isr_rxdmaerror(SLMP_INFO * info) { /* BIT5 = BOF (buffer overflow) * BIT4 = COF (counter overflow) */ unsigned char status = read_reg(info,RXDMA + DSR) & 0x30; /* clear IRQ (BIT0 must be 1 to prevent clearing DE bit) */ write_reg(info, RXDMA + DSR, (unsigned char)(status | 1)); if ( debug_level >= DEBUG_LEVEL_ISR ) printk("%s(%d):%s isr_rxdmaerror(), status=%02x\n", __FILE__,__LINE__,info->device_name,status); info->rx_overflow = true; info->pending_bh |= BH_RECEIVE; } static void isr_txdmaok(SLMP_INFO * info) { unsigned char status_reg1 = read_reg(info, SR1); write_reg(info, TXDMA + DIR, 0x00); /* disable Tx DMA IRQs */ write_reg(info, TXDMA + DSR, 0xc0); /* clear IRQs and disable DMA */ write_reg(info, TXDMA + DCMD, SWABORT); /* reset/init DMA channel */ if ( debug_level >= DEBUG_LEVEL_ISR ) printk("%s(%d):%s isr_txdmaok(), status=%02x\n", __FILE__,__LINE__,info->device_name,status_reg1); /* program TXRDY as FIFO empty flag, enable TXRDY IRQ */ write_reg16(info, TRC0, 0); info->ie0_value |= TXRDYE; write_reg(info, IE0, info->ie0_value); } static void isr_txdmaerror(SLMP_INFO * info) { /* BIT5 = BOF (buffer overflow) * BIT4 = COF (counter overflow) */ unsigned char status = read_reg(info,TXDMA + DSR) & 0x30; /* clear IRQ (BIT0 must be 1 to prevent clearing DE bit) */ write_reg(info, TXDMA + DSR, (unsigned char)(status | 1)); if ( debug_level >= DEBUG_LEVEL_ISR ) printk("%s(%d):%s isr_txdmaerror(), status=%02x\n", __FILE__,__LINE__,info->device_name,status); } /* handle input serial signal changes */ static void isr_io_pin( SLMP_INFO *info, u16 status ) { struct mgsl_icount *icount; if ( debug_level >= DEBUG_LEVEL_ISR ) printk("%s(%d):isr_io_pin status=%04X\n", __FILE__,__LINE__,status); if (status & (MISCSTATUS_CTS_LATCHED | MISCSTATUS_DCD_LATCHED | MISCSTATUS_DSR_LATCHED | MISCSTATUS_RI_LATCHED) ) { icount = &info->icount; /* update input line counters */ if (status & MISCSTATUS_RI_LATCHED) { icount->rng++; if ( status & SerialSignal_RI ) info->input_signal_events.ri_up++; else info->input_signal_events.ri_down++; } if (status & MISCSTATUS_DSR_LATCHED) { icount->dsr++; if ( status & SerialSignal_DSR ) info->input_signal_events.dsr_up++; else info->input_signal_events.dsr_down++; } if (status & MISCSTATUS_DCD_LATCHED) { if ((info->dcd_chkcount)++ >= IO_PIN_SHUTDOWN_LIMIT) { info->ie1_value &= ~CDCD; write_reg(info, IE1, info->ie1_value); } icount->dcd++; if (status & SerialSignal_DCD) { info->input_signal_events.dcd_up++; } else info->input_signal_events.dcd_down++; #if SYNCLINK_GENERIC_HDLC if (info->netcount) { if (status & SerialSignal_DCD) netif_carrier_on(info->netdev); else netif_carrier_off(info->netdev); } #endif } if (status & MISCSTATUS_CTS_LATCHED) { if ((info->cts_chkcount)++ >= IO_PIN_SHUTDOWN_LIMIT) { info->ie1_value &= ~CCTS; write_reg(info, IE1, info->ie1_value); } icount->cts++; if ( status & SerialSignal_CTS ) info->input_signal_events.cts_up++; else info->input_signal_events.cts_down++; } wake_up_interruptible(&info->status_event_wait_q); wake_up_interruptible(&info->event_wait_q); if ( (info->port.flags & ASYNC_CHECK_CD) && (status & MISCSTATUS_DCD_LATCHED) ) { if ( debug_level >= DEBUG_LEVEL_ISR ) printk("%s CD now %s...", info->device_name, (status & SerialSignal_DCD) ? "on" : "off"); if (status & SerialSignal_DCD) wake_up_interruptible(&info->port.open_wait); else { if ( debug_level >= DEBUG_LEVEL_ISR ) printk("doing serial hangup..."); if (info->port.tty) tty_hangup(info->port.tty); } } if ( (info->port.flags & ASYNC_CTS_FLOW) && (status & MISCSTATUS_CTS_LATCHED) ) { if ( info->port.tty ) { if (info->port.tty->hw_stopped) { if (status & SerialSignal_CTS) { if ( debug_level >= DEBUG_LEVEL_ISR ) printk("CTS tx start..."); info->port.tty->hw_stopped = 0; tx_start(info); info->pending_bh |= BH_TRANSMIT; return; } } else { if (!(status & SerialSignal_CTS)) { if ( debug_level >= DEBUG_LEVEL_ISR ) printk("CTS tx stop..."); info->port.tty->hw_stopped = 1; tx_stop(info); } } } } } info->pending_bh |= BH_STATUS; } /* Interrupt service routine entry point. * * Arguments: * irq interrupt number that caused interrupt * dev_id device ID supplied during interrupt registration * regs interrupted processor context */ static irqreturn_t synclinkmp_interrupt(int dummy, void *dev_id) { SLMP_INFO *info = dev_id; unsigned char status, status0, status1=0; unsigned char dmastatus, dmastatus0, dmastatus1=0; unsigned char timerstatus0, timerstatus1=0; unsigned char shift; unsigned int i; unsigned short tmp; if ( debug_level >= DEBUG_LEVEL_ISR ) printk(KERN_DEBUG "%s(%d): synclinkmp_interrupt(%d)entry.\n", __FILE__, __LINE__, info->irq_level); spin_lock(&info->lock); for(;;) { /* get status for SCA0 (ports 0-1) */ tmp = read_reg16(info, ISR0); /* get ISR0 and ISR1 in one read */ status0 = (unsigned char)tmp; dmastatus0 = (unsigned char)(tmp>>8); timerstatus0 = read_reg(info, ISR2); if ( debug_level >= DEBUG_LEVEL_ISR ) printk(KERN_DEBUG "%s(%d):%s status0=%02x, dmastatus0=%02x, timerstatus0=%02x\n", __FILE__, __LINE__, info->device_name, status0, dmastatus0, timerstatus0); if (info->port_count == 4) { /* get status for SCA1 (ports 2-3) */ tmp = read_reg16(info->port_array[2], ISR0); status1 = (unsigned char)tmp; dmastatus1 = (unsigned char)(tmp>>8); timerstatus1 = read_reg(info->port_array[2], ISR2); if ( debug_level >= DEBUG_LEVEL_ISR ) printk("%s(%d):%s status1=%02x, dmastatus1=%02x, timerstatus1=%02x\n", __FILE__,__LINE__,info->device_name, status1,dmastatus1,timerstatus1); } if (!status0 && !dmastatus0 && !timerstatus0 && !status1 && !dmastatus1 && !timerstatus1) break; for(i=0; i < info->port_count ; i++) { if (info->port_array[i] == NULL) continue; if (i < 2) { status = status0; dmastatus = dmastatus0; } else { status = status1; dmastatus = dmastatus1; } shift = i & 1 ? 4 :0; if (status & BIT0 << shift) isr_rxrdy(info->port_array[i]); if (status & BIT1 << shift) isr_txrdy(info->port_array[i]); if (status & BIT2 << shift) isr_rxint(info->port_array[i]); if (status & BIT3 << shift) isr_txint(info->port_array[i]); if (dmastatus & BIT0 << shift) isr_rxdmaerror(info->port_array[i]); if (dmastatus & BIT1 << shift) isr_rxdmaok(info->port_array[i]); if (dmastatus & BIT2 << shift) isr_txdmaerror(info->port_array[i]); if (dmastatus & BIT3 << shift) isr_txdmaok(info->port_array[i]); } if (timerstatus0 & (BIT5 | BIT4)) isr_timer(info->port_array[0]); if (timerstatus0 & (BIT7 | BIT6)) isr_timer(info->port_array[1]); if (timerstatus1 & (BIT5 | BIT4)) isr_timer(info->port_array[2]); if (timerstatus1 & (BIT7 | BIT6)) isr_timer(info->port_array[3]); } for(i=0; i < info->port_count ; i++) { SLMP_INFO * port = info->port_array[i]; /* Request bottom half processing if there's something * for it to do and the bh is not already running. * * Note: startup adapter diags require interrupts. * do not request bottom half processing if the * device is not open in a normal mode. */ if ( port && (port->port.count || port->netcount) && port->pending_bh && !port->bh_running && !port->bh_requested ) { if ( debug_level >= DEBUG_LEVEL_ISR ) printk("%s(%d):%s queueing bh task.\n", __FILE__,__LINE__,port->device_name); schedule_work(&port->task); port->bh_requested = true; } } spin_unlock(&info->lock); if ( debug_level >= DEBUG_LEVEL_ISR ) printk(KERN_DEBUG "%s(%d):synclinkmp_interrupt(%d)exit.\n", __FILE__, __LINE__, info->irq_level); return IRQ_HANDLED; } /* Initialize and start device. */ static int startup(SLMP_INFO * info) { if ( debug_level >= DEBUG_LEVEL_INFO ) printk("%s(%d):%s tx_releaseup()\n",__FILE__,__LINE__,info->device_name); if (info->port.flags & ASYNC_INITIALIZED) return 0; if (!info->tx_buf) { info->tx_buf = kmalloc(info->max_frame_size, GFP_KERNEL); if (!info->tx_buf) { printk(KERN_ERR"%s(%d):%s can't allocate transmit buffer\n", __FILE__,__LINE__,info->device_name); return -ENOMEM; } } info->pending_bh = 0; memset(&info->icount, 0, sizeof(info->icount)); /* program hardware for current parameters */ reset_port(info); change_params(info); mod_timer(&info->status_timer, jiffies + msecs_to_jiffies(10)); if (info->port.tty) clear_bit(TTY_IO_ERROR, &info->port.tty->flags); info->port.flags |= ASYNC_INITIALIZED; return 0; } /* Called by close() and hangup() to shutdown hardware */ static void shutdown(SLMP_INFO * info) { unsigned long flags; if (!(info->port.flags & ASYNC_INITIALIZED)) return; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s synclinkmp_shutdown()\n", __FILE__,__LINE__, info->device_name ); /* clear status wait queue because status changes */ /* can't happen after shutting down the hardware */ wake_up_interruptible(&info->status_event_wait_q); wake_up_interruptible(&info->event_wait_q); del_timer(&info->tx_timer); del_timer(&info->status_timer); kfree(info->tx_buf); info->tx_buf = NULL; spin_lock_irqsave(&info->lock,flags); reset_port(info); if (!info->port.tty || info->port.tty->termios->c_cflag & HUPCL) { info->serial_signals &= ~(SerialSignal_DTR + SerialSignal_RTS); set_signals(info); } spin_unlock_irqrestore(&info->lock,flags); if (info->port.tty) set_bit(TTY_IO_ERROR, &info->port.tty->flags); info->port.flags &= ~ASYNC_INITIALIZED; } static void program_hw(SLMP_INFO *info) { unsigned long flags; spin_lock_irqsave(&info->lock,flags); rx_stop(info); tx_stop(info); info->tx_count = info->tx_put = info->tx_get = 0; if (info->params.mode == MGSL_MODE_HDLC || info->netcount) hdlc_mode(info); else async_mode(info); set_signals(info); info->dcd_chkcount = 0; info->cts_chkcount = 0; info->ri_chkcount = 0; info->dsr_chkcount = 0; info->ie1_value |= (CDCD|CCTS); write_reg(info, IE1, info->ie1_value); get_signals(info); if (info->netcount || (info->port.tty && info->port.tty->termios->c_cflag & CREAD) ) rx_start(info); spin_unlock_irqrestore(&info->lock,flags); } /* Reconfigure adapter based on new parameters */ static void change_params(SLMP_INFO *info) { unsigned cflag; int bits_per_char; if (!info->port.tty || !info->port.tty->termios) return; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s change_params()\n", __FILE__,__LINE__, info->device_name ); cflag = info->port.tty->termios->c_cflag; /* if B0 rate (hangup) specified then negate DTR and RTS */ /* otherwise assert DTR and RTS */ if (cflag & CBAUD) info->serial_signals |= SerialSignal_RTS + SerialSignal_DTR; else info->serial_signals &= ~(SerialSignal_RTS + SerialSignal_DTR); /* byte size and parity */ switch (cflag & CSIZE) { case CS5: info->params.data_bits = 5; break; case CS6: info->params.data_bits = 6; break; case CS7: info->params.data_bits = 7; break; case CS8: info->params.data_bits = 8; break; /* Never happens, but GCC is too dumb to figure it out */ default: info->params.data_bits = 7; break; } if (cflag & CSTOPB) info->params.stop_bits = 2; else info->params.stop_bits = 1; info->params.parity = ASYNC_PARITY_NONE; if (cflag & PARENB) { if (cflag & PARODD) info->params.parity = ASYNC_PARITY_ODD; else info->params.parity = ASYNC_PARITY_EVEN; #ifdef CMSPAR if (cflag & CMSPAR) info->params.parity = ASYNC_PARITY_SPACE; #endif } /* calculate number of jiffies to transmit a full * FIFO (32 bytes) at specified data rate */ bits_per_char = info->params.data_bits + info->params.stop_bits + 1; /* if port data rate is set to 460800 or less then * allow tty settings to override, otherwise keep the * current data rate. */ if (info->params.data_rate <= 460800) { info->params.data_rate = tty_get_baud_rate(info->port.tty); } if ( info->params.data_rate ) { info->timeout = (32*HZ*bits_per_char) / info->params.data_rate; } info->timeout += HZ/50; /* Add .02 seconds of slop */ if (cflag & CRTSCTS) info->port.flags |= ASYNC_CTS_FLOW; else info->port.flags &= ~ASYNC_CTS_FLOW; if (cflag & CLOCAL) info->port.flags &= ~ASYNC_CHECK_CD; else info->port.flags |= ASYNC_CHECK_CD; /* process tty input control flags */ info->read_status_mask2 = OVRN; if (I_INPCK(info->port.tty)) info->read_status_mask2 |= PE | FRME; if (I_BRKINT(info->port.tty) || I_PARMRK(info->port.tty)) info->read_status_mask1 |= BRKD; if (I_IGNPAR(info->port.tty)) info->ignore_status_mask2 |= PE | FRME; if (I_IGNBRK(info->port.tty)) { info->ignore_status_mask1 |= BRKD; /* If ignoring parity and break indicators, ignore * overruns too. (For real raw support). */ if (I_IGNPAR(info->port.tty)) info->ignore_status_mask2 |= OVRN; } program_hw(info); } static int get_stats(SLMP_INFO * info, struct mgsl_icount __user *user_icount) { int err; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s get_params()\n", __FILE__,__LINE__, info->device_name); if (!user_icount) { memset(&info->icount, 0, sizeof(info->icount)); } else { mutex_lock(&info->port.mutex); COPY_TO_USER(err, user_icount, &info->icount, sizeof(struct mgsl_icount)); mutex_unlock(&info->port.mutex); if (err) return -EFAULT; } return 0; } static int get_params(SLMP_INFO * info, MGSL_PARAMS __user *user_params) { int err; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s get_params()\n", __FILE__,__LINE__, info->device_name); mutex_lock(&info->port.mutex); COPY_TO_USER(err,user_params, &info->params, sizeof(MGSL_PARAMS)); mutex_unlock(&info->port.mutex); if (err) { if ( debug_level >= DEBUG_LEVEL_INFO ) printk( "%s(%d):%s get_params() user buffer copy failed\n", __FILE__,__LINE__,info->device_name); return -EFAULT; } return 0; } static int set_params(SLMP_INFO * info, MGSL_PARAMS __user *new_params) { unsigned long flags; MGSL_PARAMS tmp_params; int err; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s set_params\n", __FILE__,__LINE__,info->device_name ); COPY_FROM_USER(err,&tmp_params, new_params, sizeof(MGSL_PARAMS)); if (err) { if ( debug_level >= DEBUG_LEVEL_INFO ) printk( "%s(%d):%s set_params() user buffer copy failed\n", __FILE__,__LINE__,info->device_name); return -EFAULT; } mutex_lock(&info->port.mutex); spin_lock_irqsave(&info->lock,flags); memcpy(&info->params,&tmp_params,sizeof(MGSL_PARAMS)); spin_unlock_irqrestore(&info->lock,flags); change_params(info); mutex_unlock(&info->port.mutex); return 0; } static int get_txidle(SLMP_INFO * info, int __user *idle_mode) { int err; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s get_txidle()=%d\n", __FILE__,__LINE__, info->device_name, info->idle_mode); COPY_TO_USER(err,idle_mode, &info->idle_mode, sizeof(int)); if (err) { if ( debug_level >= DEBUG_LEVEL_INFO ) printk( "%s(%d):%s get_txidle() user buffer copy failed\n", __FILE__,__LINE__,info->device_name); return -EFAULT; } return 0; } static int set_txidle(SLMP_INFO * info, int idle_mode) { unsigned long flags; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s set_txidle(%d)\n", __FILE__,__LINE__,info->device_name, idle_mode ); spin_lock_irqsave(&info->lock,flags); info->idle_mode = idle_mode; tx_set_idle( info ); spin_unlock_irqrestore(&info->lock,flags); return 0; } static int tx_enable(SLMP_INFO * info, int enable) { unsigned long flags; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s tx_enable(%d)\n", __FILE__,__LINE__,info->device_name, enable); spin_lock_irqsave(&info->lock,flags); if ( enable ) { if ( !info->tx_enabled ) { tx_start(info); } } else { if ( info->tx_enabled ) tx_stop(info); } spin_unlock_irqrestore(&info->lock,flags); return 0; } /* abort send HDLC frame */ static int tx_abort(SLMP_INFO * info) { unsigned long flags; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s tx_abort()\n", __FILE__,__LINE__,info->device_name); spin_lock_irqsave(&info->lock,flags); if ( info->tx_active && info->params.mode == MGSL_MODE_HDLC ) { info->ie1_value &= ~UDRN; info->ie1_value |= IDLE; write_reg(info, IE1, info->ie1_value); /* disable tx status interrupts */ write_reg(info, SR1, (unsigned char)(IDLE + UDRN)); /* clear pending */ write_reg(info, TXDMA + DSR, 0); /* disable DMA channel */ write_reg(info, TXDMA + DCMD, SWABORT); /* reset/init DMA channel */ write_reg(info, CMD, TXABORT); } spin_unlock_irqrestore(&info->lock,flags); return 0; } static int rx_enable(SLMP_INFO * info, int enable) { unsigned long flags; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s rx_enable(%d)\n", __FILE__,__LINE__,info->device_name,enable); spin_lock_irqsave(&info->lock,flags); if ( enable ) { if ( !info->rx_enabled ) rx_start(info); } else { if ( info->rx_enabled ) rx_stop(info); } spin_unlock_irqrestore(&info->lock,flags); return 0; } /* wait for specified event to occur */ static int wait_mgsl_event(SLMP_INFO * info, int __user *mask_ptr) { unsigned long flags; int s; int rc=0; struct mgsl_icount cprev, cnow; int events; int mask; struct _input_signal_events oldsigs, newsigs; DECLARE_WAITQUEUE(wait, current); COPY_FROM_USER(rc,&mask, mask_ptr, sizeof(int)); if (rc) { return -EFAULT; } if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s wait_mgsl_event(%d)\n", __FILE__,__LINE__,info->device_name,mask); spin_lock_irqsave(&info->lock,flags); /* return immediately if state matches requested events */ get_signals(info); s = info->serial_signals; events = mask & ( ((s & SerialSignal_DSR) ? MgslEvent_DsrActive:MgslEvent_DsrInactive) + ((s & SerialSignal_DCD) ? MgslEvent_DcdActive:MgslEvent_DcdInactive) + ((s & SerialSignal_CTS) ? MgslEvent_CtsActive:MgslEvent_CtsInactive) + ((s & SerialSignal_RI) ? MgslEvent_RiActive :MgslEvent_RiInactive) ); if (events) { spin_unlock_irqrestore(&info->lock,flags); goto exit; } /* save current irq counts */ cprev = info->icount; oldsigs = info->input_signal_events; /* enable hunt and idle irqs if needed */ if (mask & (MgslEvent_ExitHuntMode+MgslEvent_IdleReceived)) { unsigned char oldval = info->ie1_value; unsigned char newval = oldval + (mask & MgslEvent_ExitHuntMode ? FLGD:0) + (mask & MgslEvent_IdleReceived ? IDLD:0); if ( oldval != newval ) { info->ie1_value = newval; write_reg(info, IE1, info->ie1_value); } } set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&info->event_wait_q, &wait); spin_unlock_irqrestore(&info->lock,flags); for(;;) { schedule(); if (signal_pending(current)) { rc = -ERESTARTSYS; break; } /* get current irq counts */ spin_lock_irqsave(&info->lock,flags); cnow = info->icount; newsigs = info->input_signal_events; set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irqrestore(&info->lock,flags); /* if no change, wait aborted for some reason */ if (newsigs.dsr_up == oldsigs.dsr_up && newsigs.dsr_down == oldsigs.dsr_down && newsigs.dcd_up == oldsigs.dcd_up && newsigs.dcd_down == oldsigs.dcd_down && newsigs.cts_up == oldsigs.cts_up && newsigs.cts_down == oldsigs.cts_down && newsigs.ri_up == oldsigs.ri_up && newsigs.ri_down == oldsigs.ri_down && cnow.exithunt == cprev.exithunt && cnow.rxidle == cprev.rxidle) { rc = -EIO; break; } events = mask & ( (newsigs.dsr_up != oldsigs.dsr_up ? MgslEvent_DsrActive:0) + (newsigs.dsr_down != oldsigs.dsr_down ? MgslEvent_DsrInactive:0) + (newsigs.dcd_up != oldsigs.dcd_up ? MgslEvent_DcdActive:0) + (newsigs.dcd_down != oldsigs.dcd_down ? MgslEvent_DcdInactive:0) + (newsigs.cts_up != oldsigs.cts_up ? MgslEvent_CtsActive:0) + (newsigs.cts_down != oldsigs.cts_down ? MgslEvent_CtsInactive:0) + (newsigs.ri_up != oldsigs.ri_up ? MgslEvent_RiActive:0) + (newsigs.ri_down != oldsigs.ri_down ? MgslEvent_RiInactive:0) + (cnow.exithunt != cprev.exithunt ? MgslEvent_ExitHuntMode:0) + (cnow.rxidle != cprev.rxidle ? MgslEvent_IdleReceived:0) ); if (events) break; cprev = cnow; oldsigs = newsigs; } remove_wait_queue(&info->event_wait_q, &wait); set_current_state(TASK_RUNNING); if (mask & (MgslEvent_ExitHuntMode + MgslEvent_IdleReceived)) { spin_lock_irqsave(&info->lock,flags); if (!waitqueue_active(&info->event_wait_q)) { /* disable enable exit hunt mode/idle rcvd IRQs */ info->ie1_value &= ~(FLGD|IDLD); write_reg(info, IE1, info->ie1_value); } spin_unlock_irqrestore(&info->lock,flags); } exit: if ( rc == 0 ) PUT_USER(rc, events, mask_ptr); return rc; } static int modem_input_wait(SLMP_INFO *info,int arg) { unsigned long flags; int rc; struct mgsl_icount cprev, cnow; DECLARE_WAITQUEUE(wait, current); /* save current irq counts */ spin_lock_irqsave(&info->lock,flags); cprev = info->icount; add_wait_queue(&info->status_event_wait_q, &wait); set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irqrestore(&info->lock,flags); for(;;) { schedule(); if (signal_pending(current)) { rc = -ERESTARTSYS; break; } /* get new irq counts */ spin_lock_irqsave(&info->lock,flags); cnow = info->icount; set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irqrestore(&info->lock,flags); /* if no change, wait aborted for some reason */ if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr && cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) { rc = -EIO; break; } /* check for change in caller specified modem input */ if ((arg & TIOCM_RNG && cnow.rng != cprev.rng) || (arg & TIOCM_DSR && cnow.dsr != cprev.dsr) || (arg & TIOCM_CD && cnow.dcd != cprev.dcd) || (arg & TIOCM_CTS && cnow.cts != cprev.cts)) { rc = 0; break; } cprev = cnow; } remove_wait_queue(&info->status_event_wait_q, &wait); set_current_state(TASK_RUNNING); return rc; } /* return the state of the serial control and status signals */ static int tiocmget(struct tty_struct *tty) { SLMP_INFO *info = tty->driver_data; unsigned int result; unsigned long flags; spin_lock_irqsave(&info->lock,flags); get_signals(info); spin_unlock_irqrestore(&info->lock,flags); result = ((info->serial_signals & SerialSignal_RTS) ? TIOCM_RTS:0) + ((info->serial_signals & SerialSignal_DTR) ? TIOCM_DTR:0) + ((info->serial_signals & SerialSignal_DCD) ? TIOCM_CAR:0) + ((info->serial_signals & SerialSignal_RI) ? TIOCM_RNG:0) + ((info->serial_signals & SerialSignal_DSR) ? TIOCM_DSR:0) + ((info->serial_signals & SerialSignal_CTS) ? TIOCM_CTS:0); if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s tiocmget() value=%08X\n", __FILE__,__LINE__, info->device_name, result ); return result; } /* set modem control signals (DTR/RTS) */ static int tiocmset(struct tty_struct *tty, unsigned int set, unsigned int clear) { SLMP_INFO *info = tty->driver_data; unsigned long flags; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s tiocmset(%x,%x)\n", __FILE__,__LINE__,info->device_name, set, clear); if (set & TIOCM_RTS) info->serial_signals |= SerialSignal_RTS; if (set & TIOCM_DTR) info->serial_signals |= SerialSignal_DTR; if (clear & TIOCM_RTS) info->serial_signals &= ~SerialSignal_RTS; if (clear & TIOCM_DTR) info->serial_signals &= ~SerialSignal_DTR; spin_lock_irqsave(&info->lock,flags); set_signals(info); spin_unlock_irqrestore(&info->lock,flags); return 0; } static int carrier_raised(struct tty_port *port) { SLMP_INFO *info = container_of(port, SLMP_INFO, port); unsigned long flags; spin_lock_irqsave(&info->lock,flags); get_signals(info); spin_unlock_irqrestore(&info->lock,flags); return (info->serial_signals & SerialSignal_DCD) ? 1 : 0; } static void dtr_rts(struct tty_port *port, int on) { SLMP_INFO *info = container_of(port, SLMP_INFO, port); unsigned long flags; spin_lock_irqsave(&info->lock,flags); if (on) info->serial_signals |= SerialSignal_RTS + SerialSignal_DTR; else info->serial_signals &= ~(SerialSignal_RTS + SerialSignal_DTR); set_signals(info); spin_unlock_irqrestore(&info->lock,flags); } /* Block the current process until the specified port is ready to open. */ static int block_til_ready(struct tty_struct *tty, struct file *filp, SLMP_INFO *info) { DECLARE_WAITQUEUE(wait, current); int retval; bool do_clocal = false; bool extra_count = false; unsigned long flags; int cd; struct tty_port *port = &info->port; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s block_til_ready()\n", __FILE__,__LINE__, tty->driver->name ); if (filp->f_flags & O_NONBLOCK || tty->flags & (1 << TTY_IO_ERROR)){ /* nonblock mode is set or port is not enabled */ /* just verify that callout device is not active */ port->flags |= ASYNC_NORMAL_ACTIVE; return 0; } if (tty->termios->c_cflag & CLOCAL) do_clocal = true; /* Wait for carrier detect and the line to become * free (i.e., not in use by the callout). While we are in * this loop, port->count is dropped by one, so that * close() knows when to free things. We restore it upon * exit, either normal or abnormal. */ retval = 0; add_wait_queue(&port->open_wait, &wait); if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s block_til_ready() before block, count=%d\n", __FILE__,__LINE__, tty->driver->name, port->count ); spin_lock_irqsave(&info->lock, flags); if (!tty_hung_up_p(filp)) { extra_count = true; port->count--; } spin_unlock_irqrestore(&info->lock, flags); port->blocked_open++; while (1) { if (tty->termios->c_cflag & CBAUD) tty_port_raise_dtr_rts(port); set_current_state(TASK_INTERRUPTIBLE); if (tty_hung_up_p(filp) || !(port->flags & ASYNC_INITIALIZED)){ retval = (port->flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS; break; } cd = tty_port_carrier_raised(port); if (!(port->flags & ASYNC_CLOSING) && (do_clocal || cd)) break; if (signal_pending(current)) { retval = -ERESTARTSYS; break; } if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s block_til_ready() count=%d\n", __FILE__,__LINE__, tty->driver->name, port->count ); tty_unlock(); schedule(); tty_lock(); } set_current_state(TASK_RUNNING); remove_wait_queue(&port->open_wait, &wait); if (extra_count) port->count++; port->blocked_open--; if (debug_level >= DEBUG_LEVEL_INFO) printk("%s(%d):%s block_til_ready() after, count=%d\n", __FILE__,__LINE__, tty->driver->name, port->count ); if (!retval) port->flags |= ASYNC_NORMAL_ACTIVE; return retval; } static int alloc_dma_bufs(SLMP_INFO *info) { unsigned short BuffersPerFrame; unsigned short BufferCount; // Force allocation to start at 64K boundary for each port. // This is necessary because *all* buffer descriptors for a port // *must* be in the same 64K block. All descriptors on a port // share a common 'base' address (upper 8 bits of 24 bits) programmed // into the CBP register. info->port_array[0]->last_mem_alloc = (SCA_MEM_SIZE/4) * info->port_num; /* Calculate the number of DMA buffers necessary to hold the */ /* largest allowable frame size. Note: If the max frame size is */ /* not an even multiple of the DMA buffer size then we need to */ /* round the buffer count per frame up one. */ BuffersPerFrame = (unsigned short)(info->max_frame_size/SCABUFSIZE); if ( info->max_frame_size % SCABUFSIZE ) BuffersPerFrame++; /* calculate total number of data buffers (SCABUFSIZE) possible * in one ports memory (SCA_MEM_SIZE/4) after allocating memory * for the descriptor list (BUFFERLISTSIZE). */ BufferCount = (SCA_MEM_SIZE/4 - BUFFERLISTSIZE)/SCABUFSIZE; /* limit number of buffers to maximum amount of descriptors */ if (BufferCount > BUFFERLISTSIZE/sizeof(SCADESC)) BufferCount = BUFFERLISTSIZE/sizeof(SCADESC); /* use enough buffers to transmit one max size frame */ info->tx_buf_count = BuffersPerFrame + 1; /* never use more than half the available buffers for transmit */ if (info->tx_buf_count > (BufferCount/2)) info->tx_buf_count = BufferCount/2; if (info->tx_buf_count > SCAMAXDESC) info->tx_buf_count = SCAMAXDESC; /* use remaining buffers for receive */ info->rx_buf_count = BufferCount - info->tx_buf_count; if (info->rx_buf_count > SCAMAXDESC) info->rx_buf_count = SCAMAXDESC; if ( debug_level >= DEBUG_LEVEL_INFO ) printk("%s(%d):%s Allocating %d TX and %d RX DMA buffers.\n", __FILE__,__LINE__, info->device_name, info->tx_buf_count,info->rx_buf_count); if ( alloc_buf_list( info ) < 0 || alloc_frame_bufs(info, info->rx_buf_list, info->rx_buf_list_ex, info->rx_buf_count) < 0 || alloc_frame_bufs(info, info->tx_buf_list, info->tx_buf_list_ex, info->tx_buf_count) < 0 || alloc_tmp_rx_buf(info) < 0 ) { printk("%s(%d):%s Can't allocate DMA buffer memory\n", __FILE__,__LINE__, info->device_name); return -ENOMEM; } rx_reset_buffers( info ); return 0; } /* Allocate DMA buffers for the transmit and receive descriptor lists. */ static int alloc_buf_list(SLMP_INFO *info) { unsigned int i; /* build list in adapter shared memory */ info->buffer_list = info->memory_base + info->port_array[0]->last_mem_alloc; info->buffer_list_phys = info->port_array[0]->last_mem_alloc; info->port_array[0]->last_mem_alloc += BUFFERLISTSIZE; memset(info->buffer_list, 0, BUFFERLISTSIZE); /* Save virtual address pointers to the receive and */ /* transmit buffer lists. (Receive 1st). These pointers will */ /* be used by the processor to access the lists. */ info->rx_buf_list = (SCADESC *)info->buffer_list; info->tx_buf_list = (SCADESC *)info->buffer_list; info->tx_buf_list += info->rx_buf_count; /* Build links for circular buffer entry lists (tx and rx) * * Note: links are physical addresses read by the SCA device * to determine the next buffer entry to use. */ for ( i = 0; i < info->rx_buf_count; i++ ) { /* calculate and store physical address of this buffer entry */ info->rx_buf_list_ex[i].phys_entry = info->buffer_list_phys + (i * sizeof(SCABUFSIZE)); /* calculate and store physical address of */ /* next entry in cirular list of entries */ info->rx_buf_list[i].next = info->buffer_list_phys; if ( i < info->rx_buf_count - 1 ) info->rx_buf_list[i].next += (i + 1) * sizeof(SCADESC); info->rx_buf_list[i].length = SCABUFSIZE; } for ( i = 0; i < info->tx_buf_count; i++ ) { /* calculate and store physical address of this buffer entry */ info->tx_buf_list_ex[i].phys_entry = info->buffer_list_phys + ((info->rx_buf_count + i) * sizeof(SCADESC)); /* calculate and store physical address of */ /* next entry in cirular list of entries */ info->tx_buf_list[i].next = info->buffer_list_phys + info->rx_buf_count * sizeof(SCADESC); if ( i < info->tx_buf_count - 1 ) info->tx_buf_list[i].next += (i + 1) * sizeof(SCADESC); } return 0; } /* Allocate the frame DMA buffers used by the specified buffer list. */ static int alloc_frame_bufs(SLMP_INFO *info, SCADESC *buf_list,SCADESC_EX *buf_list_ex,int count) { int i; unsigned long phys_addr; for ( i = 0; i < count; i++ ) { buf_list_ex[i].virt_addr = info->memory_base + info->port_array[0]->last_mem_alloc; phys_addr = info->port_array[0]->last_mem_alloc; info->port_array[0]->last_mem_alloc += SCABUFSIZE; buf_list[i].buf_ptr = (unsigned short)phys_addr; buf_list[i].buf_base = (unsigned char)(phys_addr >> 16); } return 0; } static void free_dma_bufs(SLMP_INFO *info) { info->buffer_list = NULL; info->rx_buf_list = NULL; info->tx_buf_list = NULL; } /* allocate buffer large enough to hold max_frame_size. * This buffer is used to pass an assembled frame to the line discipline. */ static int alloc_tmp_rx_buf(SLMP_INFO *info) { info->tmp_rx_buf = kmalloc(info->max_frame_size, GFP_KERNEL); if (info->tmp_rx_buf == NULL) return -ENOMEM; return 0; } static void free_tmp_rx_buf(SLMP_INFO *info) { kfree(info->tmp_rx_buf); info->tmp_rx_buf = NULL; } static int claim_resources(SLMP_INFO *info) { if (request_mem_region(info->phys_memory_base,SCA_MEM_SIZE,"synclinkmp") == NULL) { printk( "%s(%d):%s mem addr conflict, Addr=%08X\n", __FILE__,__LINE__,info->device_name, info->phys_memory_base); info->init_error = DiagStatus_AddressConflict; goto errout; } else info->shared_mem_requested = true; if (request_mem_region(info->phys_lcr_base + info->lcr_offset,128,"synclinkmp") == NULL) { printk( "%s(%d):%s lcr mem addr conflict, Addr=%08X\n", __FILE__,__LINE__,info->device_name, info->phys_lcr_base); info->init_error = DiagStatus_AddressConflict; goto errout; } else info->lcr_mem_requested = true; if (request_mem_region(info->phys_sca_base + info->sca_offset,SCA_BASE_SIZE,"synclinkmp") == NULL) { printk( "%s(%d):%s sca mem addr conflict, Addr=%08X\n", __FILE__,__LINE__,info->device_name, info->phys_sca_base); info->init_error = DiagStatus_AddressConflict; goto errout; } else info->sca_base_requested = true; if (request_mem_region(info->phys_statctrl_base + info->statctrl_offset,SCA_REG_SIZE,"synclinkmp") == NULL) { printk( "%s(%d):%s stat/ctrl mem addr conflict, Addr=%08X\n", __FILE__,__LINE__,info->device_name, info->phys_statctrl_base); info->init_error = DiagStatus_AddressConflict; goto errout; } else info->sca_statctrl_requested = true; info->memory_base = ioremap_nocache(info->phys_memory_base, SCA_MEM_SIZE); if (!info->memory_base) { printk( "%s(%d):%s Can't map shared memory, MemAddr=%08X\n", __FILE__,__LINE__,info->device_name, info->phys_memory_base ); info->init_error = DiagStatus_CantAssignPciResources; goto errout; } info->lcr_base = ioremap_nocache(info->phys_lcr_base, PAGE_SIZE); if (!info->lcr_base) { printk( "%s(%d):%s Can't map LCR memory, MemAddr=%08X\n", __FILE__,__LINE__,info->device_name, info->phys_lcr_base ); info->init_error = DiagStatus_CantAssignPciResources; goto errout; } info->lcr_base += info->lcr_offset; info->sca_base = ioremap_nocache(info->phys_sca_base, PAGE_SIZE); if (!info->sca_base) { printk( "%s(%d):%s Can't map SCA memory, MemAddr=%08X\n", __FILE__,__LINE__,info->device_name, info->phys_sca_base ); info->init_error = DiagStatus_CantAssignPciResources; goto errout; } info->sca_base += info->sca_offset; info->statctrl_base = ioremap_nocache(info->phys_statctrl_base, PAGE_SIZE); if (!info->statctrl_base) { printk( "%s(%d):%s Can't map SCA Status/Control memory, MemAddr=%08X\n", __FILE__,__LINE__,info->device_name, info->phys_statctrl_base ); info->init_error = DiagStatus_CantAssignPciResources; goto errout; } info->statctrl_base += info->statctrl_offset; if ( !memory_test(info) ) { printk( "%s(%d):Shared Memory Test failed for device %s MemAddr=%08X\n", __FILE__,__LINE__,info->device_name, info->phys_memory_base ); info->init_error = DiagStatus_MemoryError; goto errout; } return 0; errout: release_resources( info ); return -ENODEV; } static void release_resources(SLMP_INFO *info) { if ( debug_level >= DEBUG_LEVEL_INFO ) printk( "%s(%d):%s release_resources() entry\n", __FILE__,__LINE__,info->device_name ); if ( info->irq_requested ) { free_irq(info->irq_level, info); info->irq_requested = false; } if ( info->shared_mem_requested ) { release_mem_region(info->phys_memory_base,SCA_MEM_SIZE); info->shared_mem_requested = false; } if ( info->lcr_mem_requested ) { release_mem_region(info->phys_lcr_base + info->lcr_offset,128); info->lcr_mem_requested = false; } if ( info->sca_base_requested ) { release_mem_region(info->phys_sca_base + info->sca_offset,SCA_BASE_SIZE); info->sca_base_requested = false; } if ( info->sca_statctrl_requested ) { release_mem_region(info->phys_statctrl_base + info->statctrl_offset,SCA_REG_SIZE); info->sca_statctrl_requested = false; } if (info->memory_base){ iounmap(info->memory_base); info->memory_base = NULL; } if (info->sca_base) { iounmap(info->sca_base - info->sca_offset); info->sca_base=NULL; } if (info->statctrl_base) { iounmap(info->statctrl_base - info->statctrl_offset); info->statctrl_base=NULL; } if (info->lcr_base){ iounmap(info->lcr_base - info->lcr_offset); info->lcr_base = NULL; } if ( debug_level >= DEBUG_LEVEL_INFO ) printk( "%s(%d):%s release_resources() exit\n", __FILE__,__LINE__,info->device_name ); } /* Add the specified device instance data structure to the * global linked list of devices and increment the device count. */ static void add_device(SLMP_INFO *info) { info->next_device = NULL; info->line = synclinkmp_device_count; sprintf(info->device_name,"ttySLM%dp%d",info->adapter_num,info->port_num); if (info->line < MAX_DEVICES) { if (maxframe[info->line]) info->max_frame_size = maxframe[info->line]; } synclinkmp_device_count++; if ( !synclinkmp_device_list ) synclinkmp_device_list = info; else { SLMP_INFO *current_dev = synclinkmp_device_list; while( current_dev->next_device ) current_dev = current_dev->next_device; current_dev->next_device = info; } if ( info->max_frame_size < 4096 ) info->max_frame_size = 4096; else if ( info->max_frame_size > 65535 ) info->max_frame_size = 65535; printk( "SyncLink MultiPort %s: " "Mem=(%08x %08X %08x %08X) IRQ=%d MaxFrameSize=%u\n", info->device_name, info->phys_sca_base, info->phys_memory_base, info->phys_statctrl_base, info->phys_lcr_base, info->irq_level, info->max_frame_size ); #if SYNCLINK_GENERIC_HDLC hdlcdev_init(info); #endif } static const struct tty_port_operations port_ops = { .carrier_raised = carrier_raised, .dtr_rts = dtr_rts, }; /* Allocate and initialize a device instance structure * * Return Value: pointer to SLMP_INFO if success, otherwise NULL */ static SLMP_INFO *alloc_dev(int adapter_num, int port_num, struct pci_dev *pdev) { SLMP_INFO *info; info = kzalloc(sizeof(SLMP_INFO), GFP_KERNEL); if (!info) { printk("%s(%d) Error can't allocate device instance data for adapter %d, port %d\n", __FILE__,__LINE__, adapter_num, port_num); } else { tty_port_init(&info->port); info->port.ops = &port_ops; info->magic = MGSL_MAGIC; INIT_WORK(&info->task, bh_handler); info->max_frame_size = 4096; info->port.close_delay = 5*HZ/10; info->port.closing_wait = 30*HZ; init_waitqueue_head(&info->status_event_wait_q); init_waitqueue_head(&info->event_wait_q); spin_lock_init(&info->netlock); memcpy(&info->params,&default_params,sizeof(MGSL_PARAMS)); info->idle_mode = HDLC_TXIDLE_FLAGS; info->adapter_num = adapter_num; info->port_num = port_num; /* Copy configuration info to device instance data */ info->irq_level = pdev->irq; info->phys_lcr_base = pci_resource_start(pdev,0); info->phys_sca_base = pci_resource_start(pdev,2); info->phys_memory_base = pci_resource_start(pdev,3); info->phys_statctrl_base = pci_resource_start(pdev,4); /* Because veremap only works on page boundaries we must map * a larger area than is actually implemented for the LCR * memory range. We map a full page starting at the page boundary. */ info->lcr_offset = info->phys_lcr_base & (PAGE_SIZE-1); info->phys_lcr_base &= ~(PAGE_SIZE-1); info->sca_offset = info->phys_sca_base & (PAGE_SIZE-1); info->phys_sca_base &= ~(PAGE_SIZE-1); info->statctrl_offset = info->phys_statctrl_base & (PAGE_SIZE-1); info->phys_statctrl_base &= ~(PAGE_SIZE-1); info->bus_type = MGSL_BUS_TYPE_PCI; info->irq_flags = IRQF_SHARED; setup_timer(&info->tx_timer, tx_timeout, (unsigned long)info); setup_timer(&info->status_timer, status_timeout, (unsigned long)info); /* Store the PCI9050 misc control register value because a flaw * in the PCI9050 prevents LCR registers from being read if * BIOS assigns an LCR base address with bit 7 set. * * Only the misc control register is accessed for which only * write access is needed, so set an initial value and change * bits to the device instance data as we write the value * to the actual misc control register. */ info->misc_ctrl_value = 0x087e4546; /* initial port state is unknown - if startup errors * occur, init_error will be set to indicate the * problem. Once the port is fully initialized, * this value will be set to 0 to indicate the * port is available. */ info->init_error = -1; } return info; } static void device_init(int adapter_num, struct pci_dev *pdev) { SLMP_INFO *port_array[SCA_MAX_PORTS]; int port; /* allocate device instances for up to SCA_MAX_PORTS devices */ for ( port = 0; port < SCA_MAX_PORTS; ++port ) { port_array[port] = alloc_dev(adapter_num,port,pdev); if( port_array[port] == NULL ) { for ( --port; port >= 0; --port ) kfree(port_array[port]); return; } } /* give copy of port_array to all ports and add to device list */ for ( port = 0; port < SCA_MAX_PORTS; ++port ) { memcpy(port_array[port]->port_array,port_array,sizeof(port_array)); add_device( port_array[port] ); spin_lock_init(&port_array[port]->lock); } /* Allocate and claim adapter resources */ if ( !claim_resources(port_array[0]) ) { alloc_dma_bufs(port_array[0]); /* copy resource information from first port to others */ for ( port = 1; port < SCA_MAX_PORTS; ++port ) { port_array[port]->lock = port_array[0]->lock; port_array[port]->irq_level = port_array[0]->irq_level; port_array[port]->memory_base = port_array[0]->memory_base; port_array[port]->sca_base = port_array[0]->sca_base; port_array[port]->statctrl_base = port_array[0]->statctrl_base; port_array[port]->lcr_base = port_array[0]->lcr_base; alloc_dma_bufs(port_array[port]); } if ( request_irq(port_array[0]->irq_level, synclinkmp_interrupt, port_array[0]->irq_flags, port_array[0]->device_name, port_array[0]) < 0 ) { printk( "%s(%d):%s Can't request interrupt, IRQ=%d\n", __FILE__,__LINE__, port_array[0]->device_name, port_array[0]->irq_level ); } else { port_array[0]->irq_requested = true; adapter_test(port_array[0]); } } } static const struct tty_operations ops = { .open = open, .close = close, .write = write, .put_char = put_char, .flush_chars = flush_chars, .write_room = write_room, .chars_in_buffer = chars_in_buffer, .flush_buffer = flush_buffer, .ioctl = ioctl, .throttle = throttle, .unthrottle = unthrottle, .send_xchar = send_xchar, .break_ctl = set_break, .wait_until_sent = wait_until_sent, .set_termios = set_termios, .stop = tx_hold, .start = tx_release, .hangup = hangup, .tiocmget = tiocmget, .tiocmset = tiocmset, .get_icount = get_icount, .proc_fops = &synclinkmp_proc_fops, }; static void synclinkmp_cleanup(void) { int rc; SLMP_INFO *info; SLMP_INFO *tmp; printk("Unloading %s %s\n", driver_name, driver_version); if (serial_driver) { if ((rc = tty_unregister_driver(serial_driver))) printk("%s(%d) failed to unregister tty driver err=%d\n", __FILE__,__LINE__,rc); put_tty_driver(serial_driver); } /* reset devices */ info = synclinkmp_device_list; while(info) { reset_port(info); info = info->next_device; } /* release devices */ info = synclinkmp_device_list; while(info) { #if SYNCLINK_GENERIC_HDLC hdlcdev_exit(info); #endif free_dma_bufs(info); free_tmp_rx_buf(info); if ( info->port_num == 0 ) { if (info->sca_base) write_reg(info, LPR, 1); /* set low power mode */ release_resources(info); } tmp = info; info = info->next_device; kfree(tmp); } pci_unregister_driver(&synclinkmp_pci_driver); } /* Driver initialization entry point. */ static int __init synclinkmp_init(void) { int rc; if (break_on_load) { synclinkmp_get_text_ptr(); BREAKPOINT(); } printk("%s %s\n", driver_name, driver_version); if ((rc = pci_register_driver(&synclinkmp_pci_driver)) < 0) { printk("%s:failed to register PCI driver, error=%d\n",__FILE__,rc); return rc; } serial_driver = alloc_tty_driver(128); if (!serial_driver) { rc = -ENOMEM; goto error; } /* Initialize the tty_driver structure */ serial_driver->driver_name = "synclinkmp"; serial_driver->name = "ttySLM"; serial_driver->major = ttymajor; serial_driver->minor_start = 64; serial_driver->type = TTY_DRIVER_TYPE_SERIAL; serial_driver->subtype = SERIAL_TYPE_NORMAL; serial_driver->init_termios = tty_std_termios; serial_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL; serial_driver->init_termios.c_ispeed = 9600; serial_driver->init_termios.c_ospeed = 9600; serial_driver->flags = TTY_DRIVER_REAL_RAW; tty_set_operations(serial_driver, &ops); if ((rc = tty_register_driver(serial_driver)) < 0) { printk("%s(%d):Couldn't register serial driver\n", __FILE__,__LINE__); put_tty_driver(serial_driver); serial_driver = NULL; goto error; } printk("%s %s, tty major#%d\n", driver_name, driver_version, serial_driver->major); return 0; error: synclinkmp_cleanup(); return rc; } static void __exit synclinkmp_exit(void) { synclinkmp_cleanup(); } module_init(synclinkmp_init); module_exit(synclinkmp_exit); /* Set the port for internal loopback mode. * The TxCLK and RxCLK signals are generated from the BRG and * the TxD is looped back to the RxD internally. */ static void enable_loopback(SLMP_INFO *info, int enable) { if (enable) { /* MD2 (Mode Register 2) * 01..00 CNCT<1..0> Channel Connection 11=Local Loopback */ write_reg(info, MD2, (unsigned char)(read_reg(info, MD2) | (BIT1 + BIT0))); /* degate external TxC clock source */ info->port_array[0]->ctrlreg_value |= (BIT0 << (info->port_num * 2)); write_control_reg(info); /* RXS/TXS (Rx/Tx clock source) * 07 Reserved, must be 0 * 06..04 Clock Source, 100=BRG * 03..00 Clock Divisor, 0000=1 */ write_reg(info, RXS, 0x40); write_reg(info, TXS, 0x40); } else { /* MD2 (Mode Register 2) * 01..00 CNCT<1..0> Channel connection, 0=normal */ write_reg(info, MD2, (unsigned char)(read_reg(info, MD2) & ~(BIT1 + BIT0))); /* RXS/TXS (Rx/Tx clock source) * 07 Reserved, must be 0 * 06..04 Clock Source, 000=RxC/TxC Pin * 03..00 Clock Divisor, 0000=1 */ write_reg(info, RXS, 0x00); write_reg(info, TXS, 0x00); } /* set LinkSpeed if available, otherwise default to 2Mbps */ if (info->params.clock_speed) set_rate(info, info->params.clock_speed); else set_rate(info, 3686400); } /* Set the baud rate register to the desired speed * * data_rate data rate of clock in bits per second * A data rate of 0 disables the AUX clock. */ static void set_rate( SLMP_INFO *info, u32 data_rate ) { u32 TMCValue; unsigned char BRValue; u32 Divisor=0; /* fBRG = fCLK/(TMC * 2^BR) */ if (data_rate != 0) { Divisor = 14745600/data_rate; if (!Divisor) Divisor = 1; TMCValue = Divisor; BRValue = 0; if (TMCValue != 1 && TMCValue != 2) { /* BRValue of 0 provides 50/50 duty cycle *only* when * TMCValue is 1 or 2. BRValue of 1 to 9 always provides * 50/50 duty cycle. */ BRValue = 1; TMCValue >>= 1; } /* while TMCValue is too big for TMC register, divide * by 2 and increment BR exponent. */ for(; TMCValue > 256 && BRValue < 10; BRValue++) TMCValue >>= 1; write_reg(info, TXS, (unsigned char)((read_reg(info, TXS) & 0xf0) | BRValue)); write_reg(info, RXS, (unsigned char)((read_reg(info, RXS) & 0xf0) | BRValue)); write_reg(info, TMC, (unsigned char)TMCValue); } else { write_reg(info, TXS,0); write_reg(info, RXS,0); write_reg(info, TMC, 0); } } /* Disable receiver */ static void rx_stop(SLMP_INFO *info) { if (debug_level >= DEBUG_LEVEL_ISR) printk("%s(%d):%s rx_stop()\n", __FILE__,__LINE__, info->device_name ); write_reg(info, CMD, RXRESET); info->ie0_value &= ~RXRDYE; write_reg(info, IE0, info->ie0_value); /* disable Rx data interrupts */ write_reg(info, RXDMA + DSR, 0); /* disable Rx DMA */ write_reg(info, RXDMA + DCMD, SWABORT); /* reset/init Rx DMA */ write_reg(info, RXDMA + DIR, 0); /* disable Rx DMA interrupts */ info->rx_enabled = false; info->rx_overflow = false; } /* enable the receiver */ static void rx_start(SLMP_INFO *info) { int i; if (debug_level >= DEBUG_LEVEL_ISR) printk("%s(%d):%s rx_start()\n", __FILE__,__LINE__, info->device_name ); write_reg(info, CMD, RXRESET); if ( info->params.mode == MGSL_MODE_HDLC ) { /* HDLC, disabe IRQ on rxdata */ info->ie0_value &= ~RXRDYE; write_reg(info, IE0, info->ie0_value); /* Reset all Rx DMA buffers and program rx dma */ write_reg(info, RXDMA + DSR, 0); /* disable Rx DMA */ write_reg(info, RXDMA + DCMD, SWABORT); /* reset/init Rx DMA */ for (i = 0; i < info->rx_buf_count; i++) { info->rx_buf_list[i].status = 0xff; // throttle to 4 shared memory writes at a time to prevent // hogging local bus (keep latency time for DMA requests low). if (!(i % 4)) read_status_reg(info); } info->current_rx_buf = 0; /* set current/1st descriptor address */ write_reg16(info, RXDMA + CDA, info->rx_buf_list_ex[0].phys_entry); /* set new last rx descriptor address */ write_reg16(info, RXDMA + EDA, info->rx_buf_list_ex[info->rx_buf_count - 1].phys_entry); /* set buffer length (shared by all rx dma data buffers) */ write_reg16(info, RXDMA + BFL, SCABUFSIZE); write_reg(info, RXDMA + DIR, 0x60); /* enable Rx DMA interrupts (EOM/BOF) */ write_reg(info, RXDMA + DSR, 0xf2); /* clear Rx DMA IRQs, enable Rx DMA */ } else { /* async, enable IRQ on rxdata */ info->ie0_value |= RXRDYE; write_reg(info, IE0, info->ie0_value); } write_reg(info, CMD, RXENABLE); info->rx_overflow = false; info->rx_enabled = true; } /* Enable the transmitter and send a transmit frame if * one is loaded in the DMA buffers. */ static void tx_start(SLMP_INFO *info) { if (debug_level >= DEBUG_LEVEL_ISR) printk("%s(%d):%s tx_start() tx_count=%d\n", __FILE__,__LINE__, info->device_name,info->tx_count ); if (!info->tx_enabled ) { write_reg(info, CMD, TXRESET); write_reg(info, CMD, TXENABLE); info->tx_enabled = true; } if ( info->tx_count ) { /* If auto RTS enabled and RTS is inactive, then assert */ /* RTS and set a flag indicating that the driver should */ /* negate RTS when the transmission completes. */ info->drop_rts_on_tx_done = false; if (info->params.mode != MGSL_MODE_ASYNC) { if ( info->params.flags & HDLC_FLAG_AUTO_RTS ) { get_signals( info ); if ( !(info->serial_signals & SerialSignal_RTS) ) { info->serial_signals |= SerialSignal_RTS; set_signals( info ); info->drop_rts_on_tx_done = true; } } write_reg16(info, TRC0, (unsigned short)(((tx_negate_fifo_level-1)<<8) + tx_active_fifo_level)); write_reg(info, TXDMA + DSR, 0); /* disable DMA channel */ write_reg(info, TXDMA + DCMD, SWABORT); /* reset/init DMA channel */ /* set TX CDA (current descriptor address) */ write_reg16(info, TXDMA + CDA, info->tx_buf_list_ex[0].phys_entry); /* set TX EDA (last descriptor address) */ write_reg16(info, TXDMA + EDA, info->tx_buf_list_ex[info->last_tx_buf].phys_entry); /* enable underrun IRQ */ info->ie1_value &= ~IDLE; info->ie1_value |= UDRN; write_reg(info, IE1, info->ie1_value); write_reg(info, SR1, (unsigned char)(IDLE + UDRN)); write_reg(info, TXDMA + DIR, 0x40); /* enable Tx DMA interrupts (EOM) */ write_reg(info, TXDMA + DSR, 0xf2); /* clear Tx DMA IRQs, enable Tx DMA */ mod_timer(&info->tx_timer, jiffies + msecs_to_jiffies(5000)); } else { tx_load_fifo(info); /* async, enable IRQ on txdata */ info->ie0_value |= TXRDYE; write_reg(info, IE0, info->ie0_value); } info->tx_active = true; } } /* stop the transmitter and DMA */ static void tx_stop( SLMP_INFO *info ) { if (debug_level >= DEBUG_LEVEL_ISR) printk("%s(%d):%s tx_stop()\n", __FILE__,__LINE__, info->device_name ); del_timer(&info->tx_timer); write_reg(info, TXDMA + DSR, 0); /* disable DMA channel */ write_reg(info, TXDMA + DCMD, SWABORT); /* reset/init DMA channel */ write_reg(info, CMD, TXRESET); info->ie1_value &= ~(UDRN + IDLE); write_reg(info, IE1, info->ie1_value); /* disable tx status interrupts */ write_reg(info, SR1, (unsigned char)(IDLE + UDRN)); /* clear pending */ info->ie0_value &= ~TXRDYE; write_reg(info, IE0, info->ie0_value); /* disable tx data interrupts */ info->tx_enabled = false; info->tx_active = false; } /* Fill the transmit FIFO until the FIFO is full or * there is no more data to load. */ static void tx_load_fifo(SLMP_INFO *info) { u8 TwoBytes[2]; /* do nothing is now tx data available and no XON/XOFF pending */ if ( !info->tx_count && !info->x_char ) return; /* load the Transmit FIFO until FIFOs full or all data sent */ while( info->tx_count && (read_reg(info,SR0) & BIT1) ) { /* there is more space in the transmit FIFO and */ /* there is more data in transmit buffer */ if ( (info->tx_count > 1) && !info->x_char ) { /* write 16-bits */ TwoBytes[0] = info->tx_buf[info->tx_get++]; if (info->tx_get >= info->max_frame_size) info->tx_get -= info->max_frame_size; TwoBytes[1] = info->tx_buf[info->tx_get++]; if (info->tx_get >= info->max_frame_size) info->tx_get -= info->max_frame_size; write_reg16(info, TRB, *((u16 *)TwoBytes)); info->tx_count -= 2; info->icount.tx += 2; } else { /* only 1 byte left to transmit or 1 FIFO slot left */ if (info->x_char) { /* transmit pending high priority char */ write_reg(info, TRB, info->x_char); info->x_char = 0; } else { write_reg(info, TRB, info->tx_buf[info->tx_get++]); if (info->tx_get >= info->max_frame_size) info->tx_get -= info->max_frame_size; info->tx_count--; } info->icount.tx++; } } } /* Reset a port to a known state */ static void reset_port(SLMP_INFO *info) { if (info->sca_base) { tx_stop(info); rx_stop(info); info->serial_signals &= ~(SerialSignal_DTR + SerialSignal_RTS); set_signals(info); /* disable all port interrupts */ info->ie0_value = 0; info->ie1_value = 0; info->ie2_value = 0; write_reg(info, IE0, info->ie0_value); write_reg(info, IE1, info->ie1_value); write_reg(info, IE2, info->ie2_value); write_reg(info, CMD, CHRESET); } } /* Reset all the ports to a known state. */ static void reset_adapter(SLMP_INFO *info) { int i; for ( i=0; i < SCA_MAX_PORTS; ++i) { if (info->port_array[i]) reset_port(info->port_array[i]); } } /* Program port for asynchronous communications. */ static void async_mode(SLMP_INFO *info) { unsigned char RegValue; tx_stop(info); rx_stop(info); /* MD0, Mode Register 0 * * 07..05 PRCTL<2..0>, Protocol Mode, 000=async * 04 AUTO, Auto-enable (RTS/CTS/DCD) * 03 Reserved, must be 0 * 02 CRCCC, CRC Calculation, 0=disabled * 01..00 STOP<1..0> Stop bits (00=1,10=2) * * 0000 0000 */ RegValue = 0x00; if (info->params.stop_bits != 1) RegValue |= BIT1; write_reg(info, MD0, RegValue); /* MD1, Mode Register 1 * * 07..06 BRATE<1..0>, bit rate, 00=1/1 01=1/16 10=1/32 11=1/64 * 05..04 TXCHR<1..0>, tx char size, 00=8 bits,01=7,10=6,11=5 * 03..02 RXCHR<1..0>, rx char size * 01..00 PMPM<1..0>, Parity mode, 00=none 10=even 11=odd * * 0100 0000 */ RegValue = 0x40; switch (info->params.data_bits) { case 7: RegValue |= BIT4 + BIT2; break; case 6: RegValue |= BIT5 + BIT3; break; case 5: RegValue |= BIT5 + BIT4 + BIT3 + BIT2; break; } if (info->params.parity != ASYNC_PARITY_NONE) { RegValue |= BIT1; if (info->params.parity == ASYNC_PARITY_ODD) RegValue |= BIT0; } write_reg(info, MD1, RegValue); /* MD2, Mode Register 2 * * 07..02 Reserved, must be 0 * 01..00 CNCT<1..0> Channel connection, 00=normal 11=local loopback * * 0000 0000 */ RegValue = 0x00; if (info->params.loopback) RegValue |= (BIT1 + BIT0); write_reg(info, MD2, RegValue); /* RXS, Receive clock source * * 07 Reserved, must be 0 * 06..04 RXCS<2..0>, clock source, 000=RxC Pin, 100=BRG, 110=DPLL * 03..00 RXBR<3..0>, rate divisor, 0000=1 */ RegValue=BIT6; write_reg(info, RXS, RegValue); /* TXS, Transmit clock source * * 07 Reserved, must be 0 * 06..04 RXCS<2..0>, clock source, 000=TxC Pin, 100=BRG, 110=Receive Clock * 03..00 RXBR<3..0>, rate divisor, 0000=1 */ RegValue=BIT6; write_reg(info, TXS, RegValue); /* Control Register * * 6,4,2,0 CLKSEL<3..0>, 0 = TcCLK in, 1 = Auxclk out */ info->port_array[0]->ctrlreg_value |= (BIT0 << (info->port_num * 2)); write_control_reg(info); tx_set_idle(info); /* RRC Receive Ready Control 0 * * 07..05 Reserved, must be 0 * 04..00 RRC<4..0> Rx FIFO trigger active 0x00 = 1 byte */ write_reg(info, RRC, 0x00); /* TRC0 Transmit Ready Control 0 * * 07..05 Reserved, must be 0 * 04..00 TRC<4..0> Tx FIFO trigger active 0x10 = 16 bytes */ write_reg(info, TRC0, 0x10); /* TRC1 Transmit Ready Control 1 * * 07..05 Reserved, must be 0 * 04..00 TRC<4..0> Tx FIFO trigger inactive 0x1e = 31 bytes (full-1) */ write_reg(info, TRC1, 0x1e); /* CTL, MSCI control register * * 07..06 Reserved, set to 0 * 05 UDRNC, underrun control, 0=abort 1=CRC+flag (HDLC/BSC) * 04 IDLC, idle control, 0=mark 1=idle register * 03 BRK, break, 0=off 1 =on (async) * 02 SYNCLD, sync char load enable (BSC) 1=enabled * 01 GOP, go active on poll (LOOP mode) 1=enabled * 00 RTS, RTS output control, 0=active 1=inactive * * 0001 0001 */ RegValue = 0x10; if (!(info->serial_signals & SerialSignal_RTS)) RegValue |= 0x01; write_reg(info, CTL, RegValue); /* enable status interrupts */ info->ie0_value |= TXINTE + RXINTE; write_reg(info, IE0, info->ie0_value); /* enable break detect interrupt */ info->ie1_value = BRKD; write_reg(info, IE1, info->ie1_value); /* enable rx overrun interrupt */ info->ie2_value = OVRN; write_reg(info, IE2, info->ie2_value); set_rate( info, info->params.data_rate * 16 ); } /* Program the SCA for HDLC communications. */ static void hdlc_mode(SLMP_INFO *info) { unsigned char RegValue; u32 DpllDivisor; // Can't use DPLL because SCA outputs recovered clock on RxC when // DPLL mode selected. This causes output contention with RxC receiver. // Use of DPLL would require external hardware to disable RxC receiver // when DPLL mode selected. info->params.flags &= ~(HDLC_FLAG_TXC_DPLL + HDLC_FLAG_RXC_DPLL); /* disable DMA interrupts */ write_reg(info, TXDMA + DIR, 0); write_reg(info, RXDMA + DIR, 0); /* MD0, Mode Register 0 * * 07..05 PRCTL<2..0>, Protocol Mode, 100=HDLC * 04 AUTO, Auto-enable (RTS/CTS/DCD) * 03 Reserved, must be 0 * 02 CRCCC, CRC Calculation, 1=enabled * 01 CRC1, CRC selection, 0=CRC-16,1=CRC-CCITT-16 * 00 CRC0, CRC initial value, 1 = all 1s * * 1000 0001 */ RegValue = 0x81; if (info->params.flags & HDLC_FLAG_AUTO_CTS) RegValue |= BIT4; if (info->params.flags & HDLC_FLAG_AUTO_DCD) RegValue |= BIT4; if (info->params.crc_type == HDLC_CRC_16_CCITT) RegValue |= BIT2 + BIT1; write_reg(info, MD0, RegValue); /* MD1, Mode Register 1 * * 07..06 ADDRS<1..0>, Address detect, 00=no addr check * 05..04 TXCHR<1..0>, tx char size, 00=8 bits * 03..02 RXCHR<1..0>, rx char size, 00=8 bits * 01..00 PMPM<1..0>, Parity mode, 00=no parity * * 0000 0000 */ RegValue = 0x00; write_reg(info, MD1, RegValue); /* MD2, Mode Register 2 * * 07 NRZFM, 0=NRZ, 1=FM * 06..05 CODE<1..0> Encoding, 00=NRZ * 04..03 DRATE<1..0> DPLL Divisor, 00=8 * 02 Reserved, must be 0 * 01..00 CNCT<1..0> Channel connection, 0=normal * * 0000 0000 */ RegValue = 0x00; switch(info->params.encoding) { case HDLC_ENCODING_NRZI: RegValue |= BIT5; break; case HDLC_ENCODING_BIPHASE_MARK: RegValue |= BIT7 + BIT5; break; /* aka FM1 */ case HDLC_ENCODING_BIPHASE_SPACE: RegValue |= BIT7 + BIT6; break; /* aka FM0 */ case HDLC_ENCODING_BIPHASE_LEVEL: RegValue |= BIT7; break; /* aka Manchester */ #if 0 case HDLC_ENCODING_NRZB: /* not supported */ case HDLC_ENCODING_NRZI_MARK: /* not supported */ case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: /* not supported */ #endif } if ( info->params.flags & HDLC_FLAG_DPLL_DIV16 ) { DpllDivisor = 16; RegValue |= BIT3; } else if ( info->params.flags & HDLC_FLAG_DPLL_DIV8 ) { DpllDivisor = 8; } else { DpllDivisor = 32; RegValue |= BIT4; } write_reg(info, MD2, RegValue); /* RXS, Receive clock source * * 07 Reserved, must be 0 * 06..04 RXCS<2..0>, clock source, 000=RxC Pin, 100=BRG, 110=DPLL * 03..00 RXBR<3..0>, rate divisor, 0000=1 */ RegValue=0; if (info->params.flags & HDLC_FLAG_RXC_BRG) RegValue |= BIT6; if (info->params.flags & HDLC_FLAG_RXC_DPLL) RegValue |= BIT6 + BIT5; write_reg(info, RXS, RegValue); /* TXS, Transmit clock source * * 07 Reserved, must be 0 * 06..04 RXCS<2..0>, clock source, 000=TxC Pin, 100=BRG, 110=Receive Clock * 03..00 RXBR<3..0>, rate divisor, 0000=1 */ RegValue=0; if (info->params.flags & HDLC_FLAG_TXC_BRG) RegValue |= BIT6; if (info->params.flags & HDLC_FLAG_TXC_DPLL) RegValue |= BIT6 + BIT5; write_reg(info, TXS, RegValue); if (info->params.flags & HDLC_FLAG_RXC_DPLL) set_rate(info, info->params.clock_speed * DpllDivisor); else set_rate(info, info->params.clock_speed); /* GPDATA (General Purpose I/O Data Register) * * 6,4,2,0 CLKSEL<3..0>, 0 = TcCLK in, 1 = Auxclk out */ if (info->params.flags & HDLC_FLAG_TXC_BRG) info->port_array[0]->ctrlreg_value |= (BIT0 << (info->port_num * 2)); else info->port_array[0]->ctrlreg_value &= ~(BIT0 << (info->port_num * 2)); write_control_reg(info); /* RRC Receive Ready Control 0 * * 07..05 Reserved, must be 0 * 04..00 RRC<4..0> Rx FIFO trigger active */ write_reg(info, RRC, rx_active_fifo_level); /* TRC0 Transmit Ready Control 0 * * 07..05 Reserved, must be 0 * 04..00 TRC<4..0> Tx FIFO trigger active */ write_reg(info, TRC0, tx_active_fifo_level); /* TRC1 Transmit Ready Control 1 * * 07..05 Reserved, must be 0 * 04..00 TRC<4..0> Tx FIFO trigger inactive 0x1f = 32 bytes (full) */ write_reg(info, TRC1, (unsigned char)(tx_negate_fifo_level - 1)); /* DMR, DMA Mode Register * * 07..05 Reserved, must be 0 * 04 TMOD, Transfer Mode: 1=chained-block * 03 Reserved, must be 0 * 02 NF, Number of Frames: 1=multi-frame * 01 CNTE, Frame End IRQ Counter enable: 0=disabled * 00 Reserved, must be 0 * * 0001 0100 */ write_reg(info, TXDMA + DMR, 0x14); write_reg(info, RXDMA + DMR, 0x14); /* Set chain pointer base (upper 8 bits of 24 bit addr) */ write_reg(info, RXDMA + CPB, (unsigned char)(info->buffer_list_phys >> 16)); /* Set chain pointer base (upper 8 bits of 24 bit addr) */ write_reg(info, TXDMA + CPB, (unsigned char)(info->buffer_list_phys >> 16)); /* enable status interrupts. other code enables/disables * the individual sources for these two interrupt classes. */ info->ie0_value |= TXINTE + RXINTE; write_reg(info, IE0, info->ie0_value); /* CTL, MSCI control register * * 07..06 Reserved, set to 0 * 05 UDRNC, underrun control, 0=abort 1=CRC+flag (HDLC/BSC) * 04 IDLC, idle control, 0=mark 1=idle register * 03 BRK, break, 0=off 1 =on (async) * 02 SYNCLD, sync char load enable (BSC) 1=enabled * 01 GOP, go active on poll (LOOP mode) 1=enabled * 00 RTS, RTS output control, 0=active 1=inactive * * 0001 0001 */ RegValue = 0x10; if (!(info->serial_signals & SerialSignal_RTS)) RegValue |= 0x01; write_reg(info, CTL, RegValue); /* preamble not supported ! */ tx_set_idle(info); tx_stop(info); rx_stop(info); set_rate(info, info->params.clock_speed); if (info->params.loopback) enable_loopback(info,1); } /* Set the transmit HDLC idle mode */ static void tx_set_idle(SLMP_INFO *info) { unsigned char RegValue = 0xff; /* Map API idle mode to SCA register bits */ switch(info->idle_mode) { case HDLC_TXIDLE_FLAGS: RegValue = 0x7e; break; case HDLC_TXIDLE_ALT_ZEROS_ONES: RegValue = 0xaa; break; case HDLC_TXIDLE_ZEROS: RegValue = 0x00; break; case HDLC_TXIDLE_ONES: RegValue = 0xff; break; case HDLC_TXIDLE_ALT_MARK_SPACE: RegValue = 0xaa; break; case HDLC_TXIDLE_SPACE: RegValue = 0x00; break; case HDLC_TXIDLE_MARK: RegValue = 0xff; break; } write_reg(info, IDL, RegValue); } /* Query the adapter for the state of the V24 status (input) signals. */ static void get_signals(SLMP_INFO *info) { u16 status = read_reg(info, SR3); u16 gpstatus = read_status_reg(info); u16 testbit; /* clear all serial signals except DTR and RTS */ info->serial_signals &= SerialSignal_DTR + SerialSignal_RTS; /* set serial signal bits to reflect MISR */ if (!(status & BIT3)) info->serial_signals |= SerialSignal_CTS; if ( !(status & BIT2)) info->serial_signals |= SerialSignal_DCD; testbit = BIT1 << (info->port_num * 2); // Port 0..3 RI is GPDATA<1,3,5,7> if (!(gpstatus & testbit)) info->serial_signals |= SerialSignal_RI; testbit = BIT0 << (info->port_num * 2); // Port 0..3 DSR is GPDATA<0,2,4,6> if (!(gpstatus & testbit)) info->serial_signals |= SerialSignal_DSR; } /* Set the state of DTR and RTS based on contents of * serial_signals member of device context. */ static void set_signals(SLMP_INFO *info) { unsigned char RegValue; u16 EnableBit; RegValue = read_reg(info, CTL); if (info->serial_signals & SerialSignal_RTS) RegValue &= ~BIT0; else RegValue |= BIT0; write_reg(info, CTL, RegValue); // Port 0..3 DTR is ctrl reg <1,3,5,7> EnableBit = BIT1 << (info->port_num*2); if (info->serial_signals & SerialSignal_DTR) info->port_array[0]->ctrlreg_value &= ~EnableBit; else info->port_array[0]->ctrlreg_value |= EnableBit; write_control_reg(info); } /*******************/ /* DMA Buffer Code */ /*******************/ /* Set the count for all receive buffers to SCABUFSIZE * and set the current buffer to the first buffer. This effectively * makes all buffers free and discards any data in buffers. */ static void rx_reset_buffers(SLMP_INFO *info) { rx_free_frame_buffers(info, 0, info->rx_buf_count - 1); } /* Free the buffers used by a received frame * * info pointer to device instance data * first index of 1st receive buffer of frame * last index of last receive buffer of frame */ static void rx_free_frame_buffers(SLMP_INFO *info, unsigned int first, unsigned int last) { bool done = false; while(!done) { /* reset current buffer for reuse */ info->rx_buf_list[first].status = 0xff; if (first == last) { done = true; /* set new last rx descriptor address */ write_reg16(info, RXDMA + EDA, info->rx_buf_list_ex[first].phys_entry); } first++; if (first == info->rx_buf_count) first = 0; } /* set current buffer to next buffer after last buffer of frame */ info->current_rx_buf = first; } /* Return a received frame from the receive DMA buffers. * Only frames received without errors are returned. * * Return Value: true if frame returned, otherwise false */ static bool rx_get_frame(SLMP_INFO *info) { unsigned int StartIndex, EndIndex; /* index of 1st and last buffers of Rx frame */ unsigned short status; unsigned int framesize = 0; bool ReturnCode = false; unsigned long flags; struct tty_struct *tty = info->port.tty; unsigned char addr_field = 0xff; SCADESC *desc; SCADESC_EX *desc_ex; CheckAgain: /* assume no frame returned, set zero length */ framesize = 0; addr_field = 0xff; /* * current_rx_buf points to the 1st buffer of the next available * receive frame. To find the last buffer of the frame look for * a non-zero status field in the buffer entries. (The status * field is set by the 16C32 after completing a receive frame. */ StartIndex = EndIndex = info->current_rx_buf; for ( ;; ) { desc = &info->rx_buf_list[EndIndex]; desc_ex = &info->rx_buf_list_ex[EndIndex]; if (desc->status == 0xff) goto Cleanup; /* current desc still in use, no frames available */ if (framesize == 0 && info->params.addr_filter != 0xff) addr_field = desc_ex->virt_addr[0]; framesize += desc->length; /* Status != 0 means last buffer of frame */ if (desc->status) break; EndIndex++; if (EndIndex == info->rx_buf_count) EndIndex = 0; if (EndIndex == info->current_rx_buf) { /* all buffers have been 'used' but none mark */ /* the end of a frame. Reset buffers and receiver. */ if ( info->rx_enabled ){ spin_lock_irqsave(&info->lock,flags); rx_start(info); spin_unlock_irqrestore(&info->lock,flags); } goto Cleanup; } } /* check status of receive frame */ /* frame status is byte stored after frame data * * 7 EOM (end of msg), 1 = last buffer of frame * 6 Short Frame, 1 = short frame * 5 Abort, 1 = frame aborted * 4 Residue, 1 = last byte is partial * 3 Overrun, 1 = overrun occurred during frame reception * 2 CRC, 1 = CRC error detected * */ status = desc->status; /* ignore CRC bit if not using CRC (bit is undefined) */ /* Note:CRC is not save to data buffer */ if (info->params.crc_type == HDLC_CRC_NONE) status &= ~BIT2; if (framesize == 0 || (addr_field != 0xff && addr_field != info->params.addr_filter)) { /* discard 0 byte frames, this seems to occur sometime * when remote is idling flags. */ rx_free_frame_buffers(info, StartIndex, EndIndex); goto CheckAgain; } if (framesize < 2) status |= BIT6; if (status & (BIT6+BIT5+BIT3+BIT2)) { /* received frame has errors, * update counts and mark frame size as 0 */ if (status & BIT6) info->icount.rxshort++; else if (status & BIT5) info->icount.rxabort++; else if (status & BIT3) info->icount.rxover++; else info->icount.rxcrc++; framesize = 0; #if SYNCLINK_GENERIC_HDLC { info->netdev->stats.rx_errors++; info->netdev->stats.rx_frame_errors++; } #endif } if ( debug_level >= DEBUG_LEVEL_BH ) printk("%s(%d):%s rx_get_frame() status=%04X size=%d\n", __FILE__,__LINE__,info->device_name,status,framesize); if ( debug_level >= DEBUG_LEVEL_DATA ) trace_block(info,info->rx_buf_list_ex[StartIndex].virt_addr, min_t(unsigned int, framesize, SCABUFSIZE), 0); if (framesize) { if (framesize > info->max_frame_size) info->icount.rxlong++; else { /* copy dma buffer(s) to contiguous intermediate buffer */ int copy_count = framesize; int index = StartIndex; unsigned char *ptmp = info->tmp_rx_buf; info->tmp_rx_buf_count = framesize; info->icount.rxok++; while(copy_count) { int partial_count = min(copy_count,SCABUFSIZE); memcpy( ptmp, info->rx_buf_list_ex[index].virt_addr, partial_count ); ptmp += partial_count; copy_count -= partial_count; if ( ++index == info->rx_buf_count ) index = 0; } #if SYNCLINK_GENERIC_HDLC if (info->netcount) hdlcdev_rx(info,info->tmp_rx_buf,framesize); else #endif ldisc_receive_buf(tty,info->tmp_rx_buf, info->flag_buf, framesize); } } /* Free the buffers used by this frame. */ rx_free_frame_buffers( info, StartIndex, EndIndex ); ReturnCode = true; Cleanup: if ( info->rx_enabled && info->rx_overflow ) { /* Receiver is enabled, but needs to restarted due to * rx buffer overflow. If buffers are empty, restart receiver. */ if (info->rx_buf_list[EndIndex].status == 0xff) { spin_lock_irqsave(&info->lock,flags); rx_start(info); spin_unlock_irqrestore(&info->lock,flags); } } return ReturnCode; } /* load the transmit DMA buffer with data */ static void tx_load_dma_buffer(SLMP_INFO *info, const char *buf, unsigned int count) { unsigned short copy_count; unsigned int i = 0; SCADESC *desc; SCADESC_EX *desc_ex; if ( debug_level >= DEBUG_LEVEL_DATA ) trace_block(info, buf, min_t(unsigned int, count, SCABUFSIZE), 1); /* Copy source buffer to one or more DMA buffers, starting with * the first transmit dma buffer. */ for(i=0;;) { copy_count = min_t(unsigned int, count, SCABUFSIZE); desc = &info->tx_buf_list[i]; desc_ex = &info->tx_buf_list_ex[i]; load_pci_memory(info, desc_ex->virt_addr,buf,copy_count); desc->length = copy_count; desc->status = 0; buf += copy_count; count -= copy_count; if (!count) break; i++; if (i >= info->tx_buf_count) i = 0; } info->tx_buf_list[i].status = 0x81; /* set EOM and EOT status */ info->last_tx_buf = ++i; } static bool register_test(SLMP_INFO *info) { static unsigned char testval[] = {0x00, 0xff, 0xaa, 0x55, 0x69, 0x96}; static unsigned int count = ARRAY_SIZE(testval); unsigned int i; bool rc = true; unsigned long flags; spin_lock_irqsave(&info->lock,flags); reset_port(info); /* assume failure */ info->init_error = DiagStatus_AddressFailure; /* Write bit patterns to various registers but do it out of */ /* sync, then read back and verify values. */ for (i = 0 ; i < count ; i++) { write_reg(info, TMC, testval[i]); write_reg(info, IDL, testval[(i+1)%count]); write_reg(info, SA0, testval[(i+2)%count]); write_reg(info, SA1, testval[(i+3)%count]); if ( (read_reg(info, TMC) != testval[i]) || (read_reg(info, IDL) != testval[(i+1)%count]) || (read_reg(info, SA0) != testval[(i+2)%count]) || (read_reg(info, SA1) != testval[(i+3)%count]) ) { rc = false; break; } } reset_port(info); spin_unlock_irqrestore(&info->lock,flags); return rc; } static bool irq_test(SLMP_INFO *info) { unsigned long timeout; unsigned long flags; unsigned char timer = (info->port_num & 1) ? TIMER2 : TIMER0; spin_lock_irqsave(&info->lock,flags); reset_port(info); /* assume failure */ info->init_error = DiagStatus_IrqFailure; info->irq_occurred = false; /* setup timer0 on SCA0 to interrupt */ /* IER2<7..4> = timer<3..0> interrupt enables (1=enabled) */ write_reg(info, IER2, (unsigned char)((info->port_num & 1) ? BIT6 : BIT4)); write_reg(info, (unsigned char)(timer + TEPR), 0); /* timer expand prescale */ write_reg16(info, (unsigned char)(timer + TCONR), 1); /* timer constant */ /* TMCS, Timer Control/Status Register * * 07 CMF, Compare match flag (read only) 1=match * 06 ECMI, CMF Interrupt Enable: 1=enabled * 05 Reserved, must be 0 * 04 TME, Timer Enable * 03..00 Reserved, must be 0 * * 0101 0000 */ write_reg(info, (unsigned char)(timer + TMCS), 0x50); spin_unlock_irqrestore(&info->lock,flags); timeout=100; while( timeout-- && !info->irq_occurred ) { msleep_interruptible(10); } spin_lock_irqsave(&info->lock,flags); reset_port(info); spin_unlock_irqrestore(&info->lock,flags); return info->irq_occurred; } /* initialize individual SCA device (2 ports) */ static bool sca_init(SLMP_INFO *info) { /* set wait controller to single mem partition (low), no wait states */ write_reg(info, PABR0, 0); /* wait controller addr boundary 0 */ write_reg(info, PABR1, 0); /* wait controller addr boundary 1 */ write_reg(info, WCRL, 0); /* wait controller low range */ write_reg(info, WCRM, 0); /* wait controller mid range */ write_reg(info, WCRH, 0); /* wait controller high range */ /* DPCR, DMA Priority Control * * 07..05 Not used, must be 0 * 04 BRC, bus release condition: 0=all transfers complete * 03 CCC, channel change condition: 0=every cycle * 02..00 PR<2..0>, priority 100=round robin * * 00000100 = 0x04 */ write_reg(info, DPCR, dma_priority); /* DMA Master Enable, BIT7: 1=enable all channels */ write_reg(info, DMER, 0x80); /* enable all interrupt classes */ write_reg(info, IER0, 0xff); /* TxRDY,RxRDY,TxINT,RxINT (ports 0-1) */ write_reg(info, IER1, 0xff); /* DMIB,DMIA (channels 0-3) */ write_reg(info, IER2, 0xf0); /* TIRQ (timers 0-3) */ /* ITCR, interrupt control register * 07 IPC, interrupt priority, 0=MSCI->DMA * 06..05 IAK<1..0>, Acknowledge cycle, 00=non-ack cycle * 04 VOS, Vector Output, 0=unmodified vector * 03..00 Reserved, must be 0 */ write_reg(info, ITCR, 0); return true; } /* initialize adapter hardware */ static bool init_adapter(SLMP_INFO *info) { int i; /* Set BIT30 of Local Control Reg 0x50 to reset SCA */ volatile u32 *MiscCtrl = (u32 *)(info->lcr_base + 0x50); u32 readval; info->misc_ctrl_value |= BIT30; *MiscCtrl = info->misc_ctrl_value; /* * Force at least 170ns delay before clearing * reset bit. Each read from LCR takes at least * 30ns so 10 times for 300ns to be safe. */ for(i=0;i<10;i++) readval = *MiscCtrl; info->misc_ctrl_value &= ~BIT30; *MiscCtrl = info->misc_ctrl_value; /* init control reg (all DTRs off, all clksel=input) */ info->ctrlreg_value = 0xaa; write_control_reg(info); { volatile u32 *LCR1BRDR = (u32 *)(info->lcr_base + 0x2c); lcr1_brdr_value &= ~(BIT5 + BIT4 + BIT3); switch(read_ahead_count) { case 16: lcr1_brdr_value |= BIT5 + BIT4 + BIT3; break; case 8: lcr1_brdr_value |= BIT5 + BIT4; break; case 4: lcr1_brdr_value |= BIT5 + BIT3; break; case 0: lcr1_brdr_value |= BIT5; break; } *LCR1BRDR = lcr1_brdr_value; *MiscCtrl = misc_ctrl_value; } sca_init(info->port_array[0]); sca_init(info->port_array[2]); return true; } /* Loopback an HDLC frame to test the hardware * interrupt and DMA functions. */ static bool loopback_test(SLMP_INFO *info) { #define TESTFRAMESIZE 20 unsigned long timeout; u16 count = TESTFRAMESIZE; unsigned char buf[TESTFRAMESIZE]; bool rc = false; unsigned long flags; struct tty_struct *oldtty = info->port.tty; u32 speed = info->params.clock_speed; info->params.clock_speed = 3686400; info->port.tty = NULL; /* assume failure */ info->init_error = DiagStatus_DmaFailure; /* build and send transmit frame */ for (count = 0; count < TESTFRAMESIZE;++count) buf[count] = (unsigned char)count; memset(info->tmp_rx_buf,0,TESTFRAMESIZE); /* program hardware for HDLC and enabled receiver */ spin_lock_irqsave(&info->lock,flags); hdlc_mode(info); enable_loopback(info,1); rx_start(info); info->tx_count = count; tx_load_dma_buffer(info,buf,count); tx_start(info); spin_unlock_irqrestore(&info->lock,flags); /* wait for receive complete */ /* Set a timeout for waiting for interrupt. */ for ( timeout = 100; timeout; --timeout ) { msleep_interruptible(10); if (rx_get_frame(info)) { rc = true; break; } } /* verify received frame length and contents */ if (rc && ( info->tmp_rx_buf_count != count || memcmp(buf, info->tmp_rx_buf,count))) { rc = false; } spin_lock_irqsave(&info->lock,flags); reset_adapter(info); spin_unlock_irqrestore(&info->lock,flags); info->params.clock_speed = speed; info->port.tty = oldtty; return rc; } /* Perform diagnostics on hardware */ static int adapter_test( SLMP_INFO *info ) { unsigned long flags; if ( debug_level >= DEBUG_LEVEL_INFO ) printk( "%s(%d):Testing device %s\n", __FILE__,__LINE__,info->device_name ); spin_lock_irqsave(&info->lock,flags); init_adapter(info); spin_unlock_irqrestore(&info->lock,flags); info->port_array[0]->port_count = 0; if ( register_test(info->port_array[0]) && register_test(info->port_array[1])) { info->port_array[0]->port_count = 2; if ( register_test(info->port_array[2]) && register_test(info->port_array[3]) ) info->port_array[0]->port_count += 2; } else { printk( "%s(%d):Register test failure for device %s Addr=%08lX\n", __FILE__,__LINE__,info->device_name, (unsigned long)(info->phys_sca_base)); return -ENODEV; } if ( !irq_test(info->port_array[0]) || !irq_test(info->port_array[1]) || (info->port_count == 4 && !irq_test(info->port_array[2])) || (info->port_count == 4 && !irq_test(info->port_array[3]))) { printk( "%s(%d):Interrupt test failure for device %s IRQ=%d\n", __FILE__,__LINE__,info->device_name, (unsigned short)(info->irq_level) ); return -ENODEV; } if (!loopback_test(info->port_array[0]) || !loopback_test(info->port_array[1]) || (info->port_count == 4 && !loopback_test(info->port_array[2])) || (info->port_count == 4 && !loopback_test(info->port_array[3]))) { printk( "%s(%d):DMA test failure for device %s\n", __FILE__,__LINE__,info->device_name); return -ENODEV; } if ( debug_level >= DEBUG_LEVEL_INFO ) printk( "%s(%d):device %s passed diagnostics\n", __FILE__,__LINE__,info->device_name ); info->port_array[0]->init_error = 0; info->port_array[1]->init_error = 0; if ( info->port_count > 2 ) { info->port_array[2]->init_error = 0; info->port_array[3]->init_error = 0; } return 0; } /* Test the shared memory on a PCI adapter. */ static bool memory_test(SLMP_INFO *info) { static unsigned long testval[] = { 0x0, 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999, 0xffffffff, 0x12345678 }; unsigned long count = ARRAY_SIZE(testval); unsigned long i; unsigned long limit = SCA_MEM_SIZE/sizeof(unsigned long); unsigned long * addr = (unsigned long *)info->memory_base; /* Test data lines with test pattern at one location. */ for ( i = 0 ; i < count ; i++ ) { *addr = testval[i]; if ( *addr != testval[i] ) return false; } /* Test address lines with incrementing pattern over */ /* entire address range. */ for ( i = 0 ; i < limit ; i++ ) { *addr = i * 4; addr++; } addr = (unsigned long *)info->memory_base; for ( i = 0 ; i < limit ; i++ ) { if ( *addr != i * 4 ) return false; addr++; } memset( info->memory_base, 0, SCA_MEM_SIZE ); return true; } /* Load data into PCI adapter shared memory. * * The PCI9050 releases control of the local bus * after completing the current read or write operation. * * While the PCI9050 write FIFO not empty, the * PCI9050 treats all of the writes as a single transaction * and does not release the bus. This causes DMA latency problems * at high speeds when copying large data blocks to the shared memory. * * This function breaks a write into multiple transations by * interleaving a read which flushes the write FIFO and 'completes' * the write transation. This allows any pending DMA request to gain control * of the local bus in a timely fasion. */ static void load_pci_memory(SLMP_INFO *info, char* dest, const char* src, unsigned short count) { /* A load interval of 16 allows for 4 32-bit writes at */ /* 136ns each for a maximum latency of 542ns on the local bus.*/ unsigned short interval = count / sca_pci_load_interval; unsigned short i; for ( i = 0 ; i < interval ; i++ ) { memcpy(dest, src, sca_pci_load_interval); read_status_reg(info); dest += sca_pci_load_interval; src += sca_pci_load_interval; } memcpy(dest, src, count % sca_pci_load_interval); } static void trace_block(SLMP_INFO *info,const char* data, int count, int xmit) { int i; int linecount; if (xmit) printk("%s tx data:\n",info->device_name); else printk("%s rx data:\n",info->device_name); while(count) { if (count > 16) linecount = 16; else linecount = count; for(i=0;i<linecount;i++) printk("%02X ",(unsigned char)data[i]); for(;i<17;i++) printk(" "); for(i=0;i<linecount;i++) { if (data[i]>=040 && data[i]<=0176) printk("%c",data[i]); else printk("."); } printk("\n"); data += linecount; count -= linecount; } } /* end of trace_block() */ /* called when HDLC frame times out * update stats and do tx completion processing */ static void tx_timeout(unsigned long context) { SLMP_INFO *info = (SLMP_INFO*)context; unsigned long flags; if ( debug_level >= DEBUG_LEVEL_INFO ) printk( "%s(%d):%s tx_timeout()\n", __FILE__,__LINE__,info->device_name); if(info->tx_active && info->params.mode == MGSL_MODE_HDLC) { info->icount.txtimeout++; } spin_lock_irqsave(&info->lock,flags); info->tx_active = false; info->tx_count = info->tx_put = info->tx_get = 0; spin_unlock_irqrestore(&info->lock,flags); #if SYNCLINK_GENERIC_HDLC if (info->netcount) hdlcdev_tx_done(info); else #endif bh_transmit(info); } /* called to periodically check the DSR/RI modem signal input status */ static void status_timeout(unsigned long context) { u16 status = 0; SLMP_INFO *info = (SLMP_INFO*)context; unsigned long flags; unsigned char delta; spin_lock_irqsave(&info->lock,flags); get_signals(info); spin_unlock_irqrestore(&info->lock,flags); /* check for DSR/RI state change */ delta = info->old_signals ^ info->serial_signals; info->old_signals = info->serial_signals; if (delta & SerialSignal_DSR) status |= MISCSTATUS_DSR_LATCHED|(info->serial_signals&SerialSignal_DSR); if (delta & SerialSignal_RI) status |= MISCSTATUS_RI_LATCHED|(info->serial_signals&SerialSignal_RI); if (delta & SerialSignal_DCD) status |= MISCSTATUS_DCD_LATCHED|(info->serial_signals&SerialSignal_DCD); if (delta & SerialSignal_CTS) status |= MISCSTATUS_CTS_LATCHED|(info->serial_signals&SerialSignal_CTS); if (status) isr_io_pin(info,status); mod_timer(&info->status_timer, jiffies + msecs_to_jiffies(10)); } /* Register Access Routines - * All registers are memory mapped */ #define CALC_REGADDR() \ unsigned char * RegAddr = (unsigned char*)(info->sca_base + Addr); \ if (info->port_num > 1) \ RegAddr += 256; /* port 0-1 SCA0, 2-3 SCA1 */ \ if ( info->port_num & 1) { \ if (Addr > 0x7f) \ RegAddr += 0x40; /* DMA access */ \ else if (Addr > 0x1f && Addr < 0x60) \ RegAddr += 0x20; /* MSCI access */ \ } static unsigned char read_reg(SLMP_INFO * info, unsigned char Addr) { CALC_REGADDR(); return *RegAddr; } static void write_reg(SLMP_INFO * info, unsigned char Addr, unsigned char Value) { CALC_REGADDR(); *RegAddr = Value; } static u16 read_reg16(SLMP_INFO * info, unsigned char Addr) { CALC_REGADDR(); return *((u16 *)RegAddr); } static void write_reg16(SLMP_INFO * info, unsigned char Addr, u16 Value) { CALC_REGADDR(); *((u16 *)RegAddr) = Value; } static unsigned char read_status_reg(SLMP_INFO * info) { unsigned char *RegAddr = (unsigned char *)info->statctrl_base; return *RegAddr; } static void write_control_reg(SLMP_INFO * info) { unsigned char *RegAddr = (unsigned char *)info->statctrl_base; *RegAddr = info->port_array[0]->ctrlreg_value; } static int __devinit synclinkmp_init_one (struct pci_dev *dev, const struct pci_device_id *ent) { if (pci_enable_device(dev)) { printk("error enabling pci device %p\n", dev); return -EIO; } device_init( ++synclinkmp_adapter_count, dev ); return 0; } static void __devexit synclinkmp_remove_one (struct pci_dev *dev) { }