/* * Definitions for the 'struct sk_buff' memory handlers. * * Authors: * Alan Cox, <gw4pts@gw4pts.ampr.org> * Florian La Roche, <rzsfl@rz.uni-sb.de> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #ifndef _LINUX_SKBUFF_H #define _LINUX_SKBUFF_H #include <linux/kernel.h> #include <linux/kmemcheck.h> #include <linux/compiler.h> #include <linux/time.h> #include <linux/bug.h> #include <linux/cache.h> #include <linux/atomic.h> #include <asm/types.h> #include <linux/spinlock.h> #include <linux/net.h> #include <linux/textsearch.h> #include <net/checksum.h> #include <linux/rcupdate.h> #include <linux/dmaengine.h> #include <linux/hrtimer.h> #include <linux/dma-mapping.h> #include <linux/netdev_features.h> /* Don't change this without changing skb_csum_unnecessary! */ #define CHECKSUM_NONE 0 #define CHECKSUM_UNNECESSARY 1 #define CHECKSUM_COMPLETE 2 #define CHECKSUM_PARTIAL 3 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ ~(SMP_CACHE_BYTES - 1)) #define SKB_WITH_OVERHEAD(X) \ ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) #define SKB_MAX_ORDER(X, ORDER) \ SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) /* return minimum truesize of one skb containing X bytes of data */ #define SKB_TRUESIZE(X) ((X) + \ SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) /* A. Checksumming of received packets by device. * * NONE: device failed to checksum this packet. * skb->csum is undefined. * * UNNECESSARY: device parsed packet and wouldbe verified checksum. * skb->csum is undefined. * It is bad option, but, unfortunately, many of vendors do this. * Apparently with secret goal to sell you new device, when you * will add new protocol to your host. F.e. IPv6. 8) * * COMPLETE: the most generic way. Device supplied checksum of _all_ * the packet as seen by netif_rx in skb->csum. * NOTE: Even if device supports only some protocols, but * is able to produce some skb->csum, it MUST use COMPLETE, * not UNNECESSARY. * * PARTIAL: identical to the case for output below. This may occur * on a packet received directly from another Linux OS, e.g., * a virtualised Linux kernel on the same host. The packet can * be treated in the same way as UNNECESSARY except that on * output (i.e., forwarding) the checksum must be filled in * by the OS or the hardware. * * B. Checksumming on output. * * NONE: skb is checksummed by protocol or csum is not required. * * PARTIAL: device is required to csum packet as seen by hard_start_xmit * from skb->csum_start to the end and to record the checksum * at skb->csum_start + skb->csum_offset. * * Device must show its capabilities in dev->features, set * at device setup time. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum * everything. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only * TCP/UDP over IPv4. Sigh. Vendors like this * way by an unknown reason. Though, see comment above * about CHECKSUM_UNNECESSARY. 8) * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead. * * UNNECESSARY: device will do per protocol specific csum. Protocol drivers * that do not want net to perform the checksum calculation should use * this flag in their outgoing skbs. * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC * offload. Correspondingly, the FCoE protocol driver * stack should use CHECKSUM_UNNECESSARY. * * Any questions? No questions, good. --ANK */ struct net_device; struct scatterlist; struct pipe_inode_info; #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) struct nf_conntrack { atomic_t use; }; #endif #ifdef CONFIG_BRIDGE_NETFILTER struct nf_bridge_info { atomic_t use; struct net_device *physindev; struct net_device *physoutdev; unsigned int mask; unsigned long data[32 / sizeof(unsigned long)]; }; #endif struct sk_buff_head { /* These two members must be first. */ struct sk_buff *next; struct sk_buff *prev; __u32 qlen; spinlock_t lock; }; struct sk_buff; /* To allow 64K frame to be packed as single skb without frag_list we * require 64K/PAGE_SIZE pages plus 1 additional page to allow for * buffers which do not start on a page boundary. * * Since GRO uses frags we allocate at least 16 regardless of page * size. */ #if (65536/PAGE_SIZE + 1) < 16 #define MAX_SKB_FRAGS 16UL #else #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) #endif typedef struct skb_frag_struct skb_frag_t; struct skb_frag_struct { struct { struct page *p; } page; #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) __u32 page_offset; __u32 size; #else __u16 page_offset; __u16 size; #endif }; static inline unsigned int skb_frag_size(const skb_frag_t *frag) { return frag->size; } static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) { frag->size = size; } static inline void skb_frag_size_add(skb_frag_t *frag, int delta) { frag->size += delta; } static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) { frag->size -= delta; } #define HAVE_HW_TIME_STAMP /** * struct skb_shared_hwtstamps - hardware time stamps * @hwtstamp: hardware time stamp transformed into duration * since arbitrary point in time * @syststamp: hwtstamp transformed to system time base * * Software time stamps generated by ktime_get_real() are stored in * skb->tstamp. The relation between the different kinds of time * stamps is as follows: * * syststamp and tstamp can be compared against each other in * arbitrary combinations. The accuracy of a * syststamp/tstamp/"syststamp from other device" comparison is * limited by the accuracy of the transformation into system time * base. This depends on the device driver and its underlying * hardware. * * hwtstamps can only be compared against other hwtstamps from * the same device. * * This structure is attached to packets as part of the * &skb_shared_info. Use skb_hwtstamps() to get a pointer. */ struct skb_shared_hwtstamps { ktime_t hwtstamp; ktime_t syststamp; }; /* Definitions for tx_flags in struct skb_shared_info */ enum { /* generate hardware time stamp */ SKBTX_HW_TSTAMP = 1 << 0, /* generate software time stamp */ SKBTX_SW_TSTAMP = 1 << 1, /* device driver is going to provide hardware time stamp */ SKBTX_IN_PROGRESS = 1 << 2, /* device driver supports TX zero-copy buffers */ SKBTX_DEV_ZEROCOPY = 1 << 3, /* generate wifi status information (where possible) */ SKBTX_WIFI_STATUS = 1 << 4, }; /* * The callback notifies userspace to release buffers when skb DMA is done in * lower device, the skb last reference should be 0 when calling this. * The ctx field is used to track device context. * The desc field is used to track userspace buffer index. */ struct ubuf_info { void (*callback)(struct ubuf_info *); void *ctx; unsigned long desc; }; /* This data is invariant across clones and lives at * the end of the header data, ie. at skb->end. */ struct skb_shared_info { unsigned char nr_frags; __u8 tx_flags; unsigned short gso_size; /* Warning: this field is not always filled in (UFO)! */ unsigned short gso_segs; unsigned short gso_type; struct sk_buff *frag_list; struct skb_shared_hwtstamps hwtstamps; __be32 ip6_frag_id; /* * Warning : all fields before dataref are cleared in __alloc_skb() */ atomic_t dataref; /* Intermediate layers must ensure that destructor_arg * remains valid until skb destructor */ void * destructor_arg; /* must be last field, see pskb_expand_head() */ skb_frag_t frags[MAX_SKB_FRAGS]; }; /* We divide dataref into two halves. The higher 16 bits hold references * to the payload part of skb->data. The lower 16 bits hold references to * the entire skb->data. A clone of a headerless skb holds the length of * the header in skb->hdr_len. * * All users must obey the rule that the skb->data reference count must be * greater than or equal to the payload reference count. * * Holding a reference to the payload part means that the user does not * care about modifications to the header part of skb->data. */ #define SKB_DATAREF_SHIFT 16 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) enum { SKB_FCLONE_UNAVAILABLE, SKB_FCLONE_ORIG, SKB_FCLONE_CLONE, }; enum { SKB_GSO_TCPV4 = 1 << 0, SKB_GSO_UDP = 1 << 1, /* This indicates the skb is from an untrusted source. */ SKB_GSO_DODGY = 1 << 2, /* This indicates the tcp segment has CWR set. */ SKB_GSO_TCP_ECN = 1 << 3, SKB_GSO_TCPV6 = 1 << 4, SKB_GSO_FCOE = 1 << 5, }; #if BITS_PER_LONG > 32 #define NET_SKBUFF_DATA_USES_OFFSET 1 #endif #ifdef NET_SKBUFF_DATA_USES_OFFSET typedef unsigned int sk_buff_data_t; #else typedef unsigned char *sk_buff_data_t; #endif #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \ defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE) #define NET_SKBUFF_NF_DEFRAG_NEEDED 1 #endif /** * struct sk_buff - socket buffer * @next: Next buffer in list * @prev: Previous buffer in list * @tstamp: Time we arrived * @sk: Socket we are owned by * @dev: Device we arrived on/are leaving by * @cb: Control buffer. Free for use by every layer. Put private vars here * @_skb_refdst: destination entry (with norefcount bit) * @sp: the security path, used for xfrm * @len: Length of actual data * @data_len: Data length * @mac_len: Length of link layer header * @hdr_len: writable header length of cloned skb * @csum: Checksum (must include start/offset pair) * @csum_start: Offset from skb->head where checksumming should start * @csum_offset: Offset from csum_start where checksum should be stored * @priority: Packet queueing priority * @local_df: allow local fragmentation * @cloned: Head may be cloned (check refcnt to be sure) * @ip_summed: Driver fed us an IP checksum * @nohdr: Payload reference only, must not modify header * @nfctinfo: Relationship of this skb to the connection * @pkt_type: Packet class * @fclone: skbuff clone status * @ipvs_property: skbuff is owned by ipvs * @peeked: this packet has been seen already, so stats have been * done for it, don't do them again * @nf_trace: netfilter packet trace flag * @protocol: Packet protocol from driver * @destructor: Destruct function * @nfct: Associated connection, if any * @nfct_reasm: netfilter conntrack re-assembly pointer * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c * @skb_iif: ifindex of device we arrived on * @tc_index: Traffic control index * @tc_verd: traffic control verdict * @rxhash: the packet hash computed on receive * @queue_mapping: Queue mapping for multiqueue devices * @ndisc_nodetype: router type (from link layer) * @ooo_okay: allow the mapping of a socket to a queue to be changed * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport * ports. * @wifi_acked_valid: wifi_acked was set * @wifi_acked: whether frame was acked on wifi or not * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS * @dma_cookie: a cookie to one of several possible DMA operations * done by skb DMA functions * @secmark: security marking * @mark: Generic packet mark * @dropcount: total number of sk_receive_queue overflows * @vlan_tci: vlan tag control information * @transport_header: Transport layer header * @network_header: Network layer header * @mac_header: Link layer header * @tail: Tail pointer * @end: End pointer * @head: Head of buffer * @data: Data head pointer * @truesize: Buffer size * @users: User count - see {datagram,tcp}.c */ struct sk_buff { /* These two members must be first. */ struct sk_buff *next; struct sk_buff *prev; ktime_t tstamp; struct sock *sk; struct net_device *dev; /* * This is the control buffer. It is free to use for every * layer. Please put your private variables there. If you * want to keep them across layers you have to do a skb_clone() * first. This is owned by whoever has the skb queued ATM. */ char cb[48] __aligned(8); unsigned long _skb_refdst; #ifdef CONFIG_XFRM struct sec_path *sp; #endif unsigned int len, data_len; __u16 mac_len, hdr_len; union { __wsum csum; struct { __u16 csum_start; __u16 csum_offset; }; }; __u32 priority; kmemcheck_bitfield_begin(flags1); __u8 local_df:1, cloned:1, ip_summed:2, nohdr:1, nfctinfo:3; __u8 pkt_type:3, fclone:2, ipvs_property:1, peeked:1, nf_trace:1; kmemcheck_bitfield_end(flags1); __be16 protocol; void (*destructor)(struct sk_buff *skb); #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) struct nf_conntrack *nfct; #endif #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED struct sk_buff *nfct_reasm; #endif #ifdef CONFIG_BRIDGE_NETFILTER struct nf_bridge_info *nf_bridge; #endif int skb_iif; __u32 rxhash; __u16 vlan_tci; #ifdef CONFIG_NET_SCHED __u16 tc_index; /* traffic control index */ #ifdef CONFIG_NET_CLS_ACT __u16 tc_verd; /* traffic control verdict */ #endif #endif __u16 queue_mapping; kmemcheck_bitfield_begin(flags2); #ifdef CONFIG_IPV6_NDISC_NODETYPE __u8 ndisc_nodetype:2; #endif __u8 ooo_okay:1; __u8 l4_rxhash:1; __u8 wifi_acked_valid:1; __u8 wifi_acked:1; __u8 no_fcs:1; /* 9/11 bit hole (depending on ndisc_nodetype presence) */ kmemcheck_bitfield_end(flags2); #ifdef CONFIG_NET_DMA dma_cookie_t dma_cookie; #endif #ifdef CONFIG_NETWORK_SECMARK __u32 secmark; #endif union { __u32 mark; __u32 dropcount; __u32 reserved_tailroom; }; sk_buff_data_t transport_header; sk_buff_data_t network_header; sk_buff_data_t mac_header; /* These elements must be at the end, see alloc_skb() for details. */ sk_buff_data_t tail; sk_buff_data_t end; unsigned char *head, *data; unsigned int truesize; atomic_t users; }; #ifdef __KERNEL__ /* * Handling routines are only of interest to the kernel */ #include <linux/slab.h> /* * skb might have a dst pointer attached, refcounted or not. * _skb_refdst low order bit is set if refcount was _not_ taken */ #define SKB_DST_NOREF 1UL #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) /** * skb_dst - returns skb dst_entry * @skb: buffer * * Returns skb dst_entry, regardless of reference taken or not. */ static inline struct dst_entry *skb_dst(const struct sk_buff *skb) { /* If refdst was not refcounted, check we still are in a * rcu_read_lock section */ WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && !rcu_read_lock_held() && !rcu_read_lock_bh_held()); return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); } /** * skb_dst_set - sets skb dst * @skb: buffer * @dst: dst entry * * Sets skb dst, assuming a reference was taken on dst and should * be released by skb_dst_drop() */ static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) { skb->_skb_refdst = (unsigned long)dst; } extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst); /** * skb_dst_is_noref - Test if skb dst isn't refcounted * @skb: buffer */ static inline bool skb_dst_is_noref(const struct sk_buff *skb) { return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); } static inline struct rtable *skb_rtable(const struct sk_buff *skb) { return (struct rtable *)skb_dst(skb); } extern void kfree_skb(struct sk_buff *skb); extern void consume_skb(struct sk_buff *skb); extern void __kfree_skb(struct sk_buff *skb); extern struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int fclone, int node); extern struct sk_buff *build_skb(void *data); static inline struct sk_buff *alloc_skb(unsigned int size, gfp_t priority) { return __alloc_skb(size, priority, 0, NUMA_NO_NODE); } static inline struct sk_buff *alloc_skb_fclone(unsigned int size, gfp_t priority) { return __alloc_skb(size, priority, 1, NUMA_NO_NODE); } extern void skb_recycle(struct sk_buff *skb); extern bool skb_recycle_check(struct sk_buff *skb, int skb_size); extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); extern struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); extern struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); extern struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask); extern int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom); extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, int newtailroom, gfp_t priority); extern int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len); extern int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); extern int skb_pad(struct sk_buff *skb, int pad); #define dev_kfree_skb(a) consume_skb(a) extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, int getfrag(void *from, char *to, int offset, int len,int odd, struct sk_buff *skb), void *from, int length); struct skb_seq_state { __u32 lower_offset; __u32 upper_offset; __u32 frag_idx; __u32 stepped_offset; struct sk_buff *root_skb; struct sk_buff *cur_skb; __u8 *frag_data; }; extern void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, unsigned int to, struct skb_seq_state *st); extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, struct skb_seq_state *st); extern void skb_abort_seq_read(struct skb_seq_state *st); extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, unsigned int to, struct ts_config *config, struct ts_state *state); extern void __skb_get_rxhash(struct sk_buff *skb); static inline __u32 skb_get_rxhash(struct sk_buff *skb) { if (!skb->rxhash) __skb_get_rxhash(skb); return skb->rxhash; } #ifdef NET_SKBUFF_DATA_USES_OFFSET static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) { return skb->head + skb->end; } #else static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) { return skb->end; } #endif /* Internal */ #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) { return &skb_shinfo(skb)->hwtstamps; } /** * skb_queue_empty - check if a queue is empty * @list: queue head * * Returns true if the queue is empty, false otherwise. */ static inline int skb_queue_empty(const struct sk_buff_head *list) { return list->next == (struct sk_buff *)list; } /** * skb_queue_is_last - check if skb is the last entry in the queue * @list: queue head * @skb: buffer * * Returns true if @skb is the last buffer on the list. */ static inline bool skb_queue_is_last(const struct sk_buff_head *list, const struct sk_buff *skb) { return skb->next == (struct sk_buff *)list; } /** * skb_queue_is_first - check if skb is the first entry in the queue * @list: queue head * @skb: buffer * * Returns true if @skb is the first buffer on the list. */ static inline bool skb_queue_is_first(const struct sk_buff_head *list, const struct sk_buff *skb) { return skb->prev == (struct sk_buff *)list; } /** * skb_queue_next - return the next packet in the queue * @list: queue head * @skb: current buffer * * Return the next packet in @list after @skb. It is only valid to * call this if skb_queue_is_last() evaluates to false. */ static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, const struct sk_buff *skb) { /* This BUG_ON may seem severe, but if we just return then we * are going to dereference garbage. */ BUG_ON(skb_queue_is_last(list, skb)); return skb->next; } /** * skb_queue_prev - return the prev packet in the queue * @list: queue head * @skb: current buffer * * Return the prev packet in @list before @skb. It is only valid to * call this if skb_queue_is_first() evaluates to false. */ static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, const struct sk_buff *skb) { /* This BUG_ON may seem severe, but if we just return then we * are going to dereference garbage. */ BUG_ON(skb_queue_is_first(list, skb)); return skb->prev; } /** * skb_get - reference buffer * @skb: buffer to reference * * Makes another reference to a socket buffer and returns a pointer * to the buffer. */ static inline struct sk_buff *skb_get(struct sk_buff *skb) { atomic_inc(&skb->users); return skb; } /* * If users == 1, we are the only owner and are can avoid redundant * atomic change. */ /** * skb_cloned - is the buffer a clone * @skb: buffer to check * * Returns true if the buffer was generated with skb_clone() and is * one of multiple shared copies of the buffer. Cloned buffers are * shared data so must not be written to under normal circumstances. */ static inline int skb_cloned(const struct sk_buff *skb) { return skb->cloned && (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; } /** * skb_header_cloned - is the header a clone * @skb: buffer to check * * Returns true if modifying the header part of the buffer requires * the data to be copied. */ static inline int skb_header_cloned(const struct sk_buff *skb) { int dataref; if (!skb->cloned) return 0; dataref = atomic_read(&skb_shinfo(skb)->dataref); dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); return dataref != 1; } /** * skb_header_release - release reference to header * @skb: buffer to operate on * * Drop a reference to the header part of the buffer. This is done * by acquiring a payload reference. You must not read from the header * part of skb->data after this. */ static inline void skb_header_release(struct sk_buff *skb) { BUG_ON(skb->nohdr); skb->nohdr = 1; atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); } /** * skb_shared - is the buffer shared * @skb: buffer to check * * Returns true if more than one person has a reference to this * buffer. */ static inline int skb_shared(const struct sk_buff *skb) { return atomic_read(&skb->users) != 1; } /** * skb_share_check - check if buffer is shared and if so clone it * @skb: buffer to check * @pri: priority for memory allocation * * If the buffer is shared the buffer is cloned and the old copy * drops a reference. A new clone with a single reference is returned. * If the buffer is not shared the original buffer is returned. When * being called from interrupt status or with spinlocks held pri must * be GFP_ATOMIC. * * NULL is returned on a memory allocation failure. */ static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) { might_sleep_if(pri & __GFP_WAIT); if (skb_shared(skb)) { struct sk_buff *nskb = skb_clone(skb, pri); kfree_skb(skb); skb = nskb; } return skb; } /* * Copy shared buffers into a new sk_buff. We effectively do COW on * packets to handle cases where we have a local reader and forward * and a couple of other messy ones. The normal one is tcpdumping * a packet thats being forwarded. */ /** * skb_unshare - make a copy of a shared buffer * @skb: buffer to check * @pri: priority for memory allocation * * If the socket buffer is a clone then this function creates a new * copy of the data, drops a reference count on the old copy and returns * the new copy with the reference count at 1. If the buffer is not a clone * the original buffer is returned. When called with a spinlock held or * from interrupt state @pri must be %GFP_ATOMIC * * %NULL is returned on a memory allocation failure. */ static inline struct sk_buff *skb_unshare(struct sk_buff *skb, gfp_t pri) { might_sleep_if(pri & __GFP_WAIT); if (skb_cloned(skb)) { struct sk_buff *nskb = skb_copy(skb, pri); kfree_skb(skb); /* Free our shared copy */ skb = nskb; } return skb; } /** * skb_peek - peek at the head of an &sk_buff_head * @list_: list to peek at * * Peek an &sk_buff. Unlike most other operations you _MUST_ * be careful with this one. A peek leaves the buffer on the * list and someone else may run off with it. You must hold * the appropriate locks or have a private queue to do this. * * Returns %NULL for an empty list or a pointer to the head element. * The reference count is not incremented and the reference is therefore * volatile. Use with caution. */ static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) { struct sk_buff *list = ((const struct sk_buff *)list_)->next; if (list == (struct sk_buff *)list_) list = NULL; return list; } /** * skb_peek_next - peek skb following the given one from a queue * @skb: skb to start from * @list_: list to peek at * * Returns %NULL when the end of the list is met or a pointer to the * next element. The reference count is not incremented and the * reference is therefore volatile. Use with caution. */ static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, const struct sk_buff_head *list_) { struct sk_buff *next = skb->next; if (next == (struct sk_buff *)list_) next = NULL; return next; } /** * skb_peek_tail - peek at the tail of an &sk_buff_head * @list_: list to peek at * * Peek an &sk_buff. Unlike most other operations you _MUST_ * be careful with this one. A peek leaves the buffer on the * list and someone else may run off with it. You must hold * the appropriate locks or have a private queue to do this. * * Returns %NULL for an empty list or a pointer to the tail element. * The reference count is not incremented and the reference is therefore * volatile. Use with caution. */ static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) { struct sk_buff *list = ((const struct sk_buff *)list_)->prev; if (list == (struct sk_buff *)list_) list = NULL; return list; } /** * skb_queue_len - get queue length * @list_: list to measure * * Return the length of an &sk_buff queue. */ static inline __u32 skb_queue_len(const struct sk_buff_head *list_) { return list_->qlen; } /** * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head * @list: queue to initialize * * This initializes only the list and queue length aspects of * an sk_buff_head object. This allows to initialize the list * aspects of an sk_buff_head without reinitializing things like * the spinlock. It can also be used for on-stack sk_buff_head * objects where the spinlock is known to not be used. */ static inline void __skb_queue_head_init(struct sk_buff_head *list) { list->prev = list->next = (struct sk_buff *)list; list->qlen = 0; } /* * This function creates a split out lock class for each invocation; * this is needed for now since a whole lot of users of the skb-queue * infrastructure in drivers have different locking usage (in hardirq) * than the networking core (in softirq only). In the long run either the * network layer or drivers should need annotation to consolidate the * main types of usage into 3 classes. */ static inline void skb_queue_head_init(struct sk_buff_head *list) { spin_lock_init(&list->lock); __skb_queue_head_init(list); } static inline void skb_queue_head_init_class(struct sk_buff_head *list, struct lock_class_key *class) { skb_queue_head_init(list); lockdep_set_class(&list->lock, class); } /* * Insert an sk_buff on a list. * * The "__skb_xxxx()" functions are the non-atomic ones that * can only be called with interrupts disabled. */ extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); static inline void __skb_insert(struct sk_buff *newsk, struct sk_buff *prev, struct sk_buff *next, struct sk_buff_head *list) { newsk->next = next; newsk->prev = prev; next->prev = prev->next = newsk; list->qlen++; } static inline void __skb_queue_splice(const struct sk_buff_head *list, struct sk_buff *prev, struct sk_buff *next) { struct sk_buff *first = list->next; struct sk_buff *last = list->prev; first->prev = prev; prev->next = first; last->next = next; next->prev = last; } /** * skb_queue_splice - join two skb lists, this is designed for stacks * @list: the new list to add * @head: the place to add it in the first list */ static inline void skb_queue_splice(const struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, (struct sk_buff *) head, head->next); head->qlen += list->qlen; } } /** * skb_queue_splice_init - join two skb lists and reinitialise the emptied list * @list: the new list to add * @head: the place to add it in the first list * * The list at @list is reinitialised */ static inline void skb_queue_splice_init(struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, (struct sk_buff *) head, head->next); head->qlen += list->qlen; __skb_queue_head_init(list); } } /** * skb_queue_splice_tail - join two skb lists, each list being a queue * @list: the new list to add * @head: the place to add it in the first list */ static inline void skb_queue_splice_tail(const struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, head->prev, (struct sk_buff *) head); head->qlen += list->qlen; } } /** * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list * @list: the new list to add * @head: the place to add it in the first list * * Each of the lists is a queue. * The list at @list is reinitialised */ static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, struct sk_buff_head *head) { if (!skb_queue_empty(list)) { __skb_queue_splice(list, head->prev, (struct sk_buff *) head); head->qlen += list->qlen; __skb_queue_head_init(list); } } /** * __skb_queue_after - queue a buffer at the list head * @list: list to use * @prev: place after this buffer * @newsk: buffer to queue * * Queue a buffer int the middle of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ static inline void __skb_queue_after(struct sk_buff_head *list, struct sk_buff *prev, struct sk_buff *newsk) { __skb_insert(newsk, prev, prev->next, list); } extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); static inline void __skb_queue_before(struct sk_buff_head *list, struct sk_buff *next, struct sk_buff *newsk) { __skb_insert(newsk, next->prev, next, list); } /** * __skb_queue_head - queue a buffer at the list head * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the start of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); static inline void __skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) { __skb_queue_after(list, (struct sk_buff *)list, newsk); } /** * __skb_queue_tail - queue a buffer at the list tail * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the end of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); static inline void __skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) { __skb_queue_before(list, (struct sk_buff *)list, newsk); } /* * remove sk_buff from list. _Must_ be called atomically, and with * the list known.. */ extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) { struct sk_buff *next, *prev; list->qlen--; next = skb->next; prev = skb->prev; skb->next = skb->prev = NULL; next->prev = prev; prev->next = next; } /** * __skb_dequeue - remove from the head of the queue * @list: list to dequeue from * * Remove the head of the list. This function does not take any locks * so must be used with appropriate locks held only. The head item is * returned or %NULL if the list is empty. */ extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) { struct sk_buff *skb = skb_peek(list); if (skb) __skb_unlink(skb, list); return skb; } /** * __skb_dequeue_tail - remove from the tail of the queue * @list: list to dequeue from * * Remove the tail of the list. This function does not take any locks * so must be used with appropriate locks held only. The tail item is * returned or %NULL if the list is empty. */ extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) { struct sk_buff *skb = skb_peek_tail(list); if (skb) __skb_unlink(skb, list); return skb; } static inline bool skb_is_nonlinear(const struct sk_buff *skb) { return skb->data_len; } static inline unsigned int skb_headlen(const struct sk_buff *skb) { return skb->len - skb->data_len; } static inline int skb_pagelen(const struct sk_buff *skb) { int i, len = 0; for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) len += skb_frag_size(&skb_shinfo(skb)->frags[i]); return len + skb_headlen(skb); } /** * __skb_fill_page_desc - initialise a paged fragment in an skb * @skb: buffer containing fragment to be initialised * @i: paged fragment index to initialise * @page: the page to use for this fragment * @off: the offset to the data with @page * @size: the length of the data * * Initialises the @i'th fragment of @skb to point to &size bytes at * offset @off within @page. * * Does not take any additional reference on the fragment. */ static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, struct page *page, int off, int size) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; frag->page.p = page; frag->page_offset = off; skb_frag_size_set(frag, size); } /** * skb_fill_page_desc - initialise a paged fragment in an skb * @skb: buffer containing fragment to be initialised * @i: paged fragment index to initialise * @page: the page to use for this fragment * @off: the offset to the data with @page * @size: the length of the data * * As per __skb_fill_page_desc() -- initialises the @i'th fragment of * @skb to point to &size bytes at offset @off within @page. In * addition updates @skb such that @i is the last fragment. * * Does not take any additional reference on the fragment. */ static inline void skb_fill_page_desc(struct sk_buff *skb, int i, struct page *page, int off, int size) { __skb_fill_page_desc(skb, i, page, off, size); skb_shinfo(skb)->nr_frags = i + 1; } extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, int size, unsigned int truesize); #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) #ifdef NET_SKBUFF_DATA_USES_OFFSET static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) { return skb->head + skb->tail; } static inline void skb_reset_tail_pointer(struct sk_buff *skb) { skb->tail = skb->data - skb->head; } static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) { skb_reset_tail_pointer(skb); skb->tail += offset; } #else /* NET_SKBUFF_DATA_USES_OFFSET */ static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) { return skb->tail; } static inline void skb_reset_tail_pointer(struct sk_buff *skb) { skb->tail = skb->data; } static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) { skb->tail = skb->data + offset; } #endif /* NET_SKBUFF_DATA_USES_OFFSET */ /* * Add data to an sk_buff */ extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len); static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) { unsigned char *tmp = skb_tail_pointer(skb); SKB_LINEAR_ASSERT(skb); skb->tail += len; skb->len += len; return tmp; } extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len); static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) { skb->data -= len; skb->len += len; return skb->data; } extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) { skb->len -= len; BUG_ON(skb->len < skb->data_len); return skb->data += len; } static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) { return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); } extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) { if (len > skb_headlen(skb) && !__pskb_pull_tail(skb, len - skb_headlen(skb))) return NULL; skb->len -= len; return skb->data += len; } static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) { return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); } static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) { if (likely(len <= skb_headlen(skb))) return 1; if (unlikely(len > skb->len)) return 0; return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; } /** * skb_headroom - bytes at buffer head * @skb: buffer to check * * Return the number of bytes of free space at the head of an &sk_buff. */ static inline unsigned int skb_headroom(const struct sk_buff *skb) { return skb->data - skb->head; } /** * skb_tailroom - bytes at buffer end * @skb: buffer to check * * Return the number of bytes of free space at the tail of an sk_buff */ static inline int skb_tailroom(const struct sk_buff *skb) { return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; } /** * skb_availroom - bytes at buffer end * @skb: buffer to check * * Return the number of bytes of free space at the tail of an sk_buff * allocated by sk_stream_alloc() */ static inline int skb_availroom(const struct sk_buff *skb) { if (skb_is_nonlinear(skb)) return 0; return skb->end - skb->tail - skb->reserved_tailroom; } /** * skb_reserve - adjust headroom * @skb: buffer to alter * @len: bytes to move * * Increase the headroom of an empty &sk_buff by reducing the tail * room. This is only allowed for an empty buffer. */ static inline void skb_reserve(struct sk_buff *skb, int len) { skb->data += len; skb->tail += len; } static inline void skb_reset_mac_len(struct sk_buff *skb) { skb->mac_len = skb->network_header - skb->mac_header; } #ifdef NET_SKBUFF_DATA_USES_OFFSET static inline unsigned char *skb_transport_header(const struct sk_buff *skb) { return skb->head + skb->transport_header; } static inline void skb_reset_transport_header(struct sk_buff *skb) { skb->transport_header = skb->data - skb->head; } static inline void skb_set_transport_header(struct sk_buff *skb, const int offset) { skb_reset_transport_header(skb); skb->transport_header += offset; } static inline unsigned char *skb_network_header(const struct sk_buff *skb) { return skb->head + skb->network_header; } static inline void skb_reset_network_header(struct sk_buff *skb) { skb->network_header = skb->data - skb->head; } static inline void skb_set_network_header(struct sk_buff *skb, const int offset) { skb_reset_network_header(skb); skb->network_header += offset; } static inline unsigned char *skb_mac_header(const struct sk_buff *skb) { return skb->head + skb->mac_header; } static inline int skb_mac_header_was_set(const struct sk_buff *skb) { return skb->mac_header != ~0U; } static inline void skb_reset_mac_header(struct sk_buff *skb) { skb->mac_header = skb->data - skb->head; } static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) { skb_reset_mac_header(skb); skb->mac_header += offset; } #else /* NET_SKBUFF_DATA_USES_OFFSET */ static inline unsigned char *skb_transport_header(const struct sk_buff *skb) { return skb->transport_header; } static inline void skb_reset_transport_header(struct sk_buff *skb) { skb->transport_header = skb->data; } static inline void skb_set_transport_header(struct sk_buff *skb, const int offset) { skb->transport_header = skb->data + offset; } static inline unsigned char *skb_network_header(const struct sk_buff *skb) { return skb->network_header; } static inline void skb_reset_network_header(struct sk_buff *skb) { skb->network_header = skb->data; } static inline void skb_set_network_header(struct sk_buff *skb, const int offset) { skb->network_header = skb->data + offset; } static inline unsigned char *skb_mac_header(const struct sk_buff *skb) { return skb->mac_header; } static inline int skb_mac_header_was_set(const struct sk_buff *skb) { return skb->mac_header != NULL; } static inline void skb_reset_mac_header(struct sk_buff *skb) { skb->mac_header = skb->data; } static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) { skb->mac_header = skb->data + offset; } #endif /* NET_SKBUFF_DATA_USES_OFFSET */ static inline void skb_mac_header_rebuild(struct sk_buff *skb) { if (skb_mac_header_was_set(skb)) { const unsigned char *old_mac = skb_mac_header(skb); skb_set_mac_header(skb, -skb->mac_len); memmove(skb_mac_header(skb), old_mac, skb->mac_len); } } static inline int skb_checksum_start_offset(const struct sk_buff *skb) { return skb->csum_start - skb_headroom(skb); } static inline int skb_transport_offset(const struct sk_buff *skb) { return skb_transport_header(skb) - skb->data; } static inline u32 skb_network_header_len(const struct sk_buff *skb) { return skb->transport_header - skb->network_header; } static inline int skb_network_offset(const struct sk_buff *skb) { return skb_network_header(skb) - skb->data; } static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) { return pskb_may_pull(skb, skb_network_offset(skb) + len); } /* * CPUs often take a performance hit when accessing unaligned memory * locations. The actual performance hit varies, it can be small if the * hardware handles it or large if we have to take an exception and fix it * in software. * * Since an ethernet header is 14 bytes network drivers often end up with * the IP header at an unaligned offset. The IP header can be aligned by * shifting the start of the packet by 2 bytes. Drivers should do this * with: * * skb_reserve(skb, NET_IP_ALIGN); * * The downside to this alignment of the IP header is that the DMA is now * unaligned. On some architectures the cost of an unaligned DMA is high * and this cost outweighs the gains made by aligning the IP header. * * Since this trade off varies between architectures, we allow NET_IP_ALIGN * to be overridden. */ #ifndef NET_IP_ALIGN #define NET_IP_ALIGN 2 #endif /* * The networking layer reserves some headroom in skb data (via * dev_alloc_skb). This is used to avoid having to reallocate skb data when * the header has to grow. In the default case, if the header has to grow * 32 bytes or less we avoid the reallocation. * * Unfortunately this headroom changes the DMA alignment of the resulting * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive * on some architectures. An architecture can override this value, * perhaps setting it to a cacheline in size (since that will maintain * cacheline alignment of the DMA). It must be a power of 2. * * Various parts of the networking layer expect at least 32 bytes of * headroom, you should not reduce this. * * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) * to reduce average number of cache lines per packet. * get_rps_cpus() for example only access one 64 bytes aligned block : * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) */ #ifndef NET_SKB_PAD #define NET_SKB_PAD max(32, L1_CACHE_BYTES) #endif extern int ___pskb_trim(struct sk_buff *skb, unsigned int len); static inline void __skb_trim(struct sk_buff *skb, unsigned int len) { if (unlikely(skb_is_nonlinear(skb))) { WARN_ON(1); return; } skb->len = len; skb_set_tail_pointer(skb, len); } extern void skb_trim(struct sk_buff *skb, unsigned int len); static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) { if (skb->data_len) return ___pskb_trim(skb, len); __skb_trim(skb, len); return 0; } static inline int pskb_trim(struct sk_buff *skb, unsigned int len) { return (len < skb->len) ? __pskb_trim(skb, len) : 0; } /** * pskb_trim_unique - remove end from a paged unique (not cloned) buffer * @skb: buffer to alter * @len: new length * * This is identical to pskb_trim except that the caller knows that * the skb is not cloned so we should never get an error due to out- * of-memory. */ static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) { int err = pskb_trim(skb, len); BUG_ON(err); } /** * skb_orphan - orphan a buffer * @skb: buffer to orphan * * If a buffer currently has an owner then we call the owner's * destructor function and make the @skb unowned. The buffer continues * to exist but is no longer charged to its former owner. */ static inline void skb_orphan(struct sk_buff *skb) { if (skb->destructor) skb->destructor(skb); skb->destructor = NULL; skb->sk = NULL; } /** * __skb_queue_purge - empty a list * @list: list to empty * * Delete all buffers on an &sk_buff list. Each buffer is removed from * the list and one reference dropped. This function does not take the * list lock and the caller must hold the relevant locks to use it. */ extern void skb_queue_purge(struct sk_buff_head *list); static inline void __skb_queue_purge(struct sk_buff_head *list) { struct sk_buff *skb; while ((skb = __skb_dequeue(list)) != NULL) kfree_skb(skb); } /** * __dev_alloc_skb - allocate an skbuff for receiving * @length: length to allocate * @gfp_mask: get_free_pages mask, passed to alloc_skb * * Allocate a new &sk_buff and assign it a usage count of one. The * buffer has unspecified headroom built in. Users should allocate * the headroom they think they need without accounting for the * built in space. The built in space is used for optimisations. * * %NULL is returned if there is no free memory. */ static inline struct sk_buff *__dev_alloc_skb(unsigned int length, gfp_t gfp_mask) { struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask); if (likely(skb)) skb_reserve(skb, NET_SKB_PAD); return skb; } extern struct sk_buff *dev_alloc_skb(unsigned int length); extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, gfp_t gfp_mask); /** * netdev_alloc_skb - allocate an skbuff for rx on a specific device * @dev: network device to receive on * @length: length to allocate * * Allocate a new &sk_buff and assign it a usage count of one. The * buffer has unspecified headroom built in. Users should allocate * the headroom they think they need without accounting for the * built in space. The built in space is used for optimisations. * * %NULL is returned if there is no free memory. Although this function * allocates memory it can be called from an interrupt. */ static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, unsigned int length) { return __netdev_alloc_skb(dev, length, GFP_ATOMIC); } static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, unsigned int length, gfp_t gfp) { struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); if (NET_IP_ALIGN && skb) skb_reserve(skb, NET_IP_ALIGN); return skb; } static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, unsigned int length) { return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); } /** * skb_frag_page - retrieve the page refered to by a paged fragment * @frag: the paged fragment * * Returns the &struct page associated with @frag. */ static inline struct page *skb_frag_page(const skb_frag_t *frag) { return frag->page.p; } /** * __skb_frag_ref - take an addition reference on a paged fragment. * @frag: the paged fragment * * Takes an additional reference on the paged fragment @frag. */ static inline void __skb_frag_ref(skb_frag_t *frag) { get_page(skb_frag_page(frag)); } /** * skb_frag_ref - take an addition reference on a paged fragment of an skb. * @skb: the buffer * @f: the fragment offset. * * Takes an additional reference on the @f'th paged fragment of @skb. */ static inline void skb_frag_ref(struct sk_buff *skb, int f) { __skb_frag_ref(&skb_shinfo(skb)->frags[f]); } /** * __skb_frag_unref - release a reference on a paged fragment. * @frag: the paged fragment * * Releases a reference on the paged fragment @frag. */ static inline void __skb_frag_unref(skb_frag_t *frag) { put_page(skb_frag_page(frag)); } /** * skb_frag_unref - release a reference on a paged fragment of an skb. * @skb: the buffer * @f: the fragment offset * * Releases a reference on the @f'th paged fragment of @skb. */ static inline void skb_frag_unref(struct sk_buff *skb, int f) { __skb_frag_unref(&skb_shinfo(skb)->frags[f]); } /** * skb_frag_address - gets the address of the data contained in a paged fragment * @frag: the paged fragment buffer * * Returns the address of the data within @frag. The page must already * be mapped. */ static inline void *skb_frag_address(const skb_frag_t *frag) { return page_address(skb_frag_page(frag)) + frag->page_offset; } /** * skb_frag_address_safe - gets the address of the data contained in a paged fragment * @frag: the paged fragment buffer * * Returns the address of the data within @frag. Checks that the page * is mapped and returns %NULL otherwise. */ static inline void *skb_frag_address_safe(const skb_frag_t *frag) { void *ptr = page_address(skb_frag_page(frag)); if (unlikely(!ptr)) return NULL; return ptr + frag->page_offset; } /** * __skb_frag_set_page - sets the page contained in a paged fragment * @frag: the paged fragment * @page: the page to set * * Sets the fragment @frag to contain @page. */ static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) { frag->page.p = page; } /** * skb_frag_set_page - sets the page contained in a paged fragment of an skb * @skb: the buffer * @f: the fragment offset * @page: the page to set * * Sets the @f'th fragment of @skb to contain @page. */ static inline void skb_frag_set_page(struct sk_buff *skb, int f, struct page *page) { __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); } /** * skb_frag_dma_map - maps a paged fragment via the DMA API * @dev: the device to map the fragment to * @frag: the paged fragment to map * @offset: the offset within the fragment (starting at the * fragment's own offset) * @size: the number of bytes to map * @dir: the direction of the mapping (%PCI_DMA_*) * * Maps the page associated with @frag to @device. */ static inline dma_addr_t skb_frag_dma_map(struct device *dev, const skb_frag_t *frag, size_t offset, size_t size, enum dma_data_direction dir) { return dma_map_page(dev, skb_frag_page(frag), frag->page_offset + offset, size, dir); } static inline struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask) { return __pskb_copy(skb, skb_headroom(skb), gfp_mask); } /** * skb_clone_writable - is the header of a clone writable * @skb: buffer to check * @len: length up to which to write * * Returns true if modifying the header part of the cloned buffer * does not requires the data to be copied. */ static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) { return !skb_header_cloned(skb) && skb_headroom(skb) + len <= skb->hdr_len; } static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, int cloned) { int delta = 0; if (headroom > skb_headroom(skb)) delta = headroom - skb_headroom(skb); if (delta || cloned) return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, GFP_ATOMIC); return 0; } /** * skb_cow - copy header of skb when it is required * @skb: buffer to cow * @headroom: needed headroom * * If the skb passed lacks sufficient headroom or its data part * is shared, data is reallocated. If reallocation fails, an error * is returned and original skb is not changed. * * The result is skb with writable area skb->head...skb->tail * and at least @headroom of space at head. */ static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) { return __skb_cow(skb, headroom, skb_cloned(skb)); } /** * skb_cow_head - skb_cow but only making the head writable * @skb: buffer to cow * @headroom: needed headroom * * This function is identical to skb_cow except that we replace the * skb_cloned check by skb_header_cloned. It should be used when * you only need to push on some header and do not need to modify * the data. */ static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) { return __skb_cow(skb, headroom, skb_header_cloned(skb)); } /** * skb_padto - pad an skbuff up to a minimal size * @skb: buffer to pad * @len: minimal length * * Pads up a buffer to ensure the trailing bytes exist and are * blanked. If the buffer already contains sufficient data it * is untouched. Otherwise it is extended. Returns zero on * success. The skb is freed on error. */ static inline int skb_padto(struct sk_buff *skb, unsigned int len) { unsigned int size = skb->len; if (likely(size >= len)) return 0; return skb_pad(skb, len - size); } static inline int skb_add_data(struct sk_buff *skb, char __user *from, int copy) { const int off = skb->len; if (skb->ip_summed == CHECKSUM_NONE) { int err = 0; __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), copy, 0, &err); if (!err) { skb->csum = csum_block_add(skb->csum, csum, off); return 0; } } else if (!copy_from_user(skb_put(skb, copy), from, copy)) return 0; __skb_trim(skb, off); return -EFAULT; } static inline int skb_can_coalesce(struct sk_buff *skb, int i, const struct page *page, int off) { if (i) { const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; return page == skb_frag_page(frag) && off == frag->page_offset + skb_frag_size(frag); } return 0; } static inline int __skb_linearize(struct sk_buff *skb) { return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; } /** * skb_linearize - convert paged skb to linear one * @skb: buffer to linarize * * If there is no free memory -ENOMEM is returned, otherwise zero * is returned and the old skb data released. */ static inline int skb_linearize(struct sk_buff *skb) { return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; } /** * skb_linearize_cow - make sure skb is linear and writable * @skb: buffer to process * * If there is no free memory -ENOMEM is returned, otherwise zero * is returned and the old skb data released. */ static inline int skb_linearize_cow(struct sk_buff *skb) { return skb_is_nonlinear(skb) || skb_cloned(skb) ? __skb_linearize(skb) : 0; } /** * skb_postpull_rcsum - update checksum for received skb after pull * @skb: buffer to update * @start: start of data before pull * @len: length of data pulled * * After doing a pull on a received packet, you need to call this to * update the CHECKSUM_COMPLETE checksum, or set ip_summed to * CHECKSUM_NONE so that it can be recomputed from scratch. */ static inline void skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len) { if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); } unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); /** * pskb_trim_rcsum - trim received skb and update checksum * @skb: buffer to trim * @len: new length * * This is exactly the same as pskb_trim except that it ensures the * checksum of received packets are still valid after the operation. */ static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) { if (likely(len >= skb->len)) return 0; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; return __pskb_trim(skb, len); } #define skb_queue_walk(queue, skb) \ for (skb = (queue)->next; \ skb != (struct sk_buff *)(queue); \ skb = skb->next) #define skb_queue_walk_safe(queue, skb, tmp) \ for (skb = (queue)->next, tmp = skb->next; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->next) #define skb_queue_walk_from(queue, skb) \ for (; skb != (struct sk_buff *)(queue); \ skb = skb->next) #define skb_queue_walk_from_safe(queue, skb, tmp) \ for (tmp = skb->next; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->next) #define skb_queue_reverse_walk(queue, skb) \ for (skb = (queue)->prev; \ skb != (struct sk_buff *)(queue); \ skb = skb->prev) #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ for (skb = (queue)->prev, tmp = skb->prev; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->prev) #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ for (tmp = skb->prev; \ skb != (struct sk_buff *)(queue); \ skb = tmp, tmp = skb->prev) static inline bool skb_has_frag_list(const struct sk_buff *skb) { return skb_shinfo(skb)->frag_list != NULL; } static inline void skb_frag_list_init(struct sk_buff *skb) { skb_shinfo(skb)->frag_list = NULL; } static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) { frag->next = skb_shinfo(skb)->frag_list; skb_shinfo(skb)->frag_list = frag; } #define skb_walk_frags(skb, iter) \ for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, int *peeked, int *off, int *err); extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, int *err); extern unsigned int datagram_poll(struct file *file, struct socket *sock, struct poll_table_struct *wait); extern int skb_copy_datagram_iovec(const struct sk_buff *from, int offset, struct iovec *to, int size); extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen, struct iovec *iov); extern int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset, const struct iovec *from, int from_offset, int len); extern int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset, const struct iovec *to, int to_offset, int size); extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); extern void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); extern __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum); extern int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); extern int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, int len, __wsum csum); extern int skb_splice_bits(struct sk_buff *skb, unsigned int offset, struct pipe_inode_info *pipe, unsigned int len, unsigned int flags); extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); extern void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); extern struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) { int hlen = skb_headlen(skb); if (hlen - offset >= len) return skb->data + offset; if (skb_copy_bits(skb, offset, buffer, len) < 0) return NULL; return buffer; } static inline void skb_copy_from_linear_data(const struct sk_buff *skb, void *to, const unsigned int len) { memcpy(to, skb->data, len); } static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, const int offset, void *to, const unsigned int len) { memcpy(to, skb->data + offset, len); } static inline void skb_copy_to_linear_data(struct sk_buff *skb, const void *from, const unsigned int len) { memcpy(skb->data, from, len); } static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, const int offset, const void *from, const unsigned int len) { memcpy(skb->data + offset, from, len); } extern void skb_init(void); static inline ktime_t skb_get_ktime(const struct sk_buff *skb) { return skb->tstamp; } /** * skb_get_timestamp - get timestamp from a skb * @skb: skb to get stamp from * @stamp: pointer to struct timeval to store stamp in * * Timestamps are stored in the skb as offsets to a base timestamp. * This function converts the offset back to a struct timeval and stores * it in stamp. */ static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp) { *stamp = ktime_to_timeval(skb->tstamp); } static inline void skb_get_timestampns(const struct sk_buff *skb, struct timespec *stamp) { *stamp = ktime_to_timespec(skb->tstamp); } static inline void __net_timestamp(struct sk_buff *skb) { skb->tstamp = ktime_get_real(); } static inline ktime_t net_timedelta(ktime_t t) { return ktime_sub(ktime_get_real(), t); } static inline ktime_t net_invalid_timestamp(void) { return ktime_set(0, 0); } extern void skb_timestamping_init(void); #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING extern void skb_clone_tx_timestamp(struct sk_buff *skb); extern bool skb_defer_rx_timestamp(struct sk_buff *skb); #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ static inline void skb_clone_tx_timestamp(struct sk_buff *skb) { } static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) { return false; } #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ /** * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps * * PHY drivers may accept clones of transmitted packets for * timestamping via their phy_driver.txtstamp method. These drivers * must call this function to return the skb back to the stack, with * or without a timestamp. * * @skb: clone of the the original outgoing packet * @hwtstamps: hardware time stamps, may be NULL if not available * */ void skb_complete_tx_timestamp(struct sk_buff *skb, struct skb_shared_hwtstamps *hwtstamps); /** * skb_tstamp_tx - queue clone of skb with send time stamps * @orig_skb: the original outgoing packet * @hwtstamps: hardware time stamps, may be NULL if not available * * If the skb has a socket associated, then this function clones the * skb (thus sharing the actual data and optional structures), stores * the optional hardware time stamping information (if non NULL) or * generates a software time stamp (otherwise), then queues the clone * to the error queue of the socket. Errors are silently ignored. */ extern void skb_tstamp_tx(struct sk_buff *orig_skb, struct skb_shared_hwtstamps *hwtstamps); static inline void sw_tx_timestamp(struct sk_buff *skb) { if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) skb_tstamp_tx(skb, NULL); } /** * skb_tx_timestamp() - Driver hook for transmit timestamping * * Ethernet MAC Drivers should call this function in their hard_xmit() * function immediately before giving the sk_buff to the MAC hardware. * * @skb: A socket buffer. */ static inline void skb_tx_timestamp(struct sk_buff *skb) { skb_clone_tx_timestamp(skb); sw_tx_timestamp(skb); } /** * skb_complete_wifi_ack - deliver skb with wifi status * * @skb: the original outgoing packet * @acked: ack status * */ void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); extern __sum16 __skb_checksum_complete(struct sk_buff *skb); static inline int skb_csum_unnecessary(const struct sk_buff *skb) { return skb->ip_summed & CHECKSUM_UNNECESSARY; } /** * skb_checksum_complete - Calculate checksum of an entire packet * @skb: packet to process * * This function calculates the checksum over the entire packet plus * the value of skb->csum. The latter can be used to supply the * checksum of a pseudo header as used by TCP/UDP. It returns the * checksum. * * For protocols that contain complete checksums such as ICMP/TCP/UDP, * this function can be used to verify that checksum on received * packets. In that case the function should return zero if the * checksum is correct. In particular, this function will return zero * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the * hardware has already verified the correctness of the checksum. */ static inline __sum16 skb_checksum_complete(struct sk_buff *skb) { return skb_csum_unnecessary(skb) ? 0 : __skb_checksum_complete(skb); } #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) extern void nf_conntrack_destroy(struct nf_conntrack *nfct); static inline void nf_conntrack_put(struct nf_conntrack *nfct) { if (nfct && atomic_dec_and_test(&nfct->use)) nf_conntrack_destroy(nfct); } static inline void nf_conntrack_get(struct nf_conntrack *nfct) { if (nfct) atomic_inc(&nfct->use); } #endif #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED static inline void nf_conntrack_get_reasm(struct sk_buff *skb) { if (skb) atomic_inc(&skb->users); } static inline void nf_conntrack_put_reasm(struct sk_buff *skb) { if (skb) kfree_skb(skb); } #endif #ifdef CONFIG_BRIDGE_NETFILTER static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) { if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) kfree(nf_bridge); } static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) { if (nf_bridge) atomic_inc(&nf_bridge->use); } #endif /* CONFIG_BRIDGE_NETFILTER */ static inline void nf_reset(struct sk_buff *skb) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) nf_conntrack_put(skb->nfct); skb->nfct = NULL; #endif #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED nf_conntrack_put_reasm(skb->nfct_reasm); skb->nfct_reasm = NULL; #endif #ifdef CONFIG_BRIDGE_NETFILTER nf_bridge_put(skb->nf_bridge); skb->nf_bridge = NULL; #endif } static inline void nf_reset_trace(struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) skb->nf_trace = 0; #endif } /* Note: This doesn't put any conntrack and bridge info in dst. */ static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) dst->nfct = src->nfct; nf_conntrack_get(src->nfct); dst->nfctinfo = src->nfctinfo; #endif #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED dst->nfct_reasm = src->nfct_reasm; nf_conntrack_get_reasm(src->nfct_reasm); #endif #ifdef CONFIG_BRIDGE_NETFILTER dst->nf_bridge = src->nf_bridge; nf_bridge_get(src->nf_bridge); #endif } static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) { #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) nf_conntrack_put(dst->nfct); #endif #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED nf_conntrack_put_reasm(dst->nfct_reasm); #endif #ifdef CONFIG_BRIDGE_NETFILTER nf_bridge_put(dst->nf_bridge); #endif __nf_copy(dst, src); } #ifdef CONFIG_NETWORK_SECMARK static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) { to->secmark = from->secmark; } static inline void skb_init_secmark(struct sk_buff *skb) { skb->secmark = 0; } #else static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) { } static inline void skb_init_secmark(struct sk_buff *skb) { } #endif static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) { skb->queue_mapping = queue_mapping; } static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) { return skb->queue_mapping; } static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) { to->queue_mapping = from->queue_mapping; } static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) { skb->queue_mapping = rx_queue + 1; } static inline u16 skb_get_rx_queue(const struct sk_buff *skb) { return skb->queue_mapping - 1; } static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) { return skb->queue_mapping != 0; } extern u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, unsigned int num_tx_queues); #ifdef CONFIG_XFRM static inline struct sec_path *skb_sec_path(struct sk_buff *skb) { return skb->sp; } #else static inline struct sec_path *skb_sec_path(struct sk_buff *skb) { return NULL; } #endif static inline bool skb_is_gso(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_size; } static inline bool skb_is_gso_v6(const struct sk_buff *skb) { return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; } extern void __skb_warn_lro_forwarding(const struct sk_buff *skb); static inline bool skb_warn_if_lro(const struct sk_buff *skb) { /* LRO sets gso_size but not gso_type, whereas if GSO is really * wanted then gso_type will be set. */ const struct skb_shared_info *shinfo = skb_shinfo(skb); if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) { __skb_warn_lro_forwarding(skb); return true; } return false; } static inline void skb_forward_csum(struct sk_buff *skb) { /* Unfortunately we don't support this one. Any brave souls? */ if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; } /** * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE * @skb: skb to check * * fresh skbs have their ip_summed set to CHECKSUM_NONE. * Instead of forcing ip_summed to CHECKSUM_NONE, we can * use this helper, to document places where we make this assertion. */ static inline void skb_checksum_none_assert(const struct sk_buff *skb) { #ifdef DEBUG BUG_ON(skb->ip_summed != CHECKSUM_NONE); #endif } bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); static inline bool skb_is_recycleable(const struct sk_buff *skb, int skb_size) { if (irqs_disabled()) return false; if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) return false; if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE) return false; skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD); if (skb_end_pointer(skb) - skb->head < skb_size) return false; if (skb_shared(skb) || skb_cloned(skb)) return false; return true; } #endif /* __KERNEL__ */ #endif /* _LINUX_SKBUFF_H */