/* * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com> * * Scatterlist handling helpers. * * This source code is licensed under the GNU General Public License, * Version 2. See the file COPYING for more details. */ #include <linux/export.h> #include <linux/slab.h> #include <linux/scatterlist.h> #include <linux/highmem.h> #include <linux/kmemleak.h> /** * sg_next - return the next scatterlist entry in a list * @sg: The current sg entry * * Description: * Usually the next entry will be @sg@ + 1, but if this sg element is part * of a chained scatterlist, it could jump to the start of a new * scatterlist array. * **/ struct scatterlist *sg_next(struct scatterlist *sg) { #ifdef CONFIG_DEBUG_SG BUG_ON(sg->sg_magic != SG_MAGIC); #endif if (sg_is_last(sg)) return NULL; sg++; if (unlikely(sg_is_chain(sg))) sg = sg_chain_ptr(sg); return sg; } EXPORT_SYMBOL(sg_next); /** * sg_last - return the last scatterlist entry in a list * @sgl: First entry in the scatterlist * @nents: Number of entries in the scatterlist * * Description: * Should only be used casually, it (currently) scans the entire list * to get the last entry. * * Note that the @sgl@ pointer passed in need not be the first one, * the important bit is that @nents@ denotes the number of entries that * exist from @sgl@. * **/ struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents) { #ifndef ARCH_HAS_SG_CHAIN struct scatterlist *ret = &sgl[nents - 1]; #else struct scatterlist *sg, *ret = NULL; unsigned int i; for_each_sg(sgl, sg, nents, i) ret = sg; #endif #ifdef CONFIG_DEBUG_SG BUG_ON(sgl[0].sg_magic != SG_MAGIC); BUG_ON(!sg_is_last(ret)); #endif return ret; } EXPORT_SYMBOL(sg_last); /** * sg_init_table - Initialize SG table * @sgl: The SG table * @nents: Number of entries in table * * Notes: * If this is part of a chained sg table, sg_mark_end() should be * used only on the last table part. * **/ void sg_init_table(struct scatterlist *sgl, unsigned int nents) { memset(sgl, 0, sizeof(*sgl) * nents); #ifdef CONFIG_DEBUG_SG { unsigned int i; for (i = 0; i < nents; i++) sgl[i].sg_magic = SG_MAGIC; } #endif sg_mark_end(&sgl[nents - 1]); } EXPORT_SYMBOL(sg_init_table); /** * sg_init_one - Initialize a single entry sg list * @sg: SG entry * @buf: Virtual address for IO * @buflen: IO length * **/ void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen) { sg_init_table(sg, 1); sg_set_buf(sg, buf, buflen); } EXPORT_SYMBOL(sg_init_one); /* * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree * helpers. */ static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask) { if (nents == SG_MAX_SINGLE_ALLOC) { /* * Kmemleak doesn't track page allocations as they are not * commonly used (in a raw form) for kernel data structures. * As we chain together a list of pages and then a normal * kmalloc (tracked by kmemleak), in order to for that last * allocation not to become decoupled (and thus a * false-positive) we need to inform kmemleak of all the * intermediate allocations. */ void *ptr = (void *) __get_free_page(gfp_mask); kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask); return ptr; } else return kmalloc(nents * sizeof(struct scatterlist), gfp_mask); } static void sg_kfree(struct scatterlist *sg, unsigned int nents) { if (nents == SG_MAX_SINGLE_ALLOC) { kmemleak_free(sg); free_page((unsigned long) sg); } else kfree(sg); } /** * __sg_free_table - Free a previously mapped sg table * @table: The sg table header to use * @max_ents: The maximum number of entries per single scatterlist * @free_fn: Free function * * Description: * Free an sg table previously allocated and setup with * __sg_alloc_table(). The @max_ents value must be identical to * that previously used with __sg_alloc_table(). * **/ void __sg_free_table(struct sg_table *table, unsigned int max_ents, sg_free_fn *free_fn) { struct scatterlist *sgl, *next; if (unlikely(!table->sgl)) return; sgl = table->sgl; while (table->orig_nents) { unsigned int alloc_size = table->orig_nents; unsigned int sg_size; /* * If we have more than max_ents segments left, * then assign 'next' to the sg table after the current one. * sg_size is then one less than alloc size, since the last * element is the chain pointer. */ if (alloc_size > max_ents) { next = sg_chain_ptr(&sgl[max_ents - 1]); alloc_size = max_ents; sg_size = alloc_size - 1; } else { sg_size = alloc_size; next = NULL; } table->orig_nents -= sg_size; free_fn(sgl, alloc_size); sgl = next; } table->sgl = NULL; } EXPORT_SYMBOL(__sg_free_table); /** * sg_free_table - Free a previously allocated sg table * @table: The mapped sg table header * **/ void sg_free_table(struct sg_table *table) { __sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree); } EXPORT_SYMBOL(sg_free_table); /** * __sg_alloc_table - Allocate and initialize an sg table with given allocator * @table: The sg table header to use * @nents: Number of entries in sg list * @max_ents: The maximum number of entries the allocator returns per call * @gfp_mask: GFP allocation mask * @alloc_fn: Allocator to use * * Description: * This function returns a @table @nents long. The allocator is * defined to return scatterlist chunks of maximum size @max_ents. * Thus if @nents is bigger than @max_ents, the scatterlists will be * chained in units of @max_ents. * * Notes: * If this function returns non-0 (eg failure), the caller must call * __sg_free_table() to cleanup any leftover allocations. * **/ int __sg_alloc_table(struct sg_table *table, unsigned int nents, unsigned int max_ents, gfp_t gfp_mask, sg_alloc_fn *alloc_fn) { struct scatterlist *sg, *prv; unsigned int left; #ifndef ARCH_HAS_SG_CHAIN BUG_ON(nents > max_ents); #endif memset(table, 0, sizeof(*table)); left = nents; prv = NULL; do { unsigned int sg_size, alloc_size = left; if (alloc_size > max_ents) { alloc_size = max_ents; sg_size = alloc_size - 1; } else sg_size = alloc_size; left -= sg_size; sg = alloc_fn(alloc_size, gfp_mask); if (unlikely(!sg)) { /* * Adjust entry count to reflect that the last * entry of the previous table won't be used for * linkage. Without this, sg_kfree() may get * confused. */ if (prv) table->nents = ++table->orig_nents; return -ENOMEM; } sg_init_table(sg, alloc_size); table->nents = table->orig_nents += sg_size; /* * If this is the first mapping, assign the sg table header. * If this is not the first mapping, chain previous part. */ if (prv) sg_chain(prv, max_ents, sg); else table->sgl = sg; /* * If no more entries after this one, mark the end */ if (!left) sg_mark_end(&sg[sg_size - 1]); /* * only really needed for mempool backed sg allocations (like * SCSI), a possible improvement here would be to pass the * table pointer into the allocator and let that clear these * flags */ gfp_mask &= ~__GFP_WAIT; gfp_mask |= __GFP_HIGH; prv = sg; } while (left); return 0; } EXPORT_SYMBOL(__sg_alloc_table); /** * sg_alloc_table - Allocate and initialize an sg table * @table: The sg table header to use * @nents: Number of entries in sg list * @gfp_mask: GFP allocation mask * * Description: * Allocate and initialize an sg table. If @nents@ is larger than * SG_MAX_SINGLE_ALLOC a chained sg table will be setup. * **/ int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask) { int ret; ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC, gfp_mask, sg_kmalloc); if (unlikely(ret)) __sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree); return ret; } EXPORT_SYMBOL(sg_alloc_table); /** * sg_miter_start - start mapping iteration over a sg list * @miter: sg mapping iter to be started * @sgl: sg list to iterate over * @nents: number of sg entries * * Description: * Starts mapping iterator @miter. * * Context: * Don't care. */ void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl, unsigned int nents, unsigned int flags) { memset(miter, 0, sizeof(struct sg_mapping_iter)); miter->__sg = sgl; miter->__nents = nents; miter->__offset = 0; WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG))); miter->__flags = flags; } EXPORT_SYMBOL(sg_miter_start); /** * sg_miter_next - proceed mapping iterator to the next mapping * @miter: sg mapping iter to proceed * * Description: * Proceeds @miter@ to the next mapping. @miter@ should have been * started using sg_miter_start(). On successful return, * @miter@->page, @miter@->addr and @miter@->length point to the * current mapping. * * Context: * IRQ disabled if SG_MITER_ATOMIC. IRQ must stay disabled till * @miter@ is stopped. May sleep if !SG_MITER_ATOMIC. * * Returns: * true if @miter contains the next mapping. false if end of sg * list is reached. */ bool sg_miter_next(struct sg_mapping_iter *miter) { unsigned int off, len; /* check for end and drop resources from the last iteration */ if (!miter->__nents) return false; sg_miter_stop(miter); /* get to the next sg if necessary. __offset is adjusted by stop */ while (miter->__offset == miter->__sg->length) { if (--miter->__nents) { miter->__sg = sg_next(miter->__sg); miter->__offset = 0; } else return false; } /* map the next page */ off = miter->__sg->offset + miter->__offset; len = miter->__sg->length - miter->__offset; miter->page = nth_page(sg_page(miter->__sg), off >> PAGE_SHIFT); off &= ~PAGE_MASK; miter->length = min_t(unsigned int, len, PAGE_SIZE - off); miter->consumed = miter->length; if (miter->__flags & SG_MITER_ATOMIC) miter->addr = kmap_atomic(miter->page) + off; else miter->addr = kmap(miter->page) + off; return true; } EXPORT_SYMBOL(sg_miter_next); /** * sg_miter_stop - stop mapping iteration * @miter: sg mapping iter to be stopped * * Description: * Stops mapping iterator @miter. @miter should have been started * started using sg_miter_start(). A stopped iteration can be * resumed by calling sg_miter_next() on it. This is useful when * resources (kmap) need to be released during iteration. * * Context: * IRQ disabled if the SG_MITER_ATOMIC is set. Don't care otherwise. */ void sg_miter_stop(struct sg_mapping_iter *miter) { WARN_ON(miter->consumed > miter->length); /* drop resources from the last iteration */ if (miter->addr) { miter->__offset += miter->consumed; if (miter->__flags & SG_MITER_TO_SG) flush_kernel_dcache_page(miter->page); if (miter->__flags & SG_MITER_ATOMIC) { WARN_ON(!irqs_disabled()); kunmap_atomic(miter->addr); } else kunmap(miter->page); miter->page = NULL; miter->addr = NULL; miter->length = 0; miter->consumed = 0; } } EXPORT_SYMBOL(sg_miter_stop); /** * sg_copy_buffer - Copy data between a linear buffer and an SG list * @sgl: The SG list * @nents: Number of SG entries * @buf: Where to copy from * @buflen: The number of bytes to copy * @to_buffer: transfer direction (non zero == from an sg list to a * buffer, 0 == from a buffer to an sg list * * Returns the number of copied bytes. * **/ static size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen, int to_buffer) { unsigned int offset = 0; struct sg_mapping_iter miter; unsigned long flags; unsigned int sg_flags = SG_MITER_ATOMIC; if (to_buffer) sg_flags |= SG_MITER_FROM_SG; else sg_flags |= SG_MITER_TO_SG; sg_miter_start(&miter, sgl, nents, sg_flags); local_irq_save(flags); while (sg_miter_next(&miter) && offset < buflen) { unsigned int len; len = min(miter.length, buflen - offset); if (to_buffer) memcpy(buf + offset, miter.addr, len); else memcpy(miter.addr, buf + offset, len); offset += len; } sg_miter_stop(&miter); local_irq_restore(flags); return offset; } /** * sg_copy_from_buffer - Copy from a linear buffer to an SG list * @sgl: The SG list * @nents: Number of SG entries * @buf: Where to copy from * @buflen: The number of bytes to copy * * Returns the number of copied bytes. * **/ size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen) { return sg_copy_buffer(sgl, nents, buf, buflen, 0); } EXPORT_SYMBOL(sg_copy_from_buffer); /** * sg_copy_to_buffer - Copy from an SG list to a linear buffer * @sgl: The SG list * @nents: Number of SG entries * @buf: Where to copy to * @buflen: The number of bytes to copy * * Returns the number of copied bytes. * **/ size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, size_t buflen) { return sg_copy_buffer(sgl, nents, buf, buflen, 1); } EXPORT_SYMBOL(sg_copy_to_buffer);