/* * ALSA driver for ICEnsemble VT1724 (Envy24HT) * * Lowlevel functions for ESI Juli@ cards * * Copyright (c) 2004 Jaroslav Kysela <perex@perex.cz> * 2008 Pavel Hofman <dustin@seznam.cz> * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include <asm/io.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/slab.h> #include <sound/core.h> #include <sound/tlv.h> #include "ice1712.h" #include "envy24ht.h" #include "juli.h" struct juli_spec { struct ak4114 *ak4114; unsigned int analog:1; }; /* * chip addresses on I2C bus */ #define AK4114_ADDR 0x20 /* S/PDIF receiver */ #define AK4358_ADDR 0x22 /* DAC */ /* * Juli does not use the standard ICE1724 clock scheme. Juli's ice1724 chip is * supplied by external clock provided by Xilinx array and MK73-1 PLL frequency * multiplier. Actual frequency is set by ice1724 GPIOs hooked to the Xilinx. * * The clock circuitry is supplied by the two ice1724 crystals. This * arrangement allows to generate independent clock signal for AK4114's input * rate detection circuit. As a result, Juli, unlike most other * ice1724+ak4114-based cards, detects spdif input rate correctly. * This fact is applied in the driver, allowing to modify PCM stream rate * parameter according to the actual input rate. * * Juli uses the remaining three stereo-channels of its DAC to optionally * monitor analog input, digital input, and digital output. The corresponding * I2S signals are routed by Xilinx, controlled by GPIOs. * * The master mute is implemented using output muting transistors (GPIO) in * combination with smuting the DAC. * * The card itself has no HW master volume control, implemented using the * vmaster control. * * TODO: * researching and fixing the input monitors */ /* * GPIO pins */ #define GPIO_FREQ_MASK (3<<0) #define GPIO_FREQ_32KHZ (0<<0) #define GPIO_FREQ_44KHZ (1<<0) #define GPIO_FREQ_48KHZ (2<<0) #define GPIO_MULTI_MASK (3<<2) #define GPIO_MULTI_4X (0<<2) #define GPIO_MULTI_2X (1<<2) #define GPIO_MULTI_1X (2<<2) /* also external */ #define GPIO_MULTI_HALF (3<<2) #define GPIO_INTERNAL_CLOCK (1<<4) /* 0 = external, 1 = internal */ #define GPIO_CLOCK_MASK (1<<4) #define GPIO_ANALOG_PRESENT (1<<5) /* RO only: 0 = present */ #define GPIO_RXMCLK_SEL (1<<7) /* must be 0 */ #define GPIO_AK5385A_CKS0 (1<<8) #define GPIO_AK5385A_DFS1 (1<<9) #define GPIO_AK5385A_DFS0 (1<<10) #define GPIO_DIGOUT_MONITOR (1<<11) /* 1 = active */ #define GPIO_DIGIN_MONITOR (1<<12) /* 1 = active */ #define GPIO_ANAIN_MONITOR (1<<13) /* 1 = active */ #define GPIO_AK5385A_CKS1 (1<<14) /* must be 0 */ #define GPIO_MUTE_CONTROL (1<<15) /* output mute, 1 = muted */ #define GPIO_RATE_MASK (GPIO_FREQ_MASK | GPIO_MULTI_MASK | \ GPIO_CLOCK_MASK) #define GPIO_AK5385A_MASK (GPIO_AK5385A_CKS0 | GPIO_AK5385A_DFS0 | \ GPIO_AK5385A_DFS1 | GPIO_AK5385A_CKS1) #define JULI_PCM_RATE (SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050 | \ SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | \ SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_64000 | \ SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | \ SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000) #define GPIO_RATE_16000 (GPIO_FREQ_32KHZ | GPIO_MULTI_HALF | \ GPIO_INTERNAL_CLOCK) #define GPIO_RATE_22050 (GPIO_FREQ_44KHZ | GPIO_MULTI_HALF | \ GPIO_INTERNAL_CLOCK) #define GPIO_RATE_24000 (GPIO_FREQ_48KHZ | GPIO_MULTI_HALF | \ GPIO_INTERNAL_CLOCK) #define GPIO_RATE_32000 (GPIO_FREQ_32KHZ | GPIO_MULTI_1X | \ GPIO_INTERNAL_CLOCK) #define GPIO_RATE_44100 (GPIO_FREQ_44KHZ | GPIO_MULTI_1X | \ GPIO_INTERNAL_CLOCK) #define GPIO_RATE_48000 (GPIO_FREQ_48KHZ | GPIO_MULTI_1X | \ GPIO_INTERNAL_CLOCK) #define GPIO_RATE_64000 (GPIO_FREQ_32KHZ | GPIO_MULTI_2X | \ GPIO_INTERNAL_CLOCK) #define GPIO_RATE_88200 (GPIO_FREQ_44KHZ | GPIO_MULTI_2X | \ GPIO_INTERNAL_CLOCK) #define GPIO_RATE_96000 (GPIO_FREQ_48KHZ | GPIO_MULTI_2X | \ GPIO_INTERNAL_CLOCK) #define GPIO_RATE_176400 (GPIO_FREQ_44KHZ | GPIO_MULTI_4X | \ GPIO_INTERNAL_CLOCK) #define GPIO_RATE_192000 (GPIO_FREQ_48KHZ | GPIO_MULTI_4X | \ GPIO_INTERNAL_CLOCK) /* * Initial setup of the conversion array GPIO <-> rate */ static unsigned int juli_rates[] = { 16000, 22050, 24000, 32000, 44100, 48000, 64000, 88200, 96000, 176400, 192000, }; static unsigned int gpio_vals[] = { GPIO_RATE_16000, GPIO_RATE_22050, GPIO_RATE_24000, GPIO_RATE_32000, GPIO_RATE_44100, GPIO_RATE_48000, GPIO_RATE_64000, GPIO_RATE_88200, GPIO_RATE_96000, GPIO_RATE_176400, GPIO_RATE_192000, }; static struct snd_pcm_hw_constraint_list juli_rates_info = { .count = ARRAY_SIZE(juli_rates), .list = juli_rates, .mask = 0, }; static int get_gpio_val(int rate) { int i; for (i = 0; i < ARRAY_SIZE(juli_rates); i++) if (juli_rates[i] == rate) return gpio_vals[i]; return 0; } static void juli_ak4114_write(void *private_data, unsigned char reg, unsigned char val) { snd_vt1724_write_i2c((struct snd_ice1712 *)private_data, AK4114_ADDR, reg, val); } static unsigned char juli_ak4114_read(void *private_data, unsigned char reg) { return snd_vt1724_read_i2c((struct snd_ice1712 *)private_data, AK4114_ADDR, reg); } /* * If SPDIF capture and slaved to SPDIF-IN, setting runtime rate * to the external rate */ static void juli_spdif_in_open(struct snd_ice1712 *ice, struct snd_pcm_substream *substream) { struct juli_spec *spec = ice->spec; struct snd_pcm_runtime *runtime = substream->runtime; int rate; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || !ice->is_spdif_master(ice)) return; rate = snd_ak4114_external_rate(spec->ak4114); if (rate >= runtime->hw.rate_min && rate <= runtime->hw.rate_max) { runtime->hw.rate_min = rate; runtime->hw.rate_max = rate; } } /* * AK4358 section */ static void juli_akm_lock(struct snd_akm4xxx *ak, int chip) { } static void juli_akm_unlock(struct snd_akm4xxx *ak, int chip) { } static void juli_akm_write(struct snd_akm4xxx *ak, int chip, unsigned char addr, unsigned char data) { struct snd_ice1712 *ice = ak->private_data[0]; if (snd_BUG_ON(chip)) return; snd_vt1724_write_i2c(ice, AK4358_ADDR, addr, data); } /* * change the rate of envy24HT, AK4358, AK5385 */ static void juli_akm_set_rate_val(struct snd_akm4xxx *ak, unsigned int rate) { unsigned char old, tmp, ak4358_dfs; unsigned int ak5385_pins, old_gpio, new_gpio; struct snd_ice1712 *ice = ak->private_data[0]; struct juli_spec *spec = ice->spec; if (rate == 0) /* no hint - S/PDIF input is master or the new spdif input rate undetected, simply return */ return; /* adjust DFS on codecs */ if (rate > 96000) { ak4358_dfs = 2; ak5385_pins = GPIO_AK5385A_DFS1 | GPIO_AK5385A_CKS0; } else if (rate > 48000) { ak4358_dfs = 1; ak5385_pins = GPIO_AK5385A_DFS0; } else { ak4358_dfs = 0; ak5385_pins = 0; } /* AK5385 first, since it requires cold reset affecting both codecs */ old_gpio = ice->gpio.get_data(ice); new_gpio = (old_gpio & ~GPIO_AK5385A_MASK) | ak5385_pins; /* printk(KERN_DEBUG "JULI - ak5385 set_rate_val: new gpio 0x%x\n", new_gpio); */ ice->gpio.set_data(ice, new_gpio); /* cold reset */ old = inb(ICEMT1724(ice, AC97_CMD)); outb(old | VT1724_AC97_COLD, ICEMT1724(ice, AC97_CMD)); udelay(1); outb(old & ~VT1724_AC97_COLD, ICEMT1724(ice, AC97_CMD)); /* AK4358 */ /* set new value, reset DFS */ tmp = snd_akm4xxx_get(ak, 0, 2); snd_akm4xxx_reset(ak, 1); tmp = snd_akm4xxx_get(ak, 0, 2); tmp &= ~(0x03 << 4); tmp |= ak4358_dfs << 4; snd_akm4xxx_set(ak, 0, 2, tmp); snd_akm4xxx_reset(ak, 0); /* reinit ak4114 */ snd_ak4114_reinit(spec->ak4114); } #define AK_DAC(xname, xch) { .name = xname, .num_channels = xch } #define PCM_VOLUME "PCM Playback Volume" #define MONITOR_AN_IN_VOLUME "Monitor Analog In Volume" #define MONITOR_DIG_IN_VOLUME "Monitor Digital In Volume" #define MONITOR_DIG_OUT_VOLUME "Monitor Digital Out Volume" static const struct snd_akm4xxx_dac_channel juli_dac[] = { AK_DAC(PCM_VOLUME, 2), AK_DAC(MONITOR_AN_IN_VOLUME, 2), AK_DAC(MONITOR_DIG_OUT_VOLUME, 2), AK_DAC(MONITOR_DIG_IN_VOLUME, 2), }; static struct snd_akm4xxx akm_juli_dac __devinitdata = { .type = SND_AK4358, .num_dacs = 8, /* DAC1 - analog out DAC2 - analog in monitor DAC3 - digital out monitor DAC4 - digital in monitor */ .ops = { .lock = juli_akm_lock, .unlock = juli_akm_unlock, .write = juli_akm_write, .set_rate_val = juli_akm_set_rate_val }, .dac_info = juli_dac, }; #define juli_mute_info snd_ctl_boolean_mono_info static int juli_mute_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); unsigned int val; val = ice->gpio.get_data(ice) & (unsigned int) kcontrol->private_value; if (kcontrol->private_value == GPIO_MUTE_CONTROL) /* val 0 = signal on */ ucontrol->value.integer.value[0] = (val) ? 0 : 1; else /* val 1 = signal on */ ucontrol->value.integer.value[0] = (val) ? 1 : 0; return 0; } static int juli_mute_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); unsigned int old_gpio, new_gpio; old_gpio = ice->gpio.get_data(ice); if (ucontrol->value.integer.value[0]) { /* unmute */ if (kcontrol->private_value == GPIO_MUTE_CONTROL) { /* 0 = signal on */ new_gpio = old_gpio & ~GPIO_MUTE_CONTROL; /* un-smuting DAC */ snd_akm4xxx_write(ice->akm, 0, 0x01, 0x01); } else /* 1 = signal on */ new_gpio = old_gpio | (unsigned int) kcontrol->private_value; } else { /* mute */ if (kcontrol->private_value == GPIO_MUTE_CONTROL) { /* 1 = signal off */ new_gpio = old_gpio | GPIO_MUTE_CONTROL; /* smuting DAC */ snd_akm4xxx_write(ice->akm, 0, 0x01, 0x03); } else /* 0 = signal off */ new_gpio = old_gpio & ~((unsigned int) kcontrol->private_value); } /* printk(KERN_DEBUG "JULI - mute/unmute: control_value: 0x%x, old_gpio: 0x%x, " "new_gpio 0x%x\n", (unsigned int)ucontrol->value.integer.value[0], old_gpio, new_gpio); */ if (old_gpio != new_gpio) { ice->gpio.set_data(ice, new_gpio); return 1; } /* no change */ return 0; } static struct snd_kcontrol_new juli_mute_controls[] __devinitdata = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Master Playback Switch", .info = juli_mute_info, .get = juli_mute_get, .put = juli_mute_put, .private_value = GPIO_MUTE_CONTROL, }, /* Although the following functionality respects the succint NDA'd * documentation from the card manufacturer, and the same way of * operation is coded in OSS Juli driver, only Digital Out monitor * seems to work. Surprisingly, Analog input monitor outputs Digital * output data. The two are independent, as enabling both doubles * volume of the monitor sound. * * Checking traces on the board suggests the functionality described * by the manufacturer is correct - I2S from ADC and AK4114 * go to ICE as well as to Xilinx, I2S inputs of DAC2,3,4 (the monitor * inputs) are fed from Xilinx. * * I even checked traces on board and coded a support in driver for * an alternative possibility - the unused I2S ICE output channels * switched to HW-IN/SPDIF-IN and providing the monitoring signal to * the DAC - to no avail. The I2S outputs seem to be unconnected. * * The windows driver supports the monitoring correctly. */ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Monitor Analog In Switch", .info = juli_mute_info, .get = juli_mute_get, .put = juli_mute_put, .private_value = GPIO_ANAIN_MONITOR, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Monitor Digital Out Switch", .info = juli_mute_info, .get = juli_mute_get, .put = juli_mute_put, .private_value = GPIO_DIGOUT_MONITOR, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Monitor Digital In Switch", .info = juli_mute_info, .get = juli_mute_get, .put = juli_mute_put, .private_value = GPIO_DIGIN_MONITOR, }, }; static char *slave_vols[] __devinitdata = { PCM_VOLUME, MONITOR_AN_IN_VOLUME, MONITOR_DIG_IN_VOLUME, MONITOR_DIG_OUT_VOLUME, NULL }; static __devinitdata DECLARE_TLV_DB_SCALE(juli_master_db_scale, -6350, 50, 1); static struct snd_kcontrol __devinit *ctl_find(struct snd_card *card, const char *name) { struct snd_ctl_elem_id sid; memset(&sid, 0, sizeof(sid)); /* FIXME: strcpy is bad. */ strcpy(sid.name, name); sid.iface = SNDRV_CTL_ELEM_IFACE_MIXER; return snd_ctl_find_id(card, &sid); } static void __devinit add_slaves(struct snd_card *card, struct snd_kcontrol *master, char **list) { for (; *list; list++) { struct snd_kcontrol *slave = ctl_find(card, *list); /* printk(KERN_DEBUG "add_slaves - %s\n", *list); */ if (slave) { /* printk(KERN_DEBUG "slave %s found\n", *list); */ snd_ctl_add_slave(master, slave); } } } static int __devinit juli_add_controls(struct snd_ice1712 *ice) { struct juli_spec *spec = ice->spec; int err; unsigned int i; struct snd_kcontrol *vmaster; err = snd_ice1712_akm4xxx_build_controls(ice); if (err < 0) return err; for (i = 0; i < ARRAY_SIZE(juli_mute_controls); i++) { err = snd_ctl_add(ice->card, snd_ctl_new1(&juli_mute_controls[i], ice)); if (err < 0) return err; } /* Create virtual master control */ vmaster = snd_ctl_make_virtual_master("Master Playback Volume", juli_master_db_scale); if (!vmaster) return -ENOMEM; add_slaves(ice->card, vmaster, slave_vols); err = snd_ctl_add(ice->card, vmaster); if (err < 0) return err; /* only capture SPDIF over AK4114 */ err = snd_ak4114_build(spec->ak4114, NULL, ice->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream); if (err < 0) return err; return 0; } /* * suspend/resume * */ #ifdef CONFIG_PM static int juli_resume(struct snd_ice1712 *ice) { struct snd_akm4xxx *ak = ice->akm; struct juli_spec *spec = ice->spec; /* akm4358 un-reset, un-mute */ snd_akm4xxx_reset(ak, 0); /* reinit ak4114 */ snd_ak4114_reinit(spec->ak4114); return 0; } static int juli_suspend(struct snd_ice1712 *ice) { struct snd_akm4xxx *ak = ice->akm; /* akm4358 reset and soft-mute */ snd_akm4xxx_reset(ak, 1); return 0; } #endif /* * initialize the chip */ static inline int juli_is_spdif_master(struct snd_ice1712 *ice) { return (ice->gpio.get_data(ice) & GPIO_INTERNAL_CLOCK) ? 0 : 1; } static unsigned int juli_get_rate(struct snd_ice1712 *ice) { int i; unsigned char result; result = ice->gpio.get_data(ice) & GPIO_RATE_MASK; for (i = 0; i < ARRAY_SIZE(gpio_vals); i++) if (gpio_vals[i] == result) return juli_rates[i]; return 0; } /* setting new rate */ static void juli_set_rate(struct snd_ice1712 *ice, unsigned int rate) { unsigned int old, new; unsigned char val; old = ice->gpio.get_data(ice); new = (old & ~GPIO_RATE_MASK) | get_gpio_val(rate); /* printk(KERN_DEBUG "JULI - set_rate: old %x, new %x\n", old & GPIO_RATE_MASK, new & GPIO_RATE_MASK); */ ice->gpio.set_data(ice, new); /* switching to external clock - supplied by external circuits */ val = inb(ICEMT1724(ice, RATE)); outb(val | VT1724_SPDIF_MASTER, ICEMT1724(ice, RATE)); } static inline unsigned char juli_set_mclk(struct snd_ice1712 *ice, unsigned int rate) { /* no change in master clock */ return 0; } /* setting clock to external - SPDIF */ static int juli_set_spdif_clock(struct snd_ice1712 *ice, int type) { unsigned int old; old = ice->gpio.get_data(ice); /* external clock (= 0), multiply 1x, 48kHz */ ice->gpio.set_data(ice, (old & ~GPIO_RATE_MASK) | GPIO_MULTI_1X | GPIO_FREQ_48KHZ); return 0; } /* Called when ak4114 detects change in the input SPDIF stream */ static void juli_ak4114_change(struct ak4114 *ak4114, unsigned char c0, unsigned char c1) { struct snd_ice1712 *ice = ak4114->change_callback_private; int rate; if (ice->is_spdif_master(ice) && c1) { /* only for SPDIF master mode, rate was changed */ rate = snd_ak4114_external_rate(ak4114); /* printk(KERN_DEBUG "ak4114 - input rate changed to %d\n", rate); */ juli_akm_set_rate_val(ice->akm, rate); } } static int __devinit juli_init(struct snd_ice1712 *ice) { static const unsigned char ak4114_init_vals[] = { /* AK4117_REG_PWRDN */ AK4114_RST | AK4114_PWN | AK4114_OCKS0 | AK4114_OCKS1, /* AK4114_REQ_FORMAT */ AK4114_DIF_I24I2S, /* AK4114_REG_IO0 */ AK4114_TX1E, /* AK4114_REG_IO1 */ AK4114_EFH_1024 | AK4114_DIT | AK4114_IPS(1), /* AK4114_REG_INT0_MASK */ 0, /* AK4114_REG_INT1_MASK */ 0 }; static const unsigned char ak4114_init_txcsb[] = { 0x41, 0x02, 0x2c, 0x00, 0x00 }; int err; struct juli_spec *spec; struct snd_akm4xxx *ak; spec = kzalloc(sizeof(*spec), GFP_KERNEL); if (!spec) return -ENOMEM; ice->spec = spec; err = snd_ak4114_create(ice->card, juli_ak4114_read, juli_ak4114_write, ak4114_init_vals, ak4114_init_txcsb, ice, &spec->ak4114); if (err < 0) return err; /* callback for codecs rate setting */ spec->ak4114->change_callback = juli_ak4114_change; spec->ak4114->change_callback_private = ice; /* AK4114 in Juli can detect external rate correctly */ spec->ak4114->check_flags = 0; #if 0 /* * it seems that the analog doughter board detection does not work reliably, so * force the analog flag; it should be very rare (if ever) to come at Juli@ * used without the analog daughter board */ spec->analog = (ice->gpio.get_data(ice) & GPIO_ANALOG_PRESENT) ? 0 : 1; #else spec->analog = 1; #endif if (spec->analog) { printk(KERN_INFO "juli@: analog I/O detected\n"); ice->num_total_dacs = 2; ice->num_total_adcs = 2; ice->akm = kzalloc(sizeof(struct snd_akm4xxx), GFP_KERNEL); ak = ice->akm; if (!ak) return -ENOMEM; ice->akm_codecs = 1; err = snd_ice1712_akm4xxx_init(ak, &akm_juli_dac, NULL, ice); if (err < 0) return err; } /* juli is clocked by Xilinx array */ ice->hw_rates = &juli_rates_info; ice->is_spdif_master = juli_is_spdif_master; ice->get_rate = juli_get_rate; ice->set_rate = juli_set_rate; ice->set_mclk = juli_set_mclk; ice->set_spdif_clock = juli_set_spdif_clock; ice->spdif.ops.open = juli_spdif_in_open; #ifdef CONFIG_PM ice->pm_resume = juli_resume; ice->pm_suspend = juli_suspend; ice->pm_suspend_enabled = 1; #endif return 0; } /* * Juli@ boards don't provide the EEPROM data except for the vendor IDs. * hence the driver needs to sets up it properly. */ static unsigned char juli_eeprom[] __devinitdata = { [ICE_EEP2_SYSCONF] = 0x2b, /* clock 512, mpu401, 1xADC, 1xDACs, SPDIF in */ [ICE_EEP2_ACLINK] = 0x80, /* I2S */ [ICE_EEP2_I2S] = 0xf8, /* vol, 96k, 24bit, 192k */ [ICE_EEP2_SPDIF] = 0xc3, /* out-en, out-int, spdif-in */ [ICE_EEP2_GPIO_DIR] = 0x9f, /* 5, 6:inputs; 7, 4-0 outputs*/ [ICE_EEP2_GPIO_DIR1] = 0xff, [ICE_EEP2_GPIO_DIR2] = 0x7f, [ICE_EEP2_GPIO_MASK] = 0x60, /* 5, 6: locked; 7, 4-0 writable */ [ICE_EEP2_GPIO_MASK1] = 0x00, /* 0-7 writable */ [ICE_EEP2_GPIO_MASK2] = 0x7f, [ICE_EEP2_GPIO_STATE] = GPIO_FREQ_48KHZ | GPIO_MULTI_1X | GPIO_INTERNAL_CLOCK, /* internal clock, multiple 1x, 48kHz*/ [ICE_EEP2_GPIO_STATE1] = 0x00, /* unmuted */ [ICE_EEP2_GPIO_STATE2] = 0x00, }; /* entry point */ struct snd_ice1712_card_info snd_vt1724_juli_cards[] __devinitdata = { { .subvendor = VT1724_SUBDEVICE_JULI, .name = "ESI Juli@", .model = "juli", .chip_init = juli_init, .build_controls = juli_add_controls, .eeprom_size = sizeof(juli_eeprom), .eeprom_data = juli_eeprom, }, { } /* terminator */ };