- 根目录:
- drivers
- staging
- sep
- sep_main.c
C++程序
|
4519行
|
123.27 KB
/*
*
* sep_main.c - Security Processor Driver main group of functions
*
* Copyright(c) 2009-2011 Intel Corporation. All rights reserved.
* Contributions(c) 2009-2011 Discretix. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* CONTACTS:
*
* Mark Allyn mark.a.allyn@intel.com
* Jayant Mangalampalli jayant.mangalampalli@intel.com
*
* CHANGES:
*
* 2009.06.26 Initial publish
* 2010.09.14 Upgrade to Medfield
* 2011.01.21 Move to sep_main.c to allow for sep_crypto.c
* 2011.02.22 Enable kernel crypto operation
*
* Please note that this driver is based on information in the Discretix
* CryptoCell 5.2 Driver Implementation Guide; the Discretix CryptoCell 5.2
* Integration Intel Medfield appendix; the Discretix CryptoCell 5.2
* Linux Driver Integration Guide; and the Discretix CryptoCell 5.2 System
* Overview and Integration Guide.
*/
/* #define DEBUG */
/* #define SEP_PERF_DEBUG */
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/miscdevice.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/kdev_t.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/poll.h>
#include <linux/wait.h>
#include <linux/pci.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/ioctl.h>
#include <asm/current.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <asm/cacheflush.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/async.h>
#include <linux/crypto.h>
#include <crypto/internal/hash.h>
#include <crypto/scatterwalk.h>
#include <crypto/sha.h>
#include <crypto/md5.h>
#include <crypto/aes.h>
#include <crypto/des.h>
#include <crypto/hash.h>
#include "sep_driver_hw_defs.h"
#include "sep_driver_config.h"
#include "sep_driver_api.h"
#include "sep_dev.h"
#include "sep_crypto.h"
#define CREATE_TRACE_POINTS
#include "sep_trace_events.h"
/*
* Let's not spend cycles iterating over message
* area contents if debugging not enabled
*/
#ifdef DEBUG
#define sep_dump_message(sep) _sep_dump_message(sep)
#else
#define sep_dump_message(sep)
#endif
/**
* Currenlty, there is only one SEP device per platform;
* In event platforms in the future have more than one SEP
* device, this will be a linked list
*/
struct sep_device *sep_dev;
/**
* sep_queue_status_remove - Removes transaction from status queue
* @sep: SEP device
* @sep_queue_info: pointer to status queue
*
* This function will removes information about transaction from the queue.
*/
void sep_queue_status_remove(struct sep_device *sep,
struct sep_queue_info **queue_elem)
{
unsigned long lck_flags;
dev_dbg(&sep->pdev->dev, "[PID%d] sep_queue_status_remove\n",
current->pid);
if (!queue_elem || !(*queue_elem)) {
dev_dbg(&sep->pdev->dev, "PID%d %s null\n",
current->pid, __func__);
return;
}
spin_lock_irqsave(&sep->sep_queue_lock, lck_flags);
list_del(&(*queue_elem)->list);
sep->sep_queue_num--;
spin_unlock_irqrestore(&sep->sep_queue_lock, lck_flags);
kfree(*queue_elem);
*queue_elem = NULL;
dev_dbg(&sep->pdev->dev, "[PID%d] sep_queue_status_remove return\n",
current->pid);
return;
}
/**
* sep_queue_status_add - Adds transaction to status queue
* @sep: SEP device
* @opcode: transaction opcode
* @size: input data size
* @pid: pid of current process
* @name: current process name
* @name_len: length of name (current process)
*
* This function adds information about about transaction started to the status
* queue.
*/
struct sep_queue_info *sep_queue_status_add(
struct sep_device *sep,
u32 opcode,
u32 size,
u32 pid,
u8 *name, size_t name_len)
{
unsigned long lck_flags;
struct sep_queue_info *my_elem = NULL;
my_elem = kzalloc(sizeof(struct sep_queue_info), GFP_KERNEL);
if (!my_elem)
return NULL;
dev_dbg(&sep->pdev->dev, "[PID%d] kzalloc ok\n", current->pid);
my_elem->data.opcode = opcode;
my_elem->data.size = size;
my_elem->data.pid = pid;
if (name_len > TASK_COMM_LEN)
name_len = TASK_COMM_LEN;
memcpy(&my_elem->data.name, name, name_len);
spin_lock_irqsave(&sep->sep_queue_lock, lck_flags);
list_add_tail(&my_elem->list, &sep->sep_queue_status);
sep->sep_queue_num++;
spin_unlock_irqrestore(&sep->sep_queue_lock, lck_flags);
return my_elem;
}
/**
* sep_allocate_dmatables_region - Allocates buf for the MLLI/DMA tables
* @sep: SEP device
* @dmatables_region: Destination pointer for the buffer
* @dma_ctx: DMA context for the transaction
* @table_count: Number of MLLI/DMA tables to create
* The buffer created will not work as-is for DMA operations,
* it needs to be copied over to the appropriate place in the
* shared area.
*/
static int sep_allocate_dmatables_region(struct sep_device *sep,
void **dmatables_region,
struct sep_dma_context *dma_ctx,
const u32 table_count)
{
const size_t new_len =
SYNCHRONIC_DMA_TABLES_AREA_SIZE_BYTES - 1;
void *tmp_region = NULL;
dev_dbg(&sep->pdev->dev, "[PID%d] dma_ctx = 0x%p\n",
current->pid, dma_ctx);
dev_dbg(&sep->pdev->dev, "[PID%d] dmatables_region = 0x%p\n",
current->pid, dmatables_region);
if (!dma_ctx || !dmatables_region) {
dev_warn(&sep->pdev->dev,
"[PID%d] dma context/region uninitialized\n",
current->pid);
return -EINVAL;
}
dev_dbg(&sep->pdev->dev, "[PID%d] newlen = 0x%08zX\n",
current->pid, new_len);
dev_dbg(&sep->pdev->dev, "[PID%d] oldlen = 0x%08X\n", current->pid,
dma_ctx->dmatables_len);
tmp_region = kzalloc(new_len + dma_ctx->dmatables_len, GFP_KERNEL);
if (!tmp_region) {
dev_warn(&sep->pdev->dev,
"[PID%d] no mem for dma tables region\n",
current->pid);
return -ENOMEM;
}
/* Were there any previous tables that need to be preserved ? */
if (*dmatables_region) {
memcpy(tmp_region, *dmatables_region, dma_ctx->dmatables_len);
kfree(*dmatables_region);
*dmatables_region = NULL;
}
*dmatables_region = tmp_region;
dma_ctx->dmatables_len += new_len;
return 0;
}
/**
* sep_wait_transaction - Used for synchronizing transactions
* @sep: SEP device
*/
int sep_wait_transaction(struct sep_device *sep)
{
int error = 0;
DEFINE_WAIT(wait);
if (0 == test_and_set_bit(SEP_TRANSACTION_STARTED_LOCK_BIT,
&sep->in_use_flags)) {
dev_dbg(&sep->pdev->dev,
"[PID%d] no transactions, returning\n",
current->pid);
goto end_function_setpid;
}
/*
* Looping needed even for exclusive waitq entries
* due to process wakeup latencies, previous process
* might have already created another transaction.
*/
for (;;) {
/*
* Exclusive waitq entry, so that only one process is
* woken up from the queue at a time.
*/
prepare_to_wait_exclusive(&sep->event_transactions,
&wait,
TASK_INTERRUPTIBLE);
if (0 == test_and_set_bit(SEP_TRANSACTION_STARTED_LOCK_BIT,
&sep->in_use_flags)) {
dev_dbg(&sep->pdev->dev,
"[PID%d] no transactions, breaking\n",
current->pid);
break;
}
dev_dbg(&sep->pdev->dev,
"[PID%d] transactions ongoing, sleeping\n",
current->pid);
schedule();
dev_dbg(&sep->pdev->dev, "[PID%d] woken up\n", current->pid);
if (signal_pending(current)) {
dev_dbg(&sep->pdev->dev, "[PID%d] received signal\n",
current->pid);
error = -EINTR;
goto end_function;
}
}
end_function_setpid:
/*
* The pid_doing_transaction indicates that this process
* now owns the facilities to performa a transaction with
* the SEP. While this process is performing a transaction,
* no other process who has the SEP device open can perform
* any transactions. This method allows more than one process
* to have the device open at any given time, which provides
* finer granularity for device utilization by multiple
* processes.
*/
/* Only one process is able to progress here at a time */
sep->pid_doing_transaction = current->pid;
end_function:
finish_wait(&sep->event_transactions, &wait);
return error;
}
/**
* sep_check_transaction_owner - Checks if current process owns transaction
* @sep: SEP device
*/
static inline int sep_check_transaction_owner(struct sep_device *sep)
{
dev_dbg(&sep->pdev->dev, "[PID%d] transaction pid = %d\n",
current->pid,
sep->pid_doing_transaction);
if ((sep->pid_doing_transaction == 0) ||
(current->pid != sep->pid_doing_transaction)) {
return -EACCES;
}
/* We own the transaction */
return 0;
}
#ifdef DEBUG
/**
* sep_dump_message - dump the message that is pending
* @sep: SEP device
* This will only print dump if DEBUG is set; it does
* follow kernel debug print enabling
*/
static void _sep_dump_message(struct sep_device *sep)
{
int count;
u32 *p = sep->shared_addr;
for (count = 0; count < 10 * 4; count += 4)
dev_dbg(&sep->pdev->dev,
"[PID%d] Word %d of the message is %x\n",
current->pid, count/4, *p++);
}
#endif
/**
* sep_map_and_alloc_shared_area -allocate shared block
* @sep: security processor
* @size: size of shared area
*/
static int sep_map_and_alloc_shared_area(struct sep_device *sep)
{
sep->shared_addr = dma_alloc_coherent(&sep->pdev->dev,
sep->shared_size,
&sep->shared_bus, GFP_KERNEL);
if (!sep->shared_addr) {
dev_dbg(&sep->pdev->dev,
"[PID%d] shared memory dma_alloc_coherent failed\n",
current->pid);
return -ENOMEM;
}
dev_dbg(&sep->pdev->dev,
"[PID%d] shared_addr %zx bytes @%p (bus %llx)\n",
current->pid,
sep->shared_size, sep->shared_addr,
(unsigned long long)sep->shared_bus);
return 0;
}
/**
* sep_unmap_and_free_shared_area - free shared block
* @sep: security processor
*/
static void sep_unmap_and_free_shared_area(struct sep_device *sep)
{
dma_free_coherent(&sep->pdev->dev, sep->shared_size,
sep->shared_addr, sep->shared_bus);
}
#ifdef DEBUG
/**
* sep_shared_bus_to_virt - convert bus/virt addresses
* @sep: pointer to struct sep_device
* @bus_address: address to convert
*
* Returns virtual address inside the shared area according
* to the bus address.
*/
static void *sep_shared_bus_to_virt(struct sep_device *sep,
dma_addr_t bus_address)
{
return sep->shared_addr + (bus_address - sep->shared_bus);
}
#endif
/**
* sep_open - device open method
* @inode: inode of SEP device
* @filp: file handle to SEP device
*
* Open method for the SEP device. Called when userspace opens
* the SEP device node.
*
* Returns zero on success otherwise an error code.
*/
static int sep_open(struct inode *inode, struct file *filp)
{
struct sep_device *sep;
struct sep_private_data *priv;
dev_dbg(&sep_dev->pdev->dev, "[PID%d] open\n", current->pid);
if (filp->f_flags & O_NONBLOCK)
return -ENOTSUPP;
/*
* Get the SEP device structure and use it for the
* private_data field in filp for other methods
*/
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
sep = sep_dev;
priv->device = sep;
filp->private_data = priv;
dev_dbg(&sep_dev->pdev->dev, "[PID%d] priv is 0x%p\n",
current->pid, priv);
/* Anyone can open; locking takes place at transaction level */
return 0;
}
/**
* sep_free_dma_table_data_handler - free DMA table
* @sep: pointere to struct sep_device
* @dma_ctx: dma context
*
* Handles the request to free DMA table for synchronic actions
*/
int sep_free_dma_table_data_handler(struct sep_device *sep,
struct sep_dma_context **dma_ctx)
{
int count;
int dcb_counter;
/* Pointer to the current dma_resource struct */
struct sep_dma_resource *dma;
dev_dbg(&sep->pdev->dev,
"[PID%d] sep_free_dma_table_data_handler\n",
current->pid);
if (!dma_ctx || !(*dma_ctx)) {
/* No context or context already freed */
dev_dbg(&sep->pdev->dev,
"[PID%d] no DMA context or context already freed\n",
current->pid);
return 0;
}
dev_dbg(&sep->pdev->dev, "[PID%d] (*dma_ctx)->nr_dcb_creat 0x%x\n",
current->pid,
(*dma_ctx)->nr_dcb_creat);
for (dcb_counter = 0;
dcb_counter < (*dma_ctx)->nr_dcb_creat; dcb_counter++) {
dma = &(*dma_ctx)->dma_res_arr[dcb_counter];
/* Unmap and free input map array */
if (dma->in_map_array) {
for (count = 0; count < dma->in_num_pages; count++) {
dma_unmap_page(&sep->pdev->dev,
dma->in_map_array[count].dma_addr,
dma->in_map_array[count].size,
DMA_TO_DEVICE);
}
kfree(dma->in_map_array);
}
/**
* Output is handled different. If
* this was a secure dma into restricted memory,
* then we skip this step altogether as restricted
* memory is not available to the o/s at all.
*/
if (((*dma_ctx)->secure_dma == false) &&
(dma->out_map_array)) {
for (count = 0; count < dma->out_num_pages; count++) {
dma_unmap_page(&sep->pdev->dev,
dma->out_map_array[count].dma_addr,
dma->out_map_array[count].size,
DMA_FROM_DEVICE);
}
kfree(dma->out_map_array);
}
/* Free page cache for output */
if (dma->in_page_array) {
for (count = 0; count < dma->in_num_pages; count++) {
flush_dcache_page(dma->in_page_array[count]);
page_cache_release(dma->in_page_array[count]);
}
kfree(dma->in_page_array);
}
/* Again, we do this only for non secure dma */
if (((*dma_ctx)->secure_dma == false) &&
(dma->out_page_array)) {
for (count = 0; count < dma->out_num_pages; count++) {
if (!PageReserved(dma->out_page_array[count]))
SetPageDirty(dma->
out_page_array[count]);
flush_dcache_page(dma->out_page_array[count]);
page_cache_release(dma->out_page_array[count]);
}
kfree(dma->out_page_array);
}
/**
* Note that here we use in_map_num_entries because we
* don't have a page array; the page array is generated
* only in the lock_user_pages, which is not called
* for kernel crypto, which is what the sg (scatter gather
* is used for exclusively
*/
if (dma->src_sg) {
dma_unmap_sg(&sep->pdev->dev, dma->src_sg,
dma->in_map_num_entries, DMA_TO_DEVICE);
dma->src_sg = NULL;
}
if (dma->dst_sg) {
dma_unmap_sg(&sep->pdev->dev, dma->dst_sg,
dma->in_map_num_entries, DMA_FROM_DEVICE);
dma->dst_sg = NULL;
}
/* Reset all the values */
dma->in_page_array = NULL;
dma->out_page_array = NULL;
dma->in_num_pages = 0;
dma->out_num_pages = 0;
dma->in_map_array = NULL;
dma->out_map_array = NULL;
dma->in_map_num_entries = 0;
dma->out_map_num_entries = 0;
}
(*dma_ctx)->nr_dcb_creat = 0;
(*dma_ctx)->num_lli_tables_created = 0;
kfree(*dma_ctx);
*dma_ctx = NULL;
dev_dbg(&sep->pdev->dev,
"[PID%d] sep_free_dma_table_data_handler end\n",
current->pid);
return 0;
}
/**
* sep_end_transaction_handler - end transaction
* @sep: pointer to struct sep_device
* @dma_ctx: DMA context
* @call_status: Call status
*
* This API handles the end transaction request.
*/
static int sep_end_transaction_handler(struct sep_device *sep,
struct sep_dma_context **dma_ctx,
struct sep_call_status *call_status,
struct sep_queue_info **my_queue_elem)
{
dev_dbg(&sep->pdev->dev, "[PID%d] ending transaction\n", current->pid);
/*
* Extraneous transaction clearing would mess up PM
* device usage counters and SEP would get suspended
* just before we send a command to SEP in the next
* transaction
* */
if (sep_check_transaction_owner(sep)) {
dev_dbg(&sep->pdev->dev, "[PID%d] not transaction owner\n",
current->pid);
return 0;
}
/* Update queue status */
sep_queue_status_remove(sep, my_queue_elem);
/* Check that all the DMA resources were freed */
if (dma_ctx)
sep_free_dma_table_data_handler(sep, dma_ctx);
/* Reset call status for next transaction */
if (call_status)
call_status->status = 0;
/* Clear the message area to avoid next transaction reading
* sensitive results from previous transaction */
memset(sep->shared_addr, 0,
SEP_DRIVER_MESSAGE_SHARED_AREA_SIZE_IN_BYTES);
/* start suspend delay */
#ifdef SEP_ENABLE_RUNTIME_PM
if (sep->in_use) {
sep->in_use = 0;
pm_runtime_mark_last_busy(&sep->pdev->dev);
pm_runtime_put_autosuspend(&sep->pdev->dev);
}
#endif
clear_bit(SEP_WORKING_LOCK_BIT, &sep->in_use_flags);
sep->pid_doing_transaction = 0;
/* Now it's safe for next process to proceed */
dev_dbg(&sep->pdev->dev, "[PID%d] waking up next transaction\n",
current->pid);
clear_bit(SEP_TRANSACTION_STARTED_LOCK_BIT, &sep->in_use_flags);
wake_up(&sep->event_transactions);
return 0;
}
/**
* sep_release - close a SEP device
* @inode: inode of SEP device
* @filp: file handle being closed
*
* Called on the final close of a SEP device.
*/
static int sep_release(struct inode *inode, struct file *filp)
{
struct sep_private_data * const private_data = filp->private_data;
struct sep_call_status *call_status = &private_data->call_status;
struct sep_device *sep = private_data->device;
struct sep_dma_context **dma_ctx = &private_data->dma_ctx;
struct sep_queue_info **my_queue_elem = &private_data->my_queue_elem;
dev_dbg(&sep->pdev->dev, "[PID%d] release\n", current->pid);
sep_end_transaction_handler(sep, dma_ctx, call_status,
my_queue_elem);
kfree(filp->private_data);
return 0;
}
/**
* sep_mmap - maps the shared area to user space
* @filp: pointer to struct file
* @vma: pointer to vm_area_struct
*
* Called on an mmap of our space via the normal SEP device
*/
static int sep_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct sep_private_data * const private_data = filp->private_data;
struct sep_call_status *call_status = &private_data->call_status;
struct sep_device *sep = private_data->device;
struct sep_queue_info **my_queue_elem = &private_data->my_queue_elem;
dma_addr_t bus_addr;
unsigned long error = 0;
dev_dbg(&sep->pdev->dev, "[PID%d] sep_mmap\n", current->pid);
/* Set the transaction busy (own the device) */
/*
* Problem for multithreaded applications is that here we're
* possibly going to sleep while holding a write lock on
* current->mm->mmap_sem, which will cause deadlock for ongoing
* transaction trying to create DMA tables
*/
error = sep_wait_transaction(sep);
if (error)
/* Interrupted by signal, don't clear transaction */
goto end_function;
/* Clear the message area to avoid next transaction reading
* sensitive results from previous transaction */
memset(sep->shared_addr, 0,
SEP_DRIVER_MESSAGE_SHARED_AREA_SIZE_IN_BYTES);
/*
* Check that the size of the mapped range is as the size of the message
* shared area
*/
if ((vma->vm_end - vma->vm_start) > SEP_DRIVER_MMMAP_AREA_SIZE) {
error = -EINVAL;
goto end_function_with_error;
}
dev_dbg(&sep->pdev->dev, "[PID%d] shared_addr is %p\n",
current->pid, sep->shared_addr);
/* Get bus address */
bus_addr = sep->shared_bus;
if (remap_pfn_range(vma, vma->vm_start, bus_addr >> PAGE_SHIFT,
vma->vm_end - vma->vm_start, vma->vm_page_prot)) {
dev_dbg(&sep->pdev->dev, "[PID%d] remap_page_range failed\n",
current->pid);
error = -EAGAIN;
goto end_function_with_error;
}
/* Update call status */
set_bit(SEP_LEGACY_MMAP_DONE_OFFSET, &call_status->status);
goto end_function;
end_function_with_error:
/* Clear our transaction */
sep_end_transaction_handler(sep, NULL, call_status,
my_queue_elem);
end_function:
return error;
}
/**
* sep_poll - poll handler
* @filp: pointer to struct file
* @wait: pointer to poll_table
*
* Called by the OS when the kernel is asked to do a poll on
* a SEP file handle.
*/
static unsigned int sep_poll(struct file *filp, poll_table *wait)
{
struct sep_private_data * const private_data = filp->private_data;
struct sep_call_status *call_status = &private_data->call_status;
struct sep_device *sep = private_data->device;
u32 mask = 0;
u32 retval = 0;
u32 retval2 = 0;
unsigned long lock_irq_flag;
/* Am I the process that owns the transaction? */
if (sep_check_transaction_owner(sep)) {
dev_dbg(&sep->pdev->dev, "[PID%d] poll pid not owner\n",
current->pid);
mask = POLLERR;
goto end_function;
}
/* Check if send command or send_reply were activated previously */
if (0 == test_bit(SEP_LEGACY_SENDMSG_DONE_OFFSET,
&call_status->status)) {
dev_warn(&sep->pdev->dev, "[PID%d] sendmsg not called\n",
current->pid);
mask = POLLERR;
goto end_function;
}
/* Add the event to the polling wait table */
dev_dbg(&sep->pdev->dev, "[PID%d] poll: calling wait sep_event\n",
current->pid);
poll_wait(filp, &sep->event_interrupt, wait);
dev_dbg(&sep->pdev->dev,
"[PID%d] poll: send_ct is %lx reply ct is %lx\n",
current->pid, sep->send_ct, sep->reply_ct);
/* Check if error occured during poll */
retval2 = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR3_REG_ADDR);
if ((retval2 != 0x0) && (retval2 != 0x8)) {
dev_dbg(&sep->pdev->dev, "[PID%d] poll; poll error %x\n",
current->pid, retval2);
mask |= POLLERR;
goto end_function;
}
spin_lock_irqsave(&sep->snd_rply_lck, lock_irq_flag);
if (sep->send_ct == sep->reply_ct) {
spin_unlock_irqrestore(&sep->snd_rply_lck, lock_irq_flag);
retval = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR);
dev_dbg(&sep->pdev->dev,
"[PID%d] poll: data ready check (GPR2) %x\n",
current->pid, retval);
/* Check if printf request */
if ((retval >> 30) & 0x1) {
dev_dbg(&sep->pdev->dev,
"[PID%d] poll: SEP printf request\n",
current->pid);
goto end_function;
}
/* Check if the this is SEP reply or request */
if (retval >> 31) {
dev_dbg(&sep->pdev->dev,
"[PID%d] poll: SEP request\n",
current->pid);
} else {
dev_dbg(&sep->pdev->dev,
"[PID%d] poll: normal return\n",
current->pid);
sep_dump_message(sep);
dev_dbg(&sep->pdev->dev,
"[PID%d] poll; SEP reply POLLIN|POLLRDNORM\n",
current->pid);
mask |= POLLIN | POLLRDNORM;
}
set_bit(SEP_LEGACY_POLL_DONE_OFFSET, &call_status->status);
} else {
spin_unlock_irqrestore(&sep->snd_rply_lck, lock_irq_flag);
dev_dbg(&sep->pdev->dev,
"[PID%d] poll; no reply; returning mask of 0\n",
current->pid);
mask = 0;
}
end_function:
return mask;
}
/**
* sep_time_address - address in SEP memory of time
* @sep: SEP device we want the address from
*
* Return the address of the two dwords in memory used for time
* setting.
*/
static u32 *sep_time_address(struct sep_device *sep)
{
return sep->shared_addr +
SEP_DRIVER_SYSTEM_TIME_MEMORY_OFFSET_IN_BYTES;
}
/**
* sep_set_time - set the SEP time
* @sep: the SEP we are setting the time for
*
* Calculates time and sets it at the predefined address.
* Called with the SEP mutex held.
*/
static unsigned long sep_set_time(struct sep_device *sep)
{
struct timeval time;
u32 *time_addr; /* Address of time as seen by the kernel */
do_gettimeofday(&time);
/* Set value in the SYSTEM MEMORY offset */
time_addr = sep_time_address(sep);
time_addr[0] = SEP_TIME_VAL_TOKEN;
time_addr[1] = time.tv_sec;
dev_dbg(&sep->pdev->dev, "[PID%d] time.tv_sec is %lu\n",
current->pid, time.tv_sec);
dev_dbg(&sep->pdev->dev, "[PID%d] time_addr is %p\n",
current->pid, time_addr);
dev_dbg(&sep->pdev->dev, "[PID%d] sep->shared_addr is %p\n",
current->pid, sep->shared_addr);
return time.tv_sec;
}
/**
* sep_send_command_handler - kick off a command
* @sep: SEP being signalled
*
* This function raises interrupt to SEP that signals that is has a new
* command from the host
*
* Note that this function does fall under the ioctl lock
*/
int sep_send_command_handler(struct sep_device *sep)
{
unsigned long lock_irq_flag;
u32 *msg_pool;
int error = 0;
/* Basic sanity check; set msg pool to start of shared area */
msg_pool = (u32 *)sep->shared_addr;
msg_pool += 2;
/* Look for start msg token */
if (*msg_pool != SEP_START_MSG_TOKEN) {
dev_warn(&sep->pdev->dev, "start message token not present\n");
error = -EPROTO;
goto end_function;
}
/* Do we have a reasonable size? */
msg_pool += 1;
if ((*msg_pool < 2) ||
(*msg_pool > SEP_DRIVER_MAX_MESSAGE_SIZE_IN_BYTES)) {
dev_warn(&sep->pdev->dev, "invalid message size\n");
error = -EPROTO;
goto end_function;
}
/* Does the command look reasonable? */
msg_pool += 1;
if (*msg_pool < 2) {
dev_warn(&sep->pdev->dev, "invalid message opcode\n");
error = -EPROTO;
goto end_function;
}
#if defined(CONFIG_PM_RUNTIME) && defined(SEP_ENABLE_RUNTIME_PM)
dev_dbg(&sep->pdev->dev, "[PID%d] before pm sync status 0x%X\n",
current->pid,
sep->pdev->dev.power.runtime_status);
sep->in_use = 1; /* device is about to be used */
pm_runtime_get_sync(&sep->pdev->dev);
#endif
if (test_and_set_bit(SEP_WORKING_LOCK_BIT, &sep->in_use_flags)) {
error = -EPROTO;
goto end_function;
}
sep->in_use = 1; /* device is about to be used */
sep_set_time(sep);
sep_dump_message(sep);
/* Update counter */
spin_lock_irqsave(&sep->snd_rply_lck, lock_irq_flag);
sep->send_ct++;
spin_unlock_irqrestore(&sep->snd_rply_lck, lock_irq_flag);
dev_dbg(&sep->pdev->dev,
"[PID%d] sep_send_command_handler send_ct %lx reply_ct %lx\n",
current->pid, sep->send_ct, sep->reply_ct);
/* Send interrupt to SEP */
sep_write_reg(sep, HW_HOST_HOST_SEP_GPR0_REG_ADDR, 0x2);
end_function:
return error;
}
/**
* sep_crypto_dma -
* @sep: pointer to struct sep_device
* @sg: pointer to struct scatterlist
* @direction:
* @dma_maps: pointer to place a pointer to array of dma maps
* This is filled in; anything previous there will be lost
* The structure for dma maps is sep_dma_map
* @returns number of dma maps on success; negative on error
*
* This creates the dma table from the scatterlist
* It is used only for kernel crypto as it works with scatterlists
* representation of data buffers
*
*/
static int sep_crypto_dma(
struct sep_device *sep,
struct scatterlist *sg,
struct sep_dma_map **dma_maps,
enum dma_data_direction direction)
{
struct scatterlist *temp_sg;
u32 count_segment;
u32 count_mapped;
struct sep_dma_map *sep_dma;
int ct1;
if (sg->length == 0)
return 0;
/* Count the segments */
temp_sg = sg;
count_segment = 0;
while (temp_sg) {
count_segment += 1;
temp_sg = scatterwalk_sg_next(temp_sg);
}
dev_dbg(&sep->pdev->dev,
"There are (hex) %x segments in sg\n", count_segment);
/* DMA map segments */
count_mapped = dma_map_sg(&sep->pdev->dev, sg,
count_segment, direction);
dev_dbg(&sep->pdev->dev,
"There are (hex) %x maps in sg\n", count_mapped);
if (count_mapped == 0) {
dev_dbg(&sep->pdev->dev, "Cannot dma_map_sg\n");
return -ENOMEM;
}
sep_dma = kmalloc(sizeof(struct sep_dma_map) *
count_mapped, GFP_ATOMIC);
if (sep_dma == NULL) {
dev_dbg(&sep->pdev->dev, "Cannot allocate dma_maps\n");
return -ENOMEM;
}
for_each_sg(sg, temp_sg, count_mapped, ct1) {
sep_dma[ct1].dma_addr = sg_dma_address(temp_sg);
sep_dma[ct1].size = sg_dma_len(temp_sg);
dev_dbg(&sep->pdev->dev, "(all hex) map %x dma %lx len %lx\n",
ct1, (unsigned long)sep_dma[ct1].dma_addr,
(unsigned long)sep_dma[ct1].size);
}
*dma_maps = sep_dma;
return count_mapped;
}
/**
* sep_crypto_lli -
* @sep: pointer to struct sep_device
* @sg: pointer to struct scatterlist
* @data_size: total data size
* @direction:
* @dma_maps: pointer to place a pointer to array of dma maps
* This is filled in; anything previous there will be lost
* The structure for dma maps is sep_dma_map
* @lli_maps: pointer to place a pointer to array of lli maps
* This is filled in; anything previous there will be lost
* The structure for dma maps is sep_dma_map
* @returns number of dma maps on success; negative on error
*
* This creates the LLI table from the scatterlist
* It is only used for kernel crypto as it works exclusively
* with scatterlists (struct scatterlist) representation of
* data buffers
*/
static int sep_crypto_lli(
struct sep_device *sep,
struct scatterlist *sg,
struct sep_dma_map **maps,
struct sep_lli_entry **llis,
u32 data_size,
enum dma_data_direction direction)
{
int ct1;
struct sep_lli_entry *sep_lli;
struct sep_dma_map *sep_map;
int nbr_ents;
nbr_ents = sep_crypto_dma(sep, sg, maps, direction);
if (nbr_ents <= 0) {
dev_dbg(&sep->pdev->dev, "crypto_dma failed %x\n",
nbr_ents);
return nbr_ents;
}
sep_map = *maps;
sep_lli = kmalloc(sizeof(struct sep_lli_entry) * nbr_ents, GFP_ATOMIC);
if (sep_lli == NULL) {
dev_dbg(&sep->pdev->dev, "Cannot allocate lli_maps\n");
kfree(*maps);
*maps = NULL;
return -ENOMEM;
}
for (ct1 = 0; ct1 < nbr_ents; ct1 += 1) {
sep_lli[ct1].bus_address = (u32)sep_map[ct1].dma_addr;
/* Maximum for page is total data size */
if (sep_map[ct1].size > data_size)
sep_map[ct1].size = data_size;
sep_lli[ct1].block_size = (u32)sep_map[ct1].size;
}
*llis = sep_lli;
return nbr_ents;
}
/**
* sep_lock_kernel_pages - map kernel pages for DMA
* @sep: pointer to struct sep_device
* @kernel_virt_addr: address of data buffer in kernel
* @data_size: size of data
* @lli_array_ptr: lli array
* @in_out_flag: input into device or output from device
*
* This function locks all the physical pages of the kernel virtual buffer
* and construct a basic lli array, where each entry holds the physical
* page address and the size that application data holds in this page
* This function is used only during kernel crypto mod calls from within
* the kernel (when ioctl is not used)
*
* This is used only for kernel crypto. Kernel pages
* are handled differently as they are done via
* scatter gather lists (struct scatterlist)
*/
static int sep_lock_kernel_pages(struct sep_device *sep,
unsigned long kernel_virt_addr,
u32 data_size,
struct sep_lli_entry **lli_array_ptr,
int in_out_flag,
struct sep_dma_context *dma_ctx)
{
u32 num_pages;
struct scatterlist *sg;
/* Array of lli */
struct sep_lli_entry *lli_array;
/* Map array */
struct sep_dma_map *map_array;
enum dma_data_direction direction;
lli_array = NULL;
map_array = NULL;
if (in_out_flag == SEP_DRIVER_IN_FLAG) {
direction = DMA_TO_DEVICE;
sg = dma_ctx->src_sg;
} else {
direction = DMA_FROM_DEVICE;
sg = dma_ctx->dst_sg;
}
num_pages = sep_crypto_lli(sep, sg, &map_array, &lli_array,
data_size, direction);
if (num_pages <= 0) {
dev_dbg(&sep->pdev->dev, "sep_crypto_lli returned error %x\n",
num_pages);
return -ENOMEM;
}
/* Put mapped kernel sg into kernel resource array */
/* Set output params acording to the in_out flag */
if (in_out_flag == SEP_DRIVER_IN_FLAG) {
*lli_array_ptr = lli_array;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_num_pages =
num_pages;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_page_array =
NULL;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_map_array =
map_array;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_map_num_entries =
num_pages;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].src_sg =
dma_ctx->src_sg;
} else {
*lli_array_ptr = lli_array;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].out_num_pages =
num_pages;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].out_page_array =
NULL;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].out_map_array =
map_array;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].
out_map_num_entries = num_pages;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].dst_sg =
dma_ctx->dst_sg;
}
return 0;
}
/**
* sep_lock_user_pages - lock and map user pages for DMA
* @sep: pointer to struct sep_device
* @app_virt_addr: user memory data buffer
* @data_size: size of data buffer
* @lli_array_ptr: lli array
* @in_out_flag: input or output to device
*
* This function locks all the physical pages of the application
* virtual buffer and construct a basic lli array, where each entry
* holds the physical page address and the size that application
* data holds in this physical pages
*/
static int sep_lock_user_pages(struct sep_device *sep,
u32 app_virt_addr,
u32 data_size,
struct sep_lli_entry **lli_array_ptr,
int in_out_flag,
struct sep_dma_context *dma_ctx)
{
int error = 0;
u32 count;
int result;
/* The the page of the end address of the user space buffer */
u32 end_page;
/* The page of the start address of the user space buffer */
u32 start_page;
/* The range in pages */
u32 num_pages;
/* Array of pointers to page */
struct page **page_array;
/* Array of lli */
struct sep_lli_entry *lli_array;
/* Map array */
struct sep_dma_map *map_array;
/* Set start and end pages and num pages */
end_page = (app_virt_addr + data_size - 1) >> PAGE_SHIFT;
start_page = app_virt_addr >> PAGE_SHIFT;
num_pages = end_page - start_page + 1;
dev_dbg(&sep->pdev->dev,
"[PID%d] lock user pages app_virt_addr is %x\n",
current->pid, app_virt_addr);
dev_dbg(&sep->pdev->dev, "[PID%d] data_size is (hex) %x\n",
current->pid, data_size);
dev_dbg(&sep->pdev->dev, "[PID%d] start_page is (hex) %x\n",
current->pid, start_page);
dev_dbg(&sep->pdev->dev, "[PID%d] end_page is (hex) %x\n",
current->pid, end_page);
dev_dbg(&sep->pdev->dev, "[PID%d] num_pages is (hex) %x\n",
current->pid, num_pages);
/* Allocate array of pages structure pointers */
page_array = kmalloc(sizeof(struct page *) * num_pages, GFP_ATOMIC);
if (!page_array) {
error = -ENOMEM;
goto end_function;
}
map_array = kmalloc(sizeof(struct sep_dma_map) * num_pages, GFP_ATOMIC);
if (!map_array) {
dev_warn(&sep->pdev->dev,
"[PID%d] kmalloc for map_array failed\n",
current->pid);
error = -ENOMEM;
goto end_function_with_error1;
}
lli_array = kmalloc(sizeof(struct sep_lli_entry) * num_pages,
GFP_ATOMIC);
if (!lli_array) {
dev_warn(&sep->pdev->dev,
"[PID%d] kmalloc for lli_array failed\n",
current->pid);
error = -ENOMEM;
goto end_function_with_error2;
}
/* Convert the application virtual address into a set of physical */
down_read(¤t->mm->mmap_sem);
result = get_user_pages(current, current->mm, app_virt_addr,
num_pages,
((in_out_flag == SEP_DRIVER_IN_FLAG) ? 0 : 1),
0, page_array, NULL);
up_read(¤t->mm->mmap_sem);
/* Check the number of pages locked - if not all then exit with error */
if (result != num_pages) {
dev_warn(&sep->pdev->dev,
"[PID%d] not all pages locked by get_user_pages, "
"result 0x%X, num_pages 0x%X\n",
current->pid, result, num_pages);
error = -ENOMEM;
goto end_function_with_error3;
}
dev_dbg(&sep->pdev->dev, "[PID%d] get_user_pages succeeded\n",
current->pid);
/*
* Fill the array using page array data and
* map the pages - this action will also flush the cache as needed
*/
for (count = 0; count < num_pages; count++) {
/* Fill the map array */
map_array[count].dma_addr =
dma_map_page(&sep->pdev->dev, page_array[count],
0, PAGE_SIZE, DMA_BIDIRECTIONAL);
map_array[count].size = PAGE_SIZE;
/* Fill the lli array entry */
lli_array[count].bus_address = (u32)map_array[count].dma_addr;
lli_array[count].block_size = PAGE_SIZE;
dev_dbg(&sep->pdev->dev,
"[PID%d] lli_array[%x].bus_address is %08lx, "
"lli_array[%x].block_size is (hex) %x\n", current->pid,
count, (unsigned long)lli_array[count].bus_address,
count, lli_array[count].block_size);
}
/* Check the offset for the first page */
lli_array[0].bus_address =
lli_array[0].bus_address + (app_virt_addr & (~PAGE_MASK));
/* Check that not all the data is in the first page only */
if ((PAGE_SIZE - (app_virt_addr & (~PAGE_MASK))) >= data_size)
lli_array[0].block_size = data_size;
else
lli_array[0].block_size =
PAGE_SIZE - (app_virt_addr & (~PAGE_MASK));
dev_dbg(&sep->pdev->dev,
"[PID%d] After check if page 0 has all data\n",
current->pid);
dev_dbg(&sep->pdev->dev,
"[PID%d] lli_array[0].bus_address is (hex) %08lx, "
"lli_array[0].block_size is (hex) %x\n",
current->pid,
(unsigned long)lli_array[0].bus_address,
lli_array[0].block_size);
/* Check the size of the last page */
if (num_pages > 1) {
lli_array[num_pages - 1].block_size =
(app_virt_addr + data_size) & (~PAGE_MASK);
if (lli_array[num_pages - 1].block_size == 0)
lli_array[num_pages - 1].block_size = PAGE_SIZE;
dev_dbg(&sep->pdev->dev,
"[PID%d] After last page size adjustment\n",
current->pid);
dev_dbg(&sep->pdev->dev,
"[PID%d] lli_array[%x].bus_address is (hex) %08lx, "
"lli_array[%x].block_size is (hex) %x\n",
current->pid,
num_pages - 1,
(unsigned long)lli_array[num_pages - 1].bus_address,
num_pages - 1,
lli_array[num_pages - 1].block_size);
}
/* Set output params acording to the in_out flag */
if (in_out_flag == SEP_DRIVER_IN_FLAG) {
*lli_array_ptr = lli_array;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_num_pages =
num_pages;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_page_array =
page_array;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_map_array =
map_array;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_map_num_entries =
num_pages;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].src_sg = NULL;
} else {
*lli_array_ptr = lli_array;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].out_num_pages =
num_pages;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].out_page_array =
page_array;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].out_map_array =
map_array;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].
out_map_num_entries = num_pages;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].dst_sg = NULL;
}
goto end_function;
end_function_with_error3:
/* Free lli array */
kfree(lli_array);
end_function_with_error2:
kfree(map_array);
end_function_with_error1:
/* Free page array */
kfree(page_array);
end_function:
return error;
}
/**
* sep_lli_table_secure_dma - get lli array for IMR addresses
* @sep: pointer to struct sep_device
* @app_virt_addr: user memory data buffer
* @data_size: size of data buffer
* @lli_array_ptr: lli array
* @in_out_flag: not used
* @dma_ctx: pointer to struct sep_dma_context
*
* This function creates lli tables for outputting data to
* IMR memory, which is memory that cannot be accessed by the
* the x86 processor.
*/
static int sep_lli_table_secure_dma(struct sep_device *sep,
u32 app_virt_addr,
u32 data_size,
struct sep_lli_entry **lli_array_ptr,
int in_out_flag,
struct sep_dma_context *dma_ctx)
{
int error = 0;
u32 count;
/* The the page of the end address of the user space buffer */
u32 end_page;
/* The page of the start address of the user space buffer */
u32 start_page;
/* The range in pages */
u32 num_pages;
/* Array of lli */
struct sep_lli_entry *lli_array;
/* Set start and end pages and num pages */
end_page = (app_virt_addr + data_size - 1) >> PAGE_SHIFT;
start_page = app_virt_addr >> PAGE_SHIFT;
num_pages = end_page - start_page + 1;
dev_dbg(&sep->pdev->dev, "[PID%d] lock user pages"
" app_virt_addr is %x\n", current->pid, app_virt_addr);
dev_dbg(&sep->pdev->dev, "[PID%d] data_size is (hex) %x\n",
current->pid, data_size);
dev_dbg(&sep->pdev->dev, "[PID%d] start_page is (hex) %x\n",
current->pid, start_page);
dev_dbg(&sep->pdev->dev, "[PID%d] end_page is (hex) %x\n",
current->pid, end_page);
dev_dbg(&sep->pdev->dev, "[PID%d] num_pages is (hex) %x\n",
current->pid, num_pages);
lli_array = kmalloc(sizeof(struct sep_lli_entry) * num_pages,
GFP_ATOMIC);
if (!lli_array) {
dev_warn(&sep->pdev->dev,
"[PID%d] kmalloc for lli_array failed\n",
current->pid);
return -ENOMEM;
}
/*
* Fill the lli_array
*/
start_page = start_page << PAGE_SHIFT;
for (count = 0; count < num_pages; count++) {
/* Fill the lli array entry */
lli_array[count].bus_address = start_page;
lli_array[count].block_size = PAGE_SIZE;
start_page += PAGE_SIZE;
dev_dbg(&sep->pdev->dev,
"[PID%d] lli_array[%x].bus_address is %08lx, "
"lli_array[%x].block_size is (hex) %x\n",
current->pid,
count, (unsigned long)lli_array[count].bus_address,
count, lli_array[count].block_size);
}
/* Check the offset for the first page */
lli_array[0].bus_address =
lli_array[0].bus_address + (app_virt_addr & (~PAGE_MASK));
/* Check that not all the data is in the first page only */
if ((PAGE_SIZE - (app_virt_addr & (~PAGE_MASK))) >= data_size)
lli_array[0].block_size = data_size;
else
lli_array[0].block_size =
PAGE_SIZE - (app_virt_addr & (~PAGE_MASK));
dev_dbg(&sep->pdev->dev,
"[PID%d] After check if page 0 has all data\n"
"lli_array[0].bus_address is (hex) %08lx, "
"lli_array[0].block_size is (hex) %x\n",
current->pid,
(unsigned long)lli_array[0].bus_address,
lli_array[0].block_size);
/* Check the size of the last page */
if (num_pages > 1) {
lli_array[num_pages - 1].block_size =
(app_virt_addr + data_size) & (~PAGE_MASK);
if (lli_array[num_pages - 1].block_size == 0)
lli_array[num_pages - 1].block_size = PAGE_SIZE;
dev_dbg(&sep->pdev->dev,
"[PID%d] After last page size adjustment\n"
"lli_array[%x].bus_address is (hex) %08lx, "
"lli_array[%x].block_size is (hex) %x\n",
current->pid, num_pages - 1,
(unsigned long)lli_array[num_pages - 1].bus_address,
num_pages - 1,
lli_array[num_pages - 1].block_size);
}
*lli_array_ptr = lli_array;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].out_num_pages = num_pages;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].out_page_array = NULL;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].out_map_array = NULL;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].out_map_num_entries = 0;
return error;
}
/**
* sep_calculate_lli_table_max_size - size the LLI table
* @sep: pointer to struct sep_device
* @lli_in_array_ptr
* @num_array_entries
* @last_table_flag
*
* This function calculates the size of data that can be inserted into
* the lli table from this array, such that either the table is full
* (all entries are entered), or there are no more entries in the
* lli array
*/
static u32 sep_calculate_lli_table_max_size(struct sep_device *sep,
struct sep_lli_entry *lli_in_array_ptr,
u32 num_array_entries,
u32 *last_table_flag)
{
u32 counter;
/* Table data size */
u32 table_data_size = 0;
/* Data size for the next table */
u32 next_table_data_size;
*last_table_flag = 0;
/*
* Calculate the data in the out lli table till we fill the whole
* table or till the data has ended
*/
for (counter = 0;
(counter < (SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP - 1)) &&
(counter < num_array_entries); counter++)
table_data_size += lli_in_array_ptr[counter].block_size;
/*
* Check if we reached the last entry,
* meaning this ia the last table to build,
* and no need to check the block alignment
*/
if (counter == num_array_entries) {
/* Set the last table flag */
*last_table_flag = 1;
goto end_function;
}
/*
* Calculate the data size of the next table.
* Stop if no entries left or if data size is more the DMA restriction
*/
next_table_data_size = 0;
for (; counter < num_array_entries; counter++) {
next_table_data_size += lli_in_array_ptr[counter].block_size;
if (next_table_data_size >= SEP_DRIVER_MIN_DATA_SIZE_PER_TABLE)
break;
}
/*
* Check if the next table data size is less then DMA rstriction.
* if it is - recalculate the current table size, so that the next
* table data size will be adaquete for DMA
*/
if (next_table_data_size &&
next_table_data_size < SEP_DRIVER_MIN_DATA_SIZE_PER_TABLE)
table_data_size -= (SEP_DRIVER_MIN_DATA_SIZE_PER_TABLE -
next_table_data_size);
end_function:
return table_data_size;
}
/**
* sep_build_lli_table - build an lli array for the given table
* @sep: pointer to struct sep_device
* @lli_array_ptr: pointer to lli array
* @lli_table_ptr: pointer to lli table
* @num_processed_entries_ptr: pointer to number of entries
* @num_table_entries_ptr: pointer to number of tables
* @table_data_size: total data size
*
* Builds ant lli table from the lli_array according to
* the given size of data
*/
static void sep_build_lli_table(struct sep_device *sep,
struct sep_lli_entry *lli_array_ptr,
struct sep_lli_entry *lli_table_ptr,
u32 *num_processed_entries_ptr,
u32 *num_table_entries_ptr,
u32 table_data_size)
{
/* Current table data size */
u32 curr_table_data_size;
/* Counter of lli array entry */
u32 array_counter;
/* Init current table data size and lli array entry counter */
curr_table_data_size = 0;
array_counter = 0;
*num_table_entries_ptr = 1;
dev_dbg(&sep->pdev->dev,
"[PID%d] build lli table table_data_size: (hex) %x\n",
current->pid, table_data_size);
/* Fill the table till table size reaches the needed amount */
while (curr_table_data_size < table_data_size) {
/* Update the number of entries in table */
(*num_table_entries_ptr)++;
lli_table_ptr->bus_address =
cpu_to_le32(lli_array_ptr[array_counter].bus_address);
lli_table_ptr->block_size =
cpu_to_le32(lli_array_ptr[array_counter].block_size);
curr_table_data_size += lli_array_ptr[array_counter].block_size;
dev_dbg(&sep->pdev->dev,
"[PID%d] lli_table_ptr is %p\n",
current->pid, lli_table_ptr);
dev_dbg(&sep->pdev->dev,
"[PID%d] lli_table_ptr->bus_address: %08lx\n",
current->pid,
(unsigned long)lli_table_ptr->bus_address);
dev_dbg(&sep->pdev->dev,
"[PID%d] lli_table_ptr->block_size is (hex) %x\n",
current->pid, lli_table_ptr->block_size);
/* Check for overflow of the table data */
if (curr_table_data_size > table_data_size) {
dev_dbg(&sep->pdev->dev,
"[PID%d] curr_table_data_size too large\n",
current->pid);
/* Update the size of block in the table */
lli_table_ptr->block_size =
cpu_to_le32(lli_table_ptr->block_size) -
(curr_table_data_size - table_data_size);
/* Update the physical address in the lli array */
lli_array_ptr[array_counter].bus_address +=
cpu_to_le32(lli_table_ptr->block_size);
/* Update the block size left in the lli array */
lli_array_ptr[array_counter].block_size =
(curr_table_data_size - table_data_size);
} else
/* Advance to the next entry in the lli_array */
array_counter++;
dev_dbg(&sep->pdev->dev,
"[PID%d] lli_table_ptr->bus_address is %08lx\n",
current->pid,
(unsigned long)lli_table_ptr->bus_address);
dev_dbg(&sep->pdev->dev,
"[PID%d] lli_table_ptr->block_size is (hex) %x\n",
current->pid,
lli_table_ptr->block_size);
/* Move to the next entry in table */
lli_table_ptr++;
}
/* Set the info entry to default */
lli_table_ptr->bus_address = 0xffffffff;
lli_table_ptr->block_size = 0;
/* Set the output parameter */
*num_processed_entries_ptr += array_counter;
}
/**
* sep_shared_area_virt_to_bus - map shared area to bus address
* @sep: pointer to struct sep_device
* @virt_address: virtual address to convert
*
* This functions returns the physical address inside shared area according
* to the virtual address. It can be either on the externa RAM device
* (ioremapped), or on the system RAM
* This implementation is for the external RAM
*/
static dma_addr_t sep_shared_area_virt_to_bus(struct sep_device *sep,
void *virt_address)
{
dev_dbg(&sep->pdev->dev, "[PID%d] sh virt to phys v %p\n",
current->pid, virt_address);
dev_dbg(&sep->pdev->dev, "[PID%d] sh virt to phys p %08lx\n",
current->pid,
(unsigned long)
sep->shared_bus + (virt_address - sep->shared_addr));
return sep->shared_bus + (size_t)(virt_address - sep->shared_addr);
}
/**
* sep_shared_area_bus_to_virt - map shared area bus address to kernel
* @sep: pointer to struct sep_device
* @bus_address: bus address to convert
*
* This functions returns the virtual address inside shared area
* according to the physical address. It can be either on the
* externa RAM device (ioremapped), or on the system RAM
* This implementation is for the external RAM
*/
static void *sep_shared_area_bus_to_virt(struct sep_device *sep,
dma_addr_t bus_address)
{
dev_dbg(&sep->pdev->dev, "[PID%d] shared bus to virt b=%lx v=%lx\n",
current->pid,
(unsigned long)bus_address, (unsigned long)(sep->shared_addr +
(size_t)(bus_address - sep->shared_bus)));
return sep->shared_addr + (size_t)(bus_address - sep->shared_bus);
}
/**
* sep_debug_print_lli_tables - dump LLI table
* @sep: pointer to struct sep_device
* @lli_table_ptr: pointer to sep_lli_entry
* @num_table_entries: number of entries
* @table_data_size: total data size
*
* Walk the the list of the print created tables and print all the data
*/
static void sep_debug_print_lli_tables(struct sep_device *sep,
struct sep_lli_entry *lli_table_ptr,
unsigned long num_table_entries,
unsigned long table_data_size)
{
#ifdef DEBUG
unsigned long table_count = 1;
unsigned long entries_count = 0;
dev_dbg(&sep->pdev->dev, "[PID%d] sep_debug_print_lli_tables start\n",
current->pid);
if (num_table_entries == 0) {
dev_dbg(&sep->pdev->dev, "[PID%d] no table to print\n",
current->pid);
return;
}
while ((unsigned long) lli_table_ptr->bus_address != 0xffffffff) {
dev_dbg(&sep->pdev->dev,
"[PID%d] lli table %08lx, "
"table_data_size is (hex) %lx\n",
current->pid, table_count, table_data_size);
dev_dbg(&sep->pdev->dev,
"[PID%d] num_table_entries is (hex) %lx\n",
current->pid, num_table_entries);
/* Print entries of the table (without info entry) */
for (entries_count = 0; entries_count < num_table_entries;
entries_count++, lli_table_ptr++) {
dev_dbg(&sep->pdev->dev,
"[PID%d] lli_table_ptr address is %08lx\n",
current->pid,
(unsigned long) lli_table_ptr);
dev_dbg(&sep->pdev->dev,
"[PID%d] phys address is %08lx "
"block size is (hex) %x\n", current->pid,
(unsigned long)lli_table_ptr->bus_address,
lli_table_ptr->block_size);
}
/* Point to the info entry */
lli_table_ptr--;
dev_dbg(&sep->pdev->dev,
"[PID%d] phys lli_table_ptr->block_size "
"is (hex) %x\n",
current->pid,
lli_table_ptr->block_size);
dev_dbg(&sep->pdev->dev,
"[PID%d] phys lli_table_ptr->physical_address "
"is %08lx\n",
current->pid,
(unsigned long)lli_table_ptr->bus_address);
table_data_size = lli_table_ptr->block_size & 0xffffff;
num_table_entries = (lli_table_ptr->block_size >> 24) & 0xff;
dev_dbg(&sep->pdev->dev,
"[PID%d] phys table_data_size is "
"(hex) %lx num_table_entries is"
" %lx bus_address is%lx\n",
current->pid,
table_data_size,
num_table_entries,
(unsigned long)lli_table_ptr->bus_address);
if ((unsigned long)lli_table_ptr->bus_address != 0xffffffff)
lli_table_ptr = (struct sep_lli_entry *)
sep_shared_bus_to_virt(sep,
(unsigned long)lli_table_ptr->bus_address);
table_count++;
}
dev_dbg(&sep->pdev->dev, "[PID%d] sep_debug_print_lli_tables end\n",
current->pid);
#endif
}
/**
* sep_prepare_empty_lli_table - create a blank LLI table
* @sep: pointer to struct sep_device
* @lli_table_addr_ptr: pointer to lli table
* @num_entries_ptr: pointer to number of entries
* @table_data_size_ptr: point to table data size
* @dmatables_region: Optional buffer for DMA tables
* @dma_ctx: DMA context
*
* This function creates empty lli tables when there is no data
*/
static void sep_prepare_empty_lli_table(struct sep_device *sep,
dma_addr_t *lli_table_addr_ptr,
u32 *num_entries_ptr,
u32 *table_data_size_ptr,
void **dmatables_region,
struct sep_dma_context *dma_ctx)
{
struct sep_lli_entry *lli_table_ptr;
/* Find the area for new table */
lli_table_ptr =
(struct sep_lli_entry *)(sep->shared_addr +
SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
dma_ctx->num_lli_tables_created * sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP);
if (dmatables_region && *dmatables_region)
lli_table_ptr = *dmatables_region;
lli_table_ptr->bus_address = 0;
lli_table_ptr->block_size = 0;
lli_table_ptr++;
lli_table_ptr->bus_address = 0xFFFFFFFF;
lli_table_ptr->block_size = 0;
/* Set the output parameter value */
*lli_table_addr_ptr = sep->shared_bus +
SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
dma_ctx->num_lli_tables_created *
sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
/* Set the num of entries and table data size for empty table */
*num_entries_ptr = 2;
*table_data_size_ptr = 0;
/* Update the number of created tables */
dma_ctx->num_lli_tables_created++;
}
/**
* sep_prepare_input_dma_table - prepare input DMA mappings
* @sep: pointer to struct sep_device
* @data_size:
* @block_size:
* @lli_table_ptr:
* @num_entries_ptr:
* @table_data_size_ptr:
* @is_kva: set for kernel data (kernel cryptio call)
*
* This function prepares only input DMA table for synhronic symmetric
* operations (HASH)
* Note that all bus addresses that are passed to the SEP
* are in 32 bit format; the SEP is a 32 bit device
*/
static int sep_prepare_input_dma_table(struct sep_device *sep,
unsigned long app_virt_addr,
u32 data_size,
u32 block_size,
dma_addr_t *lli_table_ptr,
u32 *num_entries_ptr,
u32 *table_data_size_ptr,
bool is_kva,
void **dmatables_region,
struct sep_dma_context *dma_ctx
)
{
int error = 0;
/* Pointer to the info entry of the table - the last entry */
struct sep_lli_entry *info_entry_ptr;
/* Array of pointers to page */
struct sep_lli_entry *lli_array_ptr;
/* Points to the first entry to be processed in the lli_in_array */
u32 current_entry = 0;
/* Num entries in the virtual buffer */
u32 sep_lli_entries = 0;
/* Lli table pointer */
struct sep_lli_entry *in_lli_table_ptr;
/* The total data in one table */
u32 table_data_size = 0;
/* Flag for last table */
u32 last_table_flag = 0;
/* Number of entries in lli table */
u32 num_entries_in_table = 0;
/* Next table address */
void *lli_table_alloc_addr = NULL;
void *dma_lli_table_alloc_addr = NULL;
void *dma_in_lli_table_ptr = NULL;
dev_dbg(&sep->pdev->dev, "[PID%d] prepare intput dma "
"tbl data size: (hex) %x\n",
current->pid, data_size);
dev_dbg(&sep->pdev->dev, "[PID%d] block_size is (hex) %x\n",
current->pid, block_size);
/* Initialize the pages pointers */
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_page_array = NULL;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_num_pages = 0;
/* Set the kernel address for first table to be allocated */
lli_table_alloc_addr = (void *)(sep->shared_addr +
SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
dma_ctx->num_lli_tables_created * sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP);
if (data_size == 0) {
if (dmatables_region) {
error = sep_allocate_dmatables_region(sep,
dmatables_region,
dma_ctx,
1);
if (error)
return error;
}
/* Special case - create meptu table - 2 entries, zero data */
sep_prepare_empty_lli_table(sep, lli_table_ptr,
num_entries_ptr, table_data_size_ptr,
dmatables_region, dma_ctx);
goto update_dcb_counter;
}
/* Check if the pages are in Kernel Virtual Address layout */
if (is_kva == true)
error = sep_lock_kernel_pages(sep, app_virt_addr,
data_size, &lli_array_ptr, SEP_DRIVER_IN_FLAG,
dma_ctx);
else
/*
* Lock the pages of the user buffer
* and translate them to pages
*/
error = sep_lock_user_pages(sep, app_virt_addr,
data_size, &lli_array_ptr, SEP_DRIVER_IN_FLAG,
dma_ctx);
if (error)
goto end_function;
dev_dbg(&sep->pdev->dev,
"[PID%d] output sep_in_num_pages is (hex) %x\n",
current->pid,
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_num_pages);
current_entry = 0;
info_entry_ptr = NULL;
sep_lli_entries =
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_num_pages;
dma_lli_table_alloc_addr = lli_table_alloc_addr;
if (dmatables_region) {
error = sep_allocate_dmatables_region(sep,
dmatables_region,
dma_ctx,
sep_lli_entries);
if (error)
return error;
lli_table_alloc_addr = *dmatables_region;
}
/* Loop till all the entries in in array are processed */
while (current_entry < sep_lli_entries) {
/* Set the new input and output tables */
in_lli_table_ptr =
(struct sep_lli_entry *)lli_table_alloc_addr;
dma_in_lli_table_ptr =
(struct sep_lli_entry *)dma_lli_table_alloc_addr;
lli_table_alloc_addr += sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
dma_lli_table_alloc_addr += sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
if (dma_lli_table_alloc_addr >
((void *)sep->shared_addr +
SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
SYNCHRONIC_DMA_TABLES_AREA_SIZE_BYTES)) {
error = -ENOMEM;
goto end_function_error;
}
/* Update the number of created tables */
dma_ctx->num_lli_tables_created++;
/* Calculate the maximum size of data for input table */
table_data_size = sep_calculate_lli_table_max_size(sep,
&lli_array_ptr[current_entry],
(sep_lli_entries - current_entry),
&last_table_flag);
/*
* If this is not the last table -
* then allign it to the block size
*/
if (!last_table_flag)
table_data_size =
(table_data_size / block_size) * block_size;
dev_dbg(&sep->pdev->dev,
"[PID%d] output table_data_size is (hex) %x\n",
current->pid,
table_data_size);
/* Construct input lli table */
sep_build_lli_table(sep, &lli_array_ptr[current_entry],
in_lli_table_ptr,
¤t_entry, &num_entries_in_table, table_data_size);
if (info_entry_ptr == NULL) {
/* Set the output parameters to physical addresses */
*lli_table_ptr = sep_shared_area_virt_to_bus(sep,
dma_in_lli_table_ptr);
*num_entries_ptr = num_entries_in_table;
*table_data_size_ptr = table_data_size;
dev_dbg(&sep->pdev->dev,
"[PID%d] output lli_table_in_ptr is %08lx\n",
current->pid,
(unsigned long)*lli_table_ptr);
} else {
/* Update the info entry of the previous in table */
info_entry_ptr->bus_address =
sep_shared_area_virt_to_bus(sep,
dma_in_lli_table_ptr);
info_entry_ptr->block_size =
((num_entries_in_table) << 24) |
(table_data_size);
}
/* Save the pointer to the info entry of the current tables */
info_entry_ptr = in_lli_table_ptr + num_entries_in_table - 1;
}
/* Print input tables */
if (!dmatables_region) {
sep_debug_print_lli_tables(sep, (struct sep_lli_entry *)
sep_shared_area_bus_to_virt(sep, *lli_table_ptr),
*num_entries_ptr, *table_data_size_ptr);
}
/* The array of the pages */
kfree(lli_array_ptr);
update_dcb_counter:
/* Update DCB counter */
dma_ctx->nr_dcb_creat++;
goto end_function;
end_function_error:
/* Free all the allocated resources */
kfree(dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_map_array);
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_map_array = NULL;
kfree(lli_array_ptr);
kfree(dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_page_array);
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_page_array = NULL;
end_function:
return error;
}
/**
* sep_construct_dma_tables_from_lli - prepare AES/DES mappings
* @sep: pointer to struct sep_device
* @lli_in_array:
* @sep_in_lli_entries:
* @lli_out_array:
* @sep_out_lli_entries
* @block_size
* @lli_table_in_ptr
* @lli_table_out_ptr
* @in_num_entries_ptr
* @out_num_entries_ptr
* @table_data_size_ptr
*
* This function creates the input and output DMA tables for
* symmetric operations (AES/DES) according to the block
* size from LLI arays
* Note that all bus addresses that are passed to the SEP
* are in 32 bit format; the SEP is a 32 bit device
*/
static int sep_construct_dma_tables_from_lli(
struct sep_device *sep,
struct sep_lli_entry *lli_in_array,
u32 sep_in_lli_entries,
struct sep_lli_entry *lli_out_array,
u32 sep_out_lli_entries,
u32 block_size,
dma_addr_t *lli_table_in_ptr,
dma_addr_t *lli_table_out_ptr,
u32 *in_num_entries_ptr,
u32 *out_num_entries_ptr,
u32 *table_data_size_ptr,
void **dmatables_region,
struct sep_dma_context *dma_ctx)
{
/* Points to the area where next lli table can be allocated */
void *lli_table_alloc_addr = NULL;
/*
* Points to the area in shared region where next lli table
* can be allocated
*/
void *dma_lli_table_alloc_addr = NULL;
/* Input lli table in dmatables_region or shared region */
struct sep_lli_entry *in_lli_table_ptr = NULL;
/* Input lli table location in the shared region */
struct sep_lli_entry *dma_in_lli_table_ptr = NULL;
/* Output lli table in dmatables_region or shared region */
struct sep_lli_entry *out_lli_table_ptr = NULL;
/* Output lli table location in the shared region */
struct sep_lli_entry *dma_out_lli_table_ptr = NULL;
/* Pointer to the info entry of the table - the last entry */
struct sep_lli_entry *info_in_entry_ptr = NULL;
/* Pointer to the info entry of the table - the last entry */
struct sep_lli_entry *info_out_entry_ptr = NULL;
/* Points to the first entry to be processed in the lli_in_array */
u32 current_in_entry = 0;
/* Points to the first entry to be processed in the lli_out_array */
u32 current_out_entry = 0;
/* Max size of the input table */
u32 in_table_data_size = 0;
/* Max size of the output table */
u32 out_table_data_size = 0;
/* Flag te signifies if this is the last tables build */
u32 last_table_flag = 0;
/* The data size that should be in table */
u32 table_data_size = 0;
/* Number of etnries in the input table */
u32 num_entries_in_table = 0;
/* Number of etnries in the output table */
u32 num_entries_out_table = 0;
if (!dma_ctx) {
dev_warn(&sep->pdev->dev, "DMA context uninitialized\n");
return -EINVAL;
}
/* Initiate to point after the message area */
lli_table_alloc_addr = (void *)(sep->shared_addr +
SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
(dma_ctx->num_lli_tables_created *
(sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP)));
dma_lli_table_alloc_addr = lli_table_alloc_addr;
if (dmatables_region) {
/* 2 for both in+out table */
if (sep_allocate_dmatables_region(sep,
dmatables_region,
dma_ctx,
2*sep_in_lli_entries))
return -ENOMEM;
lli_table_alloc_addr = *dmatables_region;
}
/* Loop till all the entries in in array are not processed */
while (current_in_entry < sep_in_lli_entries) {
/* Set the new input and output tables */
in_lli_table_ptr =
(struct sep_lli_entry *)lli_table_alloc_addr;
dma_in_lli_table_ptr =
(struct sep_lli_entry *)dma_lli_table_alloc_addr;
lli_table_alloc_addr += sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
dma_lli_table_alloc_addr += sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
/* Set the first output tables */
out_lli_table_ptr =
(struct sep_lli_entry *)lli_table_alloc_addr;
dma_out_lli_table_ptr =
(struct sep_lli_entry *)dma_lli_table_alloc_addr;
/* Check if the DMA table area limit was overrun */
if ((dma_lli_table_alloc_addr + sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP) >
((void *)sep->shared_addr +
SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES +
SYNCHRONIC_DMA_TABLES_AREA_SIZE_BYTES)) {
dev_warn(&sep->pdev->dev, "dma table limit overrun\n");
return -ENOMEM;
}
/* Update the number of the lli tables created */
dma_ctx->num_lli_tables_created += 2;
lli_table_alloc_addr += sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
dma_lli_table_alloc_addr += sizeof(struct sep_lli_entry) *
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP;
/* Calculate the maximum size of data for input table */
in_table_data_size =
sep_calculate_lli_table_max_size(sep,
&lli_in_array[current_in_entry],
(sep_in_lli_entries - current_in_entry),
&last_table_flag);
/* Calculate the maximum size of data for output table */
out_table_data_size =
sep_calculate_lli_table_max_size(sep,
&lli_out_array[current_out_entry],
(sep_out_lli_entries - current_out_entry),
&last_table_flag);
if (!last_table_flag) {
in_table_data_size = (in_table_data_size /
block_size) * block_size;
out_table_data_size = (out_table_data_size /
block_size) * block_size;
}
table_data_size = in_table_data_size;
if (table_data_size > out_table_data_size)
table_data_size = out_table_data_size;
dev_dbg(&sep->pdev->dev,
"[PID%d] construct tables from lli"
" in_table_data_size is (hex) %x\n", current->pid,
in_table_data_size);
dev_dbg(&sep->pdev->dev,
"[PID%d] construct tables from lli"
"out_table_data_size is (hex) %x\n", current->pid,
out_table_data_size);
/* Construct input lli table */
sep_build_lli_table(sep, &lli_in_array[current_in_entry],
in_lli_table_ptr,
¤t_in_entry,
&num_entries_in_table,
table_data_size);
/* Construct output lli table */
sep_build_lli_table(sep, &lli_out_array[current_out_entry],
out_lli_table_ptr,
¤t_out_entry,
&num_entries_out_table,
table_data_size);
/* If info entry is null - this is the first table built */
if (info_in_entry_ptr == NULL) {
/* Set the output parameters to physical addresses */
*lli_table_in_ptr =
sep_shared_area_virt_to_bus(sep, dma_in_lli_table_ptr);
*in_num_entries_ptr = num_entries_in_table;
*lli_table_out_ptr =
sep_shared_area_virt_to_bus(sep,
dma_out_lli_table_ptr);
*out_num_entries_ptr = num_entries_out_table;
*table_data_size_ptr = table_data_size;
dev_dbg(&sep->pdev->dev,
"[PID%d] output lli_table_in_ptr is %08lx\n",
current->pid,
(unsigned long)*lli_table_in_ptr);
dev_dbg(&sep->pdev->dev,
"[PID%d] output lli_table_out_ptr is %08lx\n",
current->pid,
(unsigned long)*lli_table_out_ptr);
} else {
/* Update the info entry of the previous in table */
info_in_entry_ptr->bus_address =
sep_shared_area_virt_to_bus(sep,
dma_in_lli_table_ptr);
info_in_entry_ptr->block_size =
((num_entries_in_table) << 24) |
(table_data_size);
/* Update the info entry of the previous in table */
info_out_entry_ptr->bus_address =
sep_shared_area_virt_to_bus(sep,
dma_out_lli_table_ptr);
info_out_entry_ptr->block_size =
((num_entries_out_table) << 24) |
(table_data_size);
dev_dbg(&sep->pdev->dev,
"[PID%d] output lli_table_in_ptr:%08lx %08x\n",
current->pid,
(unsigned long)info_in_entry_ptr->bus_address,
info_in_entry_ptr->block_size);
dev_dbg(&sep->pdev->dev,
"[PID%d] output lli_table_out_ptr:"
"%08lx %08x\n",
current->pid,
(unsigned long)info_out_entry_ptr->bus_address,
info_out_entry_ptr->block_size);
}
/* Save the pointer to the info entry of the current tables */
info_in_entry_ptr = in_lli_table_ptr +
num_entries_in_table - 1;
info_out_entry_ptr = out_lli_table_ptr +
num_entries_out_table - 1;
dev_dbg(&sep->pdev->dev,
"[PID%d] output num_entries_out_table is %x\n",
current->pid,
(u32)num_entries_out_table);
dev_dbg(&sep->pdev->dev,
"[PID%d] output info_in_entry_ptr is %lx\n",
current->pid,
(unsigned long)info_in_entry_ptr);
dev_dbg(&sep->pdev->dev,
"[PID%d] output info_out_entry_ptr is %lx\n",
current->pid,
(unsigned long)info_out_entry_ptr);
}
/* Print input tables */
if (!dmatables_region) {
sep_debug_print_lli_tables(
sep,
(struct sep_lli_entry *)
sep_shared_area_bus_to_virt(sep, *lli_table_in_ptr),
*in_num_entries_ptr,
*table_data_size_ptr);
}
/* Print output tables */
if (!dmatables_region) {
sep_debug_print_lli_tables(
sep,
(struct sep_lli_entry *)
sep_shared_area_bus_to_virt(sep, *lli_table_out_ptr),
*out_num_entries_ptr,
*table_data_size_ptr);
}
return 0;
}
/**
* sep_prepare_input_output_dma_table - prepare DMA I/O table
* @app_virt_in_addr:
* @app_virt_out_addr:
* @data_size:
* @block_size:
* @lli_table_in_ptr:
* @lli_table_out_ptr:
* @in_num_entries_ptr:
* @out_num_entries_ptr:
* @table_data_size_ptr:
* @is_kva: set for kernel data; used only for kernel crypto module
*
* This function builds input and output DMA tables for synhronic
* symmetric operations (AES, DES, HASH). It also checks that each table
* is of the modular block size
* Note that all bus addresses that are passed to the SEP
* are in 32 bit format; the SEP is a 32 bit device
*/
static int sep_prepare_input_output_dma_table(struct sep_device *sep,
unsigned long app_virt_in_addr,
unsigned long app_virt_out_addr,
u32 data_size,
u32 block_size,
dma_addr_t *lli_table_in_ptr,
dma_addr_t *lli_table_out_ptr,
u32 *in_num_entries_ptr,
u32 *out_num_entries_ptr,
u32 *table_data_size_ptr,
bool is_kva,
void **dmatables_region,
struct sep_dma_context *dma_ctx)
{
int error = 0;
/* Array of pointers of page */
struct sep_lli_entry *lli_in_array;
/* Array of pointers of page */
struct sep_lli_entry *lli_out_array;
if (!dma_ctx) {
error = -EINVAL;
goto end_function;
}
if (data_size == 0) {
/* Prepare empty table for input and output */
if (dmatables_region) {
error = sep_allocate_dmatables_region(
sep,
dmatables_region,
dma_ctx,
2);
if (error)
goto end_function;
}
sep_prepare_empty_lli_table(sep, lli_table_in_ptr,
in_num_entries_ptr, table_data_size_ptr,
dmatables_region, dma_ctx);
sep_prepare_empty_lli_table(sep, lli_table_out_ptr,
out_num_entries_ptr, table_data_size_ptr,
dmatables_region, dma_ctx);
goto update_dcb_counter;
}
/* Initialize the pages pointers */
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_page_array = NULL;
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].out_page_array = NULL;
/* Lock the pages of the buffer and translate them to pages */
if (is_kva == true) {
dev_dbg(&sep->pdev->dev, "[PID%d] Locking kernel input pages\n",
current->pid);
error = sep_lock_kernel_pages(sep, app_virt_in_addr,
data_size, &lli_in_array, SEP_DRIVER_IN_FLAG,
dma_ctx);
if (error) {
dev_warn(&sep->pdev->dev,
"[PID%d] sep_lock_kernel_pages for input "
"virtual buffer failed\n", current->pid);
goto end_function;
}
dev_dbg(&sep->pdev->dev, "[PID%d] Locking kernel output pages\n",
current->pid);
error = sep_lock_kernel_pages(sep, app_virt_out_addr,
data_size, &lli_out_array, SEP_DRIVER_OUT_FLAG,
dma_ctx);
if (error) {
dev_warn(&sep->pdev->dev,
"[PID%d] sep_lock_kernel_pages for output "
"virtual buffer failed\n", current->pid);
goto end_function_free_lli_in;
}
}
else {
dev_dbg(&sep->pdev->dev, "[PID%d] Locking user input pages\n",
current->pid);
error = sep_lock_user_pages(sep, app_virt_in_addr,
data_size, &lli_in_array, SEP_DRIVER_IN_FLAG,
dma_ctx);
if (error) {
dev_warn(&sep->pdev->dev,
"[PID%d] sep_lock_user_pages for input "
"virtual buffer failed\n", current->pid);
goto end_function;
}
if (dma_ctx->secure_dma == true) {
/* secure_dma requires use of non accessible memory */
dev_dbg(&sep->pdev->dev, "[PID%d] in secure_dma\n",
current->pid);
error = sep_lli_table_secure_dma(sep,
app_virt_out_addr, data_size, &lli_out_array,
SEP_DRIVER_OUT_FLAG, dma_ctx);
if (error) {
dev_warn(&sep->pdev->dev,
"[PID%d] secure dma table setup "
" for output virtual buffer failed\n",
current->pid);
goto end_function_free_lli_in;
}
} else {
/* For normal, non-secure dma */
dev_dbg(&sep->pdev->dev, "[PID%d] not in secure_dma\n",
current->pid);
dev_dbg(&sep->pdev->dev,
"[PID%d] Locking user output pages\n",
current->pid);
error = sep_lock_user_pages(sep, app_virt_out_addr,
data_size, &lli_out_array, SEP_DRIVER_OUT_FLAG,
dma_ctx);
if (error) {
dev_warn(&sep->pdev->dev,
"[PID%d] sep_lock_user_pages"
" for output virtual buffer failed\n",
current->pid);
goto end_function_free_lli_in;
}
}
}
dev_dbg(&sep->pdev->dev, "[PID%d] After lock; prep input output dma "
"table sep_in_num_pages is (hex) %x\n", current->pid,
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_num_pages);
dev_dbg(&sep->pdev->dev, "[PID%d] sep_out_num_pages is (hex) %x\n",
current->pid,
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].out_num_pages);
dev_dbg(&sep->pdev->dev, "[PID%d] SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP"
" is (hex) %x\n", current->pid,
SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP);
/* Call the fucntion that creates table from the lli arrays */
dev_dbg(&sep->pdev->dev, "[PID%d] calling create table from lli\n",
current->pid);
error = sep_construct_dma_tables_from_lli(
sep, lli_in_array,
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].
in_num_pages,
lli_out_array,
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].
out_num_pages,
block_size, lli_table_in_ptr, lli_table_out_ptr,
in_num_entries_ptr, out_num_entries_ptr,
table_data_size_ptr, dmatables_region, dma_ctx);
if (error) {
dev_warn(&sep->pdev->dev,
"[PID%d] sep_construct_dma_tables_from_lli failed\n",
current->pid);
goto end_function_with_error;
}
kfree(lli_out_array);
kfree(lli_in_array);
update_dcb_counter:
/* Update DCB counter */
dma_ctx->nr_dcb_creat++;
goto end_function;
end_function_with_error:
kfree(dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].out_map_array);
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].out_map_array = NULL;
kfree(dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].out_page_array);
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].out_page_array = NULL;
kfree(lli_out_array);
end_function_free_lli_in:
kfree(dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_map_array);
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_map_array = NULL;
kfree(dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_page_array);
dma_ctx->dma_res_arr[dma_ctx->nr_dcb_creat].in_page_array = NULL;
kfree(lli_in_array);
end_function:
return error;
}
/**
* sep_prepare_input_output_dma_table_in_dcb - prepare control blocks
* @app_in_address: unsigned long; for data buffer in (user space)
* @app_out_address: unsigned long; for data buffer out (user space)
* @data_in_size: u32; for size of data
* @block_size: u32; for block size
* @tail_block_size: u32; for size of tail block
* @isapplet: bool; to indicate external app
* @is_kva: bool; kernel buffer; only used for kernel crypto module
* @secure_dma; indicates whether this is secure_dma using IMR
*
* This function prepares the linked DMA tables and puts the
* address for the linked list of tables inta a DCB (data control
* block) the address of which is known by the SEP hardware
* Note that all bus addresses that are passed to the SEP
* are in 32 bit format; the SEP is a 32 bit device
*/
int sep_prepare_input_output_dma_table_in_dcb(struct sep_device *sep,
unsigned long app_in_address,
unsigned long app_out_address,
u32 data_in_size,
u32 block_size,
u32 tail_block_size,
bool isapplet,
bool is_kva,
bool secure_dma,
struct sep_dcblock *dcb_region,
void **dmatables_region,
struct sep_dma_context **dma_ctx,
struct scatterlist *src_sg,
struct scatterlist *dst_sg)
{
int error = 0;
/* Size of tail */
u32 tail_size = 0;
/* Address of the created DCB table */
struct sep_dcblock *dcb_table_ptr = NULL;
/* The physical address of the first input DMA table */
dma_addr_t in_first_mlli_address = 0;
/* Number of entries in the first input DMA table */
u32 in_first_num_entries = 0;
/* The physical address of the first output DMA table */
dma_addr_t out_first_mlli_address = 0;
/* Number of entries in the first output DMA table */
u32 out_first_num_entries = 0;
/* Data in the first input/output table */
u32 first_data_size = 0;
dev_dbg(&sep->pdev->dev, "[PID%d] app_in_address %lx\n",
current->pid, app_in_address);
dev_dbg(&sep->pdev->dev, "[PID%d] app_out_address %lx\n",
current->pid, app_out_address);
dev_dbg(&sep->pdev->dev, "[PID%d] data_in_size %x\n",
current->pid, data_in_size);
dev_dbg(&sep->pdev->dev, "[PID%d] block_size %x\n",
current->pid, block_size);
dev_dbg(&sep->pdev->dev, "[PID%d] tail_block_size %x\n",
current->pid, tail_block_size);
dev_dbg(&sep->pdev->dev, "[PID%d] isapplet %x\n",
current->pid, isapplet);
dev_dbg(&sep->pdev->dev, "[PID%d] is_kva %x\n",
current->pid, is_kva);
dev_dbg(&sep->pdev->dev, "[PID%d] src_sg %p\n",
current->pid, src_sg);
dev_dbg(&sep->pdev->dev, "[PID%d] dst_sg %p\n",
current->pid, dst_sg);
if (!dma_ctx) {
dev_warn(&sep->pdev->dev, "[PID%d] no DMA context pointer\n",
current->pid);
error = -EINVAL;
goto end_function;
}
if (*dma_ctx) {
/* In case there are multiple DCBs for this transaction */
dev_dbg(&sep->pdev->dev, "[PID%d] DMA context already set\n",
current->pid);
} else {
*dma_ctx = kzalloc(sizeof(**dma_ctx), GFP_KERNEL);
if (!(*dma_ctx)) {
dev_dbg(&sep->pdev->dev,
"[PID%d] Not enough memory for DMA context\n",
current->pid);
error = -ENOMEM;
goto end_function;
}
dev_dbg(&sep->pdev->dev,
"[PID%d] Created DMA context addr at 0x%p\n",
current->pid, *dma_ctx);
}
(*dma_ctx)->secure_dma = secure_dma;
/* these are for kernel crypto only */
(*dma_ctx)->src_sg = src_sg;
(*dma_ctx)->dst_sg = dst_sg;
if ((*dma_ctx)->nr_dcb_creat == SEP_MAX_NUM_SYNC_DMA_OPS) {
/* No more DCBs to allocate */
dev_dbg(&sep->pdev->dev, "[PID%d] no more DCBs available\n",
current->pid);
error = -ENOSPC;
goto end_function_error;
}
/* Allocate new DCB */
if (dcb_region) {
dcb_table_ptr = dcb_region;
} else {
dcb_table_ptr = (struct sep_dcblock *)(sep->shared_addr +
SEP_DRIVER_SYSTEM_DCB_MEMORY_OFFSET_IN_BYTES +
((*dma_ctx)->nr_dcb_creat *
sizeof(struct sep_dcblock)));
}
/* Set the default values in the DCB */
dcb_table_ptr->input_mlli_address = 0;
dcb_table_ptr->input_mlli_num_entries = 0;
dcb_table_ptr->input_mlli_data_size = 0;
dcb_table_ptr->output_mlli_address = 0;
dcb_table_ptr->output_mlli_num_entries = 0;
dcb_table_ptr->output_mlli_data_size = 0;
dcb_table_ptr->tail_data_size = 0;
dcb_table_ptr->out_vr_tail_pt = 0;
if (isapplet == true) {
/* Check if there is enough data for DMA operation */
if (data_in_size < SEP_DRIVER_MIN_DATA_SIZE_PER_TABLE) {
if (is_kva == true) {
error = -ENODEV;
goto end_function_error;
} else {
if (copy_from_user(dcb_table_ptr->tail_data,
(void __user *)app_in_address,
data_in_size)) {
error = -EFAULT;
goto end_function_error;
}
}
dcb_table_ptr->tail_data_size = data_in_size;
/* Set the output user-space address for mem2mem op */
if (app_out_address)
dcb_table_ptr->out_vr_tail_pt =
(aligned_u64)app_out_address;
/*
* Update both data length parameters in order to avoid
* second data copy and allow building of empty mlli
* tables
*/
tail_size = 0x0;
data_in_size = 0x0;
} else {
if (!app_out_address) {
tail_size = data_in_size % block_size;
if (!tail_size) {
if (tail_block_size == block_size)
tail_size = block_size;
}
} else {
tail_size = 0;
}
}
if (tail_size) {
if (tail_size > sizeof(dcb_table_ptr->tail_data))
return -EINVAL;
if (is_kva == true) {
error = -ENODEV;
goto end_function_error;
} else {
/* We have tail data - copy it to DCB */
if (copy_from_user(dcb_table_ptr->tail_data,
(void __user *)(app_in_address +
data_in_size - tail_size), tail_size)) {
error = -EFAULT;
goto end_function_error;
}
}
if (app_out_address)
/*
* Calculate the output address
* according to tail data size
*/
dcb_table_ptr->out_vr_tail_pt =
(aligned_u64)app_out_address +
data_in_size - tail_size;
/* Save the real tail data size */
dcb_table_ptr->tail_data_size = tail_size;
/*
* Update the data size without the tail
* data size AKA data for the dma
*/
data_in_size = (data_in_size - tail_size);
}
}
/* Check if we need to build only input table or input/output */
if (app_out_address) {
/* Prepare input/output tables */
error = sep_prepare_input_output_dma_table(sep,
app_in_address,
app_out_address,
data_in_size,
block_size,
&in_first_mlli_address,
&out_first_mlli_address,
&in_first_num_entries,
&out_first_num_entries,
&first_data_size,
is_kva,
dmatables_region,
*dma_ctx);
} else {
/* Prepare input tables */
error = sep_prepare_input_dma_table(sep,
app_in_address,
data_in_size,
block_size,
&in_first_mlli_address,
&in_first_num_entries,
&first_data_size,
is_kva,
dmatables_region,
*dma_ctx);
}
if (error) {
dev_warn(&sep->pdev->dev,
"prepare DMA table call failed "
"from prepare DCB call\n");
goto end_function_error;
}
/* Set the DCB values */
dcb_table_ptr->input_mlli_address = in_first_mlli_address;
dcb_table_ptr->input_mlli_num_entries = in_first_num_entries;
dcb_table_ptr->input_mlli_data_size = first_data_size;
dcb_table_ptr->output_mlli_address = out_first_mlli_address;
dcb_table_ptr->output_mlli_num_entries = out_first_num_entries;
dcb_table_ptr->output_mlli_data_size = first_data_size;
goto end_function;
end_function_error:
kfree(*dma_ctx);
*dma_ctx = NULL;
end_function:
return error;
}
/**
* sep_free_dma_tables_and_dcb - free DMA tables and DCBs
* @sep: pointer to struct sep_device
* @isapplet: indicates external application (used for kernel access)
* @is_kva: indicates kernel addresses (only used for kernel crypto)
*
* This function frees the DMA tables and DCB
*/
static int sep_free_dma_tables_and_dcb(struct sep_device *sep, bool isapplet,
bool is_kva, struct sep_dma_context **dma_ctx)
{
struct sep_dcblock *dcb_table_ptr;
unsigned long pt_hold;
void *tail_pt;
int i = 0;
int error = 0;
int error_temp = 0;
dev_dbg(&sep->pdev->dev, "[PID%d] sep_free_dma_tables_and_dcb\n",
current->pid);
if (((*dma_ctx)->secure_dma == false) && (isapplet == true)) {
dev_dbg(&sep->pdev->dev, "[PID%d] handling applet\n",
current->pid);
/* Tail stuff is only for non secure_dma */
/* Set pointer to first DCB table */
dcb_table_ptr = (struct sep_dcblock *)
(sep->shared_addr +
SEP_DRIVER_SYSTEM_DCB_MEMORY_OFFSET_IN_BYTES);
/**
* Go over each DCB and see if
* tail pointer must be updated
*/
for (i = 0; dma_ctx && *dma_ctx &&
i < (*dma_ctx)->nr_dcb_creat; i++, dcb_table_ptr++) {
if (dcb_table_ptr->out_vr_tail_pt) {
pt_hold = (unsigned long)dcb_table_ptr->
out_vr_tail_pt;
tail_pt = (void *)pt_hold;
if (is_kva == true) {
error = -ENODEV;
break;
} else {
error_temp = copy_to_user(
(void __user *)tail_pt,
dcb_table_ptr->tail_data,
dcb_table_ptr->tail_data_size);
}
if (error_temp) {
/* Release the DMA resource */
error = -EFAULT;
break;
}
}
}
}
/* Free the output pages, if any */
sep_free_dma_table_data_handler(sep, dma_ctx);
dev_dbg(&sep->pdev->dev, "[PID%d] sep_free_dma_tables_and_dcb end\n",
current->pid);
return error;
}
/**
* sep_prepare_dcb_handler - prepare a control block
* @sep: pointer to struct sep_device
* @arg: pointer to user parameters
* @secure_dma: indicate whether we are using secure_dma on IMR
*
* This function will retrieve the RAR buffer physical addresses, type
* & size corresponding to the RAR handles provided in the buffers vector.
*/
static int sep_prepare_dcb_handler(struct sep_device *sep, unsigned long arg,
bool secure_dma,
struct sep_dma_context **dma_ctx)
{
int error;
/* Command arguments */
static struct build_dcb_struct command_args;
/* Get the command arguments */
if (copy_from_user(&command_args, (void __user *)arg,
sizeof(struct build_dcb_struct))) {
error = -EFAULT;
goto end_function;
}
dev_dbg(&sep->pdev->dev,
"[PID%d] prep dcb handler app_in_address is %08llx\n",
current->pid, command_args.app_in_address);
dev_dbg(&sep->pdev->dev,
"[PID%d] app_out_address is %08llx\n",
current->pid, command_args.app_out_address);
dev_dbg(&sep->pdev->dev,
"[PID%d] data_size is %x\n",
current->pid, command_args.data_in_size);
dev_dbg(&sep->pdev->dev,
"[PID%d] block_size is %x\n",
current->pid, command_args.block_size);
dev_dbg(&sep->pdev->dev,
"[PID%d] tail block_size is %x\n",
current->pid, command_args.tail_block_size);
dev_dbg(&sep->pdev->dev,
"[PID%d] is_applet is %x\n",
current->pid, command_args.is_applet);
if (!command_args.app_in_address) {
dev_warn(&sep->pdev->dev,
"[PID%d] null app_in_address\n", current->pid);
error = -EINVAL;
goto end_function;
}
error = sep_prepare_input_output_dma_table_in_dcb(sep,
(unsigned long)command_args.app_in_address,
(unsigned long)command_args.app_out_address,
command_args.data_in_size, command_args.block_size,
command_args.tail_block_size,
command_args.is_applet, false,
secure_dma, NULL, NULL, dma_ctx, NULL, NULL);
end_function:
return error;
}
/**
* sep_free_dcb_handler - free control block resources
* @sep: pointer to struct sep_device
*
* This function frees the DCB resources and updates the needed
* user-space buffers.
*/
static int sep_free_dcb_handler(struct sep_device *sep,
struct sep_dma_context **dma_ctx)
{
if (!dma_ctx || !(*dma_ctx)) {
dev_dbg(&sep->pdev->dev,
"[PID%d] no dma context defined, nothing to free\n",
current->pid);
return -EINVAL;
}
dev_dbg(&sep->pdev->dev, "[PID%d] free dcbs num of DCBs %x\n",
current->pid,
(*dma_ctx)->nr_dcb_creat);
return sep_free_dma_tables_and_dcb(sep, false, false, dma_ctx);
}
/**
* sep_ioctl - ioctl handler for sep device
* @filp: pointer to struct file
* @cmd: command
* @arg: pointer to argument structure
*
* Implement the ioctl methods availble on the SEP device.
*/
static long sep_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct sep_private_data * const private_data = filp->private_data;
struct sep_call_status *call_status = &private_data->call_status;
struct sep_device *sep = private_data->device;
struct sep_dma_context **dma_ctx = &private_data->dma_ctx;
struct sep_queue_info **my_queue_elem = &private_data->my_queue_elem;
int error = 0;
dev_dbg(&sep->pdev->dev, "[PID%d] ioctl cmd 0x%x\n",
current->pid, cmd);
dev_dbg(&sep->pdev->dev, "[PID%d] dma context addr 0x%p\n",
current->pid, *dma_ctx);
/* Make sure we own this device */
error = sep_check_transaction_owner(sep);
if (error) {
dev_dbg(&sep->pdev->dev, "[PID%d] ioctl pid is not owner\n",
current->pid);
goto end_function;
}
/* Check that sep_mmap has been called before */
if (0 == test_bit(SEP_LEGACY_MMAP_DONE_OFFSET,
&call_status->status)) {
dev_dbg(&sep->pdev->dev,
"[PID%d] mmap not called\n", current->pid);
error = -EPROTO;
goto end_function;
}
/* Check that the command is for SEP device */
if (_IOC_TYPE(cmd) != SEP_IOC_MAGIC_NUMBER) {
error = -ENOTTY;
goto end_function;
}
switch (cmd) {
case SEP_IOCSENDSEPCOMMAND:
dev_dbg(&sep->pdev->dev,
"[PID%d] SEP_IOCSENDSEPCOMMAND start\n",
current->pid);
if (1 == test_bit(SEP_LEGACY_SENDMSG_DONE_OFFSET,
&call_status->status)) {
dev_warn(&sep->pdev->dev,
"[PID%d] send msg already done\n",
current->pid);
error = -EPROTO;
goto end_function;
}
/* Send command to SEP */
error = sep_send_command_handler(sep);
if (!error)
set_bit(SEP_LEGACY_SENDMSG_DONE_OFFSET,
&call_status->status);
dev_dbg(&sep->pdev->dev,
"[PID%d] SEP_IOCSENDSEPCOMMAND end\n",
current->pid);
break;
case SEP_IOCENDTRANSACTION:
dev_dbg(&sep->pdev->dev,
"[PID%d] SEP_IOCENDTRANSACTION start\n",
current->pid);
error = sep_end_transaction_handler(sep, dma_ctx, call_status,
my_queue_elem);
dev_dbg(&sep->pdev->dev,
"[PID%d] SEP_IOCENDTRANSACTION end\n",
current->pid);
break;
case SEP_IOCPREPAREDCB:
dev_dbg(&sep->pdev->dev,
"[PID%d] SEP_IOCPREPAREDCB start\n",
current->pid);
case SEP_IOCPREPAREDCB_SECURE_DMA:
dev_dbg(&sep->pdev->dev,
"[PID%d] SEP_IOCPREPAREDCB_SECURE_DMA start\n",
current->pid);
if (1 == test_bit(SEP_LEGACY_SENDMSG_DONE_OFFSET,
&call_status->status)) {
dev_dbg(&sep->pdev->dev,
"[PID%d] dcb prep needed before send msg\n",
current->pid);
error = -EPROTO;
goto end_function;
}
if (!arg) {
dev_dbg(&sep->pdev->dev,
"[PID%d] dcb null arg\n", current->pid);
error = -EINVAL;
goto end_function;
}
if (cmd == SEP_IOCPREPAREDCB) {
/* No secure dma */
dev_dbg(&sep->pdev->dev,
"[PID%d] SEP_IOCPREPAREDCB (no secure_dma)\n",
current->pid);
error = sep_prepare_dcb_handler(sep, arg, false,
dma_ctx);
} else {
/* Secure dma */
dev_dbg(&sep->pdev->dev,
"[PID%d] SEP_IOC_POC (with secure_dma)\n",
current->pid);
error = sep_prepare_dcb_handler(sep, arg, true,
dma_ctx);
}
dev_dbg(&sep->pdev->dev, "[PID%d] dcb's end\n",
current->pid);
break;
case SEP_IOCFREEDCB:
dev_dbg(&sep->pdev->dev, "[PID%d] SEP_IOCFREEDCB start\n",
current->pid);
case SEP_IOCFREEDCB_SECURE_DMA:
dev_dbg(&sep->pdev->dev,
"[PID%d] SEP_IOCFREEDCB_SECURE_DMA start\n",
current->pid);
error = sep_free_dcb_handler(sep, dma_ctx);
dev_dbg(&sep->pdev->dev, "[PID%d] SEP_IOCFREEDCB end\n",
current->pid);
break;
default:
error = -ENOTTY;
dev_dbg(&sep->pdev->dev, "[PID%d] default end\n",
current->pid);
break;
}
end_function:
dev_dbg(&sep->pdev->dev, "[PID%d] ioctl end\n", current->pid);
return error;
}
/**
* sep_inthandler - interrupt handler for sep device
* @irq: interrupt
* @dev_id: device id
*/
static irqreturn_t sep_inthandler(int irq, void *dev_id)
{
unsigned long lock_irq_flag;
u32 reg_val, reg_val2 = 0;
struct sep_device *sep = dev_id;
irqreturn_t int_error = IRQ_HANDLED;
/* Are we in power save? */
#if defined(CONFIG_PM_RUNTIME) && defined(SEP_ENABLE_RUNTIME_PM)
if (sep->pdev->dev.power.runtime_status != RPM_ACTIVE) {
dev_dbg(&sep->pdev->dev, "interrupt during pwr save\n");
return IRQ_NONE;
}
#endif
if (test_bit(SEP_WORKING_LOCK_BIT, &sep->in_use_flags) == 0) {
dev_dbg(&sep->pdev->dev, "interrupt while nobody using sep\n");
return IRQ_NONE;
}
/* Read the IRR register to check if this is SEP interrupt */
reg_val = sep_read_reg(sep, HW_HOST_IRR_REG_ADDR);
dev_dbg(&sep->pdev->dev, "sep int: IRR REG val: %x\n", reg_val);
if (reg_val & (0x1 << 13)) {
/* Lock and update the counter of reply messages */
spin_lock_irqsave(&sep->snd_rply_lck, lock_irq_flag);
sep->reply_ct++;
spin_unlock_irqrestore(&sep->snd_rply_lck, lock_irq_flag);
dev_dbg(&sep->pdev->dev, "sep int: send_ct %lx reply_ct %lx\n",
sep->send_ct, sep->reply_ct);
/* Is this a kernel client request */
if (sep->in_kernel) {
tasklet_schedule(&sep->finish_tasklet);
goto finished_interrupt;
}
/* Is this printf or daemon request? */
reg_val2 = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR);
dev_dbg(&sep->pdev->dev,
"SEP Interrupt - GPR2 is %08x\n", reg_val2);
clear_bit(SEP_WORKING_LOCK_BIT, &sep->in_use_flags);
if ((reg_val2 >> 30) & 0x1) {
dev_dbg(&sep->pdev->dev, "int: printf request\n");
} else if (reg_val2 >> 31) {
dev_dbg(&sep->pdev->dev, "int: daemon request\n");
} else {
dev_dbg(&sep->pdev->dev, "int: SEP reply\n");
wake_up(&sep->event_interrupt);
}
} else {
dev_dbg(&sep->pdev->dev, "int: not SEP interrupt\n");
int_error = IRQ_NONE;
}
finished_interrupt:
if (int_error == IRQ_HANDLED)
sep_write_reg(sep, HW_HOST_ICR_REG_ADDR, reg_val);
return int_error;
}
/**
* sep_reconfig_shared_area - reconfigure shared area
* @sep: pointer to struct sep_device
*
* Reconfig the shared area between HOST and SEP - needed in case
* the DX_CC_Init function was called before OS loading.
*/
static int sep_reconfig_shared_area(struct sep_device *sep)
{
int ret_val;
/* use to limit waiting for SEP */
unsigned long end_time;
/* Send the new SHARED MESSAGE AREA to the SEP */
dev_dbg(&sep->pdev->dev, "reconfig shared; sending %08llx to sep\n",
(unsigned long long)sep->shared_bus);
sep_write_reg(sep, HW_HOST_HOST_SEP_GPR1_REG_ADDR, sep->shared_bus);
/* Poll for SEP response */
ret_val = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR1_REG_ADDR);
end_time = jiffies + (WAIT_TIME * HZ);
while ((time_before(jiffies, end_time)) && (ret_val != 0xffffffff) &&
(ret_val != sep->shared_bus))
ret_val = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR1_REG_ADDR);
/* Check the return value (register) */
if (ret_val != sep->shared_bus) {
dev_warn(&sep->pdev->dev, "could not reconfig shared area\n");
dev_warn(&sep->pdev->dev, "result was %x\n", ret_val);
ret_val = -ENOMEM;
} else
ret_val = 0;
dev_dbg(&sep->pdev->dev, "reconfig shared area end\n");
return ret_val;
}
/**
* sep_activate_dcb_dmatables_context - Takes DCB & DMA tables
* contexts into use
* @sep: SEP device
* @dcb_region: DCB region copy
* @dmatables_region: MLLI/DMA tables copy
* @dma_ctx: DMA context for current transaction
*/
ssize_t sep_activate_dcb_dmatables_context(struct sep_device *sep,
struct sep_dcblock **dcb_region,
void **dmatables_region,
struct sep_dma_context *dma_ctx)
{
void *dmaregion_free_start = NULL;
void *dmaregion_free_end = NULL;
void *dcbregion_free_start = NULL;
void *dcbregion_free_end = NULL;
ssize_t error = 0;
dev_dbg(&sep->pdev->dev, "[PID%d] activating dcb/dma region\n",
current->pid);
if (1 > dma_ctx->nr_dcb_creat) {
dev_warn(&sep->pdev->dev,
"[PID%d] invalid number of dcbs to activate 0x%08X\n",
current->pid, dma_ctx->nr_dcb_creat);
error = -EINVAL;
goto end_function;
}
dmaregion_free_start = sep->shared_addr
+ SYNCHRONIC_DMA_TABLES_AREA_OFFSET_BYTES;
dmaregion_free_end = dmaregion_free_start
+ SYNCHRONIC_DMA_TABLES_AREA_SIZE_BYTES - 1;
if (dmaregion_free_start
+ dma_ctx->dmatables_len > dmaregion_free_end) {
error = -ENOMEM;
goto end_function;
}
memcpy(dmaregion_free_start,
*dmatables_region,
dma_ctx->dmatables_len);
/* Free MLLI table copy */
kfree(*dmatables_region);
*dmatables_region = NULL;
/* Copy thread's DCB table copy to DCB table region */
dcbregion_free_start = sep->shared_addr +
SEP_DRIVER_SYSTEM_DCB_MEMORY_OFFSET_IN_BYTES;
dcbregion_free_end = dcbregion_free_start +
(SEP_MAX_NUM_SYNC_DMA_OPS *
sizeof(struct sep_dcblock)) - 1;
if (dcbregion_free_start
+ (dma_ctx->nr_dcb_creat * sizeof(struct sep_dcblock))
> dcbregion_free_end) {
error = -ENOMEM;
goto end_function;
}
memcpy(dcbregion_free_start,
*dcb_region,
dma_ctx->nr_dcb_creat * sizeof(struct sep_dcblock));
/* Print the tables */
dev_dbg(&sep->pdev->dev, "activate: input table\n");
sep_debug_print_lli_tables(sep,
(struct sep_lli_entry *)sep_shared_area_bus_to_virt(sep,
(*dcb_region)->input_mlli_address),
(*dcb_region)->input_mlli_num_entries,
(*dcb_region)->input_mlli_data_size);
dev_dbg(&sep->pdev->dev, "activate: output table\n");
sep_debug_print_lli_tables(sep,
(struct sep_lli_entry *)sep_shared_area_bus_to_virt(sep,
(*dcb_region)->output_mlli_address),
(*dcb_region)->output_mlli_num_entries,
(*dcb_region)->output_mlli_data_size);
dev_dbg(&sep->pdev->dev,
"[PID%d] printing activated tables\n", current->pid);
end_function:
kfree(*dmatables_region);
*dmatables_region = NULL;
kfree(*dcb_region);
*dcb_region = NULL;
return error;
}
/**
* sep_create_dcb_dmatables_context - Creates DCB & MLLI/DMA table context
* @sep: SEP device
* @dcb_region: DCB region buf to create for current transaction
* @dmatables_region: MLLI/DMA tables buf to create for current transaction
* @dma_ctx: DMA context buf to create for current transaction
* @user_dcb_args: User arguments for DCB/MLLI creation
* @num_dcbs: Number of DCBs to create
* @secure_dma: Indicate use of IMR restricted memory secure dma
*/
static ssize_t sep_create_dcb_dmatables_context(struct sep_device *sep,
struct sep_dcblock **dcb_region,
void **dmatables_region,
struct sep_dma_context **dma_ctx,
const struct build_dcb_struct __user *user_dcb_args,
const u32 num_dcbs, bool secure_dma)
{
int error = 0;
int i = 0;
struct build_dcb_struct *dcb_args = NULL;
dev_dbg(&sep->pdev->dev, "[PID%d] creating dcb/dma region\n",
current->pid);
if (!dcb_region || !dma_ctx || !dmatables_region || !user_dcb_args) {
error = -EINVAL;
goto end_function;
}
if (SEP_MAX_NUM_SYNC_DMA_OPS < num_dcbs) {
dev_warn(&sep->pdev->dev,
"[PID%d] invalid number of dcbs 0x%08X\n",
current->pid, num_dcbs);
error = -EINVAL;
goto end_function;
}
dcb_args = kzalloc(num_dcbs * sizeof(struct build_dcb_struct),
GFP_KERNEL);
if (!dcb_args) {
dev_warn(&sep->pdev->dev, "[PID%d] no memory for dcb args\n",
current->pid);
error = -ENOMEM;
goto end_function;
}
if (copy_from_user(dcb_args,
user_dcb_args,
num_dcbs * sizeof(struct build_dcb_struct))) {
error = -EINVAL;
goto end_function;
}
/* Allocate thread-specific memory for DCB */
*dcb_region = kzalloc(num_dcbs * sizeof(struct sep_dcblock),
GFP_KERNEL);
if (!(*dcb_region)) {
error = -ENOMEM;
goto end_function;
}
/* Prepare DCB and MLLI table into the allocated regions */
for (i = 0; i < num_dcbs; i++) {
error = sep_prepare_input_output_dma_table_in_dcb(sep,
(unsigned long)dcb_args[i].app_in_address,
(unsigned long)dcb_args[i].app_out_address,
dcb_args[i].data_in_size,
dcb_args[i].block_size,
dcb_args[i].tail_block_size,
dcb_args[i].is_applet,
false, secure_dma,
*dcb_region, dmatables_region,
dma_ctx,
NULL,
NULL);
if (error) {
dev_warn(&sep->pdev->dev,
"[PID%d] dma table creation failed\n",
current->pid);
goto end_function;
}
if (dcb_args[i].app_in_address != 0)
(*dma_ctx)->input_data_len += dcb_args[i].data_in_size;
}
end_function:
kfree(dcb_args);
return error;
}
/**
* sep_create_dcb_dmatables_context_kernel - Creates DCB & MLLI/DMA table context
* for kernel crypto
* @sep: SEP device
* @dcb_region: DCB region buf to create for current transaction
* @dmatables_region: MLLI/DMA tables buf to create for current transaction
* @dma_ctx: DMA context buf to create for current transaction
* @user_dcb_args: User arguments for DCB/MLLI creation
* @num_dcbs: Number of DCBs to create
* This does that same thing as sep_create_dcb_dmatables_context
* except that it is used only for the kernel crypto operation. It is
* separate because there is no user data involved; the dcb data structure
* is specific for kernel crypto (build_dcb_struct_kernel)
*/
int sep_create_dcb_dmatables_context_kernel(struct sep_device *sep,
struct sep_dcblock **dcb_region,
void **dmatables_region,
struct sep_dma_context **dma_ctx,
const struct build_dcb_struct_kernel *dcb_data,
const u32 num_dcbs)
{
int error = 0;
int i = 0;
dev_dbg(&sep->pdev->dev, "[PID%d] creating dcb/dma region\n",
current->pid);
if (!dcb_region || !dma_ctx || !dmatables_region || !dcb_data) {
error = -EINVAL;
goto end_function;
}
if (SEP_MAX_NUM_SYNC_DMA_OPS < num_dcbs) {
dev_warn(&sep->pdev->dev,
"[PID%d] invalid number of dcbs 0x%08X\n",
current->pid, num_dcbs);
error = -EINVAL;
goto end_function;
}
dev_dbg(&sep->pdev->dev, "[PID%d] num_dcbs is %d\n",
current->pid, num_dcbs);
/* Allocate thread-specific memory for DCB */
*dcb_region = kzalloc(num_dcbs * sizeof(struct sep_dcblock),
GFP_KERNEL);
if (!(*dcb_region)) {
error = -ENOMEM;
goto end_function;
}
/* Prepare DCB and MLLI table into the allocated regions */
for (i = 0; i < num_dcbs; i++) {
error = sep_prepare_input_output_dma_table_in_dcb(sep,
(unsigned long)dcb_data->app_in_address,
(unsigned long)dcb_data->app_out_address,
dcb_data->data_in_size,
dcb_data->block_size,
dcb_data->tail_block_size,
dcb_data->is_applet,
true,
false,
*dcb_region, dmatables_region,
dma_ctx,
dcb_data->src_sg,
dcb_data->dst_sg);
if (error) {
dev_warn(&sep->pdev->dev,
"[PID%d] dma table creation failed\n",
current->pid);
goto end_function;
}
}
end_function:
return error;
}
/**
* sep_activate_msgarea_context - Takes the message area context into use
* @sep: SEP device
* @msg_region: Message area context buf
* @msg_len: Message area context buffer size
*/
static ssize_t sep_activate_msgarea_context(struct sep_device *sep,
void **msg_region,
const size_t msg_len)
{
dev_dbg(&sep->pdev->dev, "[PID%d] activating msg region\n",
current->pid);
if (!msg_region || !(*msg_region) ||
SEP_DRIVER_MESSAGE_SHARED_AREA_SIZE_IN_BYTES < msg_len) {
dev_warn(&sep->pdev->dev,
"[PID%d] invalid act msgarea len 0x%08zX\n",
current->pid, msg_len);
return -EINVAL;
}
memcpy(sep->shared_addr, *msg_region, msg_len);
return 0;
}
/**
* sep_create_msgarea_context - Creates message area context
* @sep: SEP device
* @msg_region: Msg area region buf to create for current transaction
* @msg_user: Content for msg area region from user
* @msg_len: Message area size
*/
static ssize_t sep_create_msgarea_context(struct sep_device *sep,
void **msg_region,
const void __user *msg_user,
const size_t msg_len)
{
int error = 0;
dev_dbg(&sep->pdev->dev, "[PID%d] creating msg region\n",
current->pid);
if (!msg_region ||
!msg_user ||
SEP_DRIVER_MAX_MESSAGE_SIZE_IN_BYTES < msg_len ||
SEP_DRIVER_MIN_MESSAGE_SIZE_IN_BYTES > msg_len) {
dev_warn(&sep->pdev->dev,
"[PID%d] invalid creat msgarea len 0x%08zX\n",
current->pid, msg_len);
error = -EINVAL;
goto end_function;
}
/* Allocate thread-specific memory for message buffer */
*msg_region = kzalloc(msg_len, GFP_KERNEL);
if (!(*msg_region)) {
dev_warn(&sep->pdev->dev,
"[PID%d] no mem for msgarea context\n",
current->pid);
error = -ENOMEM;
goto end_function;
}
/* Copy input data to write() to allocated message buffer */
if (copy_from_user(*msg_region, msg_user, msg_len)) {
error = -EINVAL;
goto end_function;
}
end_function:
if (error && msg_region) {
kfree(*msg_region);
*msg_region = NULL;
}
return error;
}
/**
* sep_read - Returns results of an operation for fastcall interface
* @filp: File pointer
* @buf_user: User buffer for storing results
* @count_user: User buffer size
* @offset: File offset, not supported
*
* The implementation does not support reading in chunks, all data must be
* consumed during a single read system call.
*/
static ssize_t sep_read(struct file *filp,
char __user *buf_user, size_t count_user,
loff_t *offset)
{
struct sep_private_data * const private_data = filp->private_data;
struct sep_call_status *call_status = &private_data->call_status;
struct sep_device *sep = private_data->device;
struct sep_dma_context **dma_ctx = &private_data->dma_ctx;
struct sep_queue_info **my_queue_elem = &private_data->my_queue_elem;
ssize_t error = 0, error_tmp = 0;
/* Am I the process that owns the transaction? */
error = sep_check_transaction_owner(sep);
if (error) {
dev_dbg(&sep->pdev->dev, "[PID%d] read pid is not owner\n",
current->pid);
goto end_function;
}
/* Checks that user has called necessarry apis */
if (0 == test_bit(SEP_FASTCALL_WRITE_DONE_OFFSET,
&call_status->status)) {
dev_warn(&sep->pdev->dev,
"[PID%d] fastcall write not called\n",
current->pid);
error = -EPROTO;
goto end_function_error;
}
if (!buf_user) {
dev_warn(&sep->pdev->dev,
"[PID%d] null user buffer\n",
current->pid);
error = -EINVAL;
goto end_function_error;
}
/* Wait for SEP to finish */
wait_event(sep->event_interrupt,
test_bit(SEP_WORKING_LOCK_BIT,
&sep->in_use_flags) == 0);
sep_dump_message(sep);
dev_dbg(&sep->pdev->dev, "[PID%d] count_user = 0x%08zX\n",
current->pid, count_user);
/* In case user has allocated bigger buffer */
if (count_user > SEP_DRIVER_MESSAGE_SHARED_AREA_SIZE_IN_BYTES)
count_user = SEP_DRIVER_MESSAGE_SHARED_AREA_SIZE_IN_BYTES;
if (copy_to_user(buf_user, sep->shared_addr, count_user)) {
error = -EFAULT;
goto end_function_error;
}
dev_dbg(&sep->pdev->dev, "[PID%d] read succeeded\n", current->pid);
error = count_user;
end_function_error:
/* Copy possible tail data to user and free DCB and MLLIs */
error_tmp = sep_free_dcb_handler(sep, dma_ctx);
if (error_tmp)
dev_warn(&sep->pdev->dev, "[PID%d] dcb free failed\n",
current->pid);
/* End the transaction, wakeup pending ones */
error_tmp = sep_end_transaction_handler(sep, dma_ctx, call_status,
my_queue_elem);
if (error_tmp)
dev_warn(&sep->pdev->dev,
"[PID%d] ending transaction failed\n",
current->pid);
end_function:
return error;
}
/**
* sep_fastcall_args_get - Gets fastcall params from user
* sep: SEP device
* @args: Parameters buffer
* @buf_user: User buffer for operation parameters
* @count_user: User buffer size
*/
static inline ssize_t sep_fastcall_args_get(struct sep_device *sep,
struct sep_fastcall_hdr *args,
const char __user *buf_user,
const size_t count_user)
{
ssize_t error = 0;
size_t actual_count = 0;
if (!buf_user) {
dev_warn(&sep->pdev->dev,
"[PID%d] null user buffer\n",
current->pid);
error = -EINVAL;
goto end_function;
}
if (count_user < sizeof(struct sep_fastcall_hdr)) {
dev_warn(&sep->pdev->dev,
"[PID%d] too small message size 0x%08zX\n",
current->pid, count_user);
error = -EINVAL;
goto end_function;
}
if (copy_from_user(args, buf_user, sizeof(struct sep_fastcall_hdr))) {
error = -EFAULT;
goto end_function;
}
if (SEP_FC_MAGIC != args->magic) {
dev_warn(&sep->pdev->dev,
"[PID%d] invalid fastcall magic 0x%08X\n",
current->pid, args->magic);
error = -EINVAL;
goto end_function;
}
dev_dbg(&sep->pdev->dev, "[PID%d] fastcall hdr num of DCBs 0x%08X\n",
current->pid, args->num_dcbs);
dev_dbg(&sep->pdev->dev, "[PID%d] fastcall hdr msg len 0x%08X\n",
current->pid, args->msg_len);
if (SEP_DRIVER_MAX_MESSAGE_SIZE_IN_BYTES < args->msg_len ||
SEP_DRIVER_MIN_MESSAGE_SIZE_IN_BYTES > args->msg_len) {
dev_warn(&sep->pdev->dev,
"[PID%d] invalid message length\n",
current->pid);
error = -EINVAL;
goto end_function;
}
actual_count = sizeof(struct sep_fastcall_hdr)
+ args->msg_len
+ (args->num_dcbs * sizeof(struct build_dcb_struct));
if (actual_count != count_user) {
dev_warn(&sep->pdev->dev,
"[PID%d] inconsistent message "
"sizes 0x%08zX vs 0x%08zX\n",
current->pid, actual_count, count_user);
error = -EMSGSIZE;
goto end_function;
}
end_function:
return error;
}
/**
* sep_write - Starts an operation for fastcall interface
* @filp: File pointer
* @buf_user: User buffer for operation parameters
* @count_user: User buffer size
* @offset: File offset, not supported
*
* The implementation does not support writing in chunks,
* all data must be given during a single write system call.
*/
static ssize_t sep_write(struct file *filp,
const char __user *buf_user, size_t count_user,
loff_t *offset)
{
struct sep_private_data * const private_data = filp->private_data;
struct sep_call_status *call_status = &private_data->call_status;
struct sep_device *sep = private_data->device;
struct sep_dma_context *dma_ctx = NULL;
struct sep_fastcall_hdr call_hdr = {0};
void *msg_region = NULL;
void *dmatables_region = NULL;
struct sep_dcblock *dcb_region = NULL;
ssize_t error = 0;
struct sep_queue_info *my_queue_elem = NULL;
bool my_secure_dma; /* are we using secure_dma (IMR)? */
dev_dbg(&sep->pdev->dev, "[PID%d] sep dev is 0x%p\n",
current->pid, sep);
dev_dbg(&sep->pdev->dev, "[PID%d] private_data is 0x%p\n",
current->pid, private_data);
error = sep_fastcall_args_get(sep, &call_hdr, buf_user, count_user);
if (error)
goto end_function;
buf_user += sizeof(struct sep_fastcall_hdr);
if (call_hdr.secure_dma == 0)
my_secure_dma = false;
else
my_secure_dma = true;
/*
* Controlling driver memory usage by limiting amount of
* buffers created. Only SEP_DOUBLEBUF_USERS_LIMIT number
* of threads can progress further at a time
*/
dev_dbg(&sep->pdev->dev, "[PID%d] waiting for double buffering "
"region access\n", current->pid);
error = down_interruptible(&sep->sep_doublebuf);
dev_dbg(&sep->pdev->dev, "[PID%d] double buffering region start\n",
current->pid);
if (error) {
/* Signal received */
goto end_function_error;
}
/*
* Prepare contents of the shared area regions for
* the operation into temporary buffers
*/
if (0 < call_hdr.num_dcbs) {
error = sep_create_dcb_dmatables_context(sep,
&dcb_region,
&dmatables_region,
&dma_ctx,
(const struct build_dcb_struct __user *)
buf_user,
call_hdr.num_dcbs, my_secure_dma);
if (error)
goto end_function_error_doublebuf;
buf_user += call_hdr.num_dcbs * sizeof(struct build_dcb_struct);
}
error = sep_create_msgarea_context(sep,
&msg_region,
buf_user,
call_hdr.msg_len);
if (error)
goto end_function_error_doublebuf;
dev_dbg(&sep->pdev->dev, "[PID%d] updating queue status\n",
current->pid);
my_queue_elem = sep_queue_status_add(sep,
((struct sep_msgarea_hdr *)msg_region)->opcode,
(dma_ctx) ? dma_ctx->input_data_len : 0,
current->pid,
current->comm, sizeof(current->comm));
if (!my_queue_elem) {
dev_dbg(&sep->pdev->dev, "[PID%d] updating queue"
"status error\n", current->pid);
error = -ENOMEM;
goto end_function_error_doublebuf;
}
/* Wait until current process gets the transaction */
error = sep_wait_transaction(sep);
if (error) {
/* Interrupted by signal, don't clear transaction */
dev_dbg(&sep->pdev->dev, "[PID%d] interrupted by signal\n",
current->pid);
sep_queue_status_remove(sep, &my_queue_elem);
goto end_function_error_doublebuf;
}
dev_dbg(&sep->pdev->dev, "[PID%d] saving queue element\n",
current->pid);
private_data->my_queue_elem = my_queue_elem;
/* Activate shared area regions for the transaction */
error = sep_activate_msgarea_context(sep, &msg_region,
call_hdr.msg_len);
if (error)
goto end_function_error_clear_transact;
sep_dump_message(sep);
if (0 < call_hdr.num_dcbs) {
error = sep_activate_dcb_dmatables_context(sep,
&dcb_region,
&dmatables_region,
dma_ctx);
if (error)
goto end_function_error_clear_transact;
}
/* Send command to SEP */
error = sep_send_command_handler(sep);
if (error)
goto end_function_error_clear_transact;
/* Store DMA context for the transaction */
private_data->dma_ctx = dma_ctx;
/* Update call status */
set_bit(SEP_FASTCALL_WRITE_DONE_OFFSET, &call_status->status);
error = count_user;
up(&sep->sep_doublebuf);
dev_dbg(&sep->pdev->dev, "[PID%d] double buffering region end\n",
current->pid);
goto end_function;
end_function_error_clear_transact:
sep_end_transaction_handler(sep, &dma_ctx, call_status,
&private_data->my_queue_elem);
end_function_error_doublebuf:
up(&sep->sep_doublebuf);
dev_dbg(&sep->pdev->dev, "[PID%d] double buffering region end\n",
current->pid);
end_function_error:
if (dma_ctx)
sep_free_dma_table_data_handler(sep, &dma_ctx);
end_function:
kfree(dcb_region);
kfree(dmatables_region);
kfree(msg_region);
return error;
}
/**
* sep_seek - Handler for seek system call
* @filp: File pointer
* @offset: File offset
* @origin: Options for offset
*
* Fastcall interface does not support seeking, all reads
* and writes are from/to offset zero
*/
static loff_t sep_seek(struct file *filp, loff_t offset, int origin)
{
return -ENOSYS;
}
/**
* sep_file_operations - file operation on sep device
* @sep_ioctl: ioctl handler from user space call
* @sep_poll: poll handler
* @sep_open: handles sep device open request
* @sep_release:handles sep device release request
* @sep_mmap: handles memory mapping requests
* @sep_read: handles read request on sep device
* @sep_write: handles write request on sep device
* @sep_seek: handles seek request on sep device
*/
static const struct file_operations sep_file_operations = {
.owner = THIS_MODULE,
.unlocked_ioctl = sep_ioctl,
.poll = sep_poll,
.open = sep_open,
.release = sep_release,
.mmap = sep_mmap,
.read = sep_read,
.write = sep_write,
.llseek = sep_seek,
};
/**
* sep_sysfs_read - read sysfs entry per gives arguments
* @filp: file pointer
* @kobj: kobject pointer
* @attr: binary file attributes
* @buf: read to this buffer
* @pos: offset to read
* @count: amount of data to read
*
* This function is to read sysfs entries for sep driver per given arguments.
*/
static ssize_t
sep_sysfs_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t pos, size_t count)
{
unsigned long lck_flags;
size_t nleft = count;
struct sep_device *sep = sep_dev;
struct sep_queue_info *queue_elem = NULL;
u32 queue_num = 0;
u32 i = 1;
spin_lock_irqsave(&sep->sep_queue_lock, lck_flags);
queue_num = sep->sep_queue_num;
if (queue_num > SEP_DOUBLEBUF_USERS_LIMIT)
queue_num = SEP_DOUBLEBUF_USERS_LIMIT;
if (count < sizeof(queue_num)
+ (queue_num * sizeof(struct sep_queue_data))) {
spin_unlock_irqrestore(&sep->sep_queue_lock, lck_flags);
return -EINVAL;
}
memcpy(buf, &queue_num, sizeof(queue_num));
buf += sizeof(queue_num);
nleft -= sizeof(queue_num);
list_for_each_entry(queue_elem, &sep->sep_queue_status, list) {
if (i++ > queue_num)
break;
memcpy(buf, &queue_elem->data, sizeof(queue_elem->data));
nleft -= sizeof(queue_elem->data);
buf += sizeof(queue_elem->data);
}
spin_unlock_irqrestore(&sep->sep_queue_lock, lck_flags);
return count - nleft;
}
/**
* bin_attributes - defines attributes for queue_status
* @attr: attributes (name & permissions)
* @read: function pointer to read this file
* @size: maxinum size of binary attribute
*/
static const struct bin_attribute queue_status = {
.attr = {.name = "queue_status", .mode = 0444},
.read = sep_sysfs_read,
.size = sizeof(u32)
+ (SEP_DOUBLEBUF_USERS_LIMIT * sizeof(struct sep_queue_data)),
};
/**
* sep_register_driver_with_fs - register misc devices
* @sep: pointer to struct sep_device
*
* This function registers the driver with the file system
*/
static int sep_register_driver_with_fs(struct sep_device *sep)
{
int ret_val;
sep->miscdev_sep.minor = MISC_DYNAMIC_MINOR;
sep->miscdev_sep.name = SEP_DEV_NAME;
sep->miscdev_sep.fops = &sep_file_operations;
ret_val = misc_register(&sep->miscdev_sep);
if (ret_val) {
dev_warn(&sep->pdev->dev, "misc reg fails for SEP %x\n",
ret_val);
return ret_val;
}
ret_val = device_create_bin_file(sep->miscdev_sep.this_device,
&queue_status);
if (ret_val) {
dev_warn(&sep->pdev->dev, "sysfs attribute1 fails for SEP %x\n",
ret_val);
return ret_val;
}
return ret_val;
}
/**
*sep_probe - probe a matching PCI device
*@pdev: pci_device
*@ent: pci_device_id
*
*Attempt to set up and configure a SEP device that has been
*discovered by the PCI layer. Allocates all required resources.
*/
static int __devinit sep_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int error = 0;
struct sep_device *sep = NULL;
if (sep_dev != NULL) {
dev_dbg(&pdev->dev, "only one SEP supported.\n");
return -EBUSY;
}
/* Enable the device */
error = pci_enable_device(pdev);
if (error) {
dev_warn(&pdev->dev, "error enabling pci device\n");
goto end_function;
}
/* Allocate the sep_device structure for this device */
sep_dev = kzalloc(sizeof(struct sep_device), GFP_ATOMIC);
if (sep_dev == NULL) {
dev_warn(&pdev->dev,
"can't kmalloc the sep_device structure\n");
error = -ENOMEM;
goto end_function_disable_device;
}
/*
* We're going to use another variable for actually
* working with the device; this way, if we have
* multiple devices in the future, it would be easier
* to make appropriate changes
*/
sep = sep_dev;
sep->pdev = pci_dev_get(pdev);
init_waitqueue_head(&sep->event_transactions);
init_waitqueue_head(&sep->event_interrupt);
spin_lock_init(&sep->snd_rply_lck);
spin_lock_init(&sep->sep_queue_lock);
sema_init(&sep->sep_doublebuf, SEP_DOUBLEBUF_USERS_LIMIT);
INIT_LIST_HEAD(&sep->sep_queue_status);
dev_dbg(&sep->pdev->dev, "sep probe: PCI obtained, "
"device being prepared\n");
/* Set up our register area */
sep->reg_physical_addr = pci_resource_start(sep->pdev, 0);
if (!sep->reg_physical_addr) {
dev_warn(&sep->pdev->dev, "Error getting register start\n");
error = -ENODEV;
goto end_function_free_sep_dev;
}
sep->reg_physical_end = pci_resource_end(sep->pdev, 0);
if (!sep->reg_physical_end) {
dev_warn(&sep->pdev->dev, "Error getting register end\n");
error = -ENODEV;
goto end_function_free_sep_dev;
}
sep->reg_addr = ioremap_nocache(sep->reg_physical_addr,
(size_t)(sep->reg_physical_end - sep->reg_physical_addr + 1));
if (!sep->reg_addr) {
dev_warn(&sep->pdev->dev, "Error getting register virtual\n");
error = -ENODEV;
goto end_function_free_sep_dev;
}
dev_dbg(&sep->pdev->dev,
"Register area start %llx end %llx virtual %p\n",
(unsigned long long)sep->reg_physical_addr,
(unsigned long long)sep->reg_physical_end,
sep->reg_addr);
/* Allocate the shared area */
sep->shared_size = SEP_DRIVER_MESSAGE_SHARED_AREA_SIZE_IN_BYTES +
SYNCHRONIC_DMA_TABLES_AREA_SIZE_BYTES +
SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES +
SEP_DRIVER_STATIC_AREA_SIZE_IN_BYTES +
SEP_DRIVER_SYSTEM_DATA_MEMORY_SIZE_IN_BYTES;
if (sep_map_and_alloc_shared_area(sep)) {
error = -ENOMEM;
/* Allocation failed */
goto end_function_error;
}
/* Clear ICR register */
sep_write_reg(sep, HW_HOST_ICR_REG_ADDR, 0xFFFFFFFF);
/* Set the IMR register - open only GPR 2 */
sep_write_reg(sep, HW_HOST_IMR_REG_ADDR, (~(0x1 << 13)));
/* Read send/receive counters from SEP */
sep->reply_ct = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR);
sep->reply_ct &= 0x3FFFFFFF;
sep->send_ct = sep->reply_ct;
/* Get the interrupt line */
error = request_irq(pdev->irq, sep_inthandler, IRQF_SHARED,
"sep_driver", sep);
if (error)
goto end_function_deallocate_sep_shared_area;
/* The new chip requires a shared area reconfigure */
error = sep_reconfig_shared_area(sep);
if (error)
goto end_function_free_irq;
sep->in_use = 1;
/* Finally magic up the device nodes */
/* Register driver with the fs */
error = sep_register_driver_with_fs(sep);
if (error) {
dev_err(&sep->pdev->dev, "error registering dev file\n");
goto end_function_free_irq;
}
sep->in_use = 0; /* through touching the device */
#ifdef SEP_ENABLE_RUNTIME_PM
pm_runtime_put_noidle(&sep->pdev->dev);
pm_runtime_allow(&sep->pdev->dev);
pm_runtime_set_autosuspend_delay(&sep->pdev->dev,
SUSPEND_DELAY);
pm_runtime_use_autosuspend(&sep->pdev->dev);
pm_runtime_mark_last_busy(&sep->pdev->dev);
sep->power_save_setup = 1;
#endif
/* register kernel crypto driver */
#if defined(CONFIG_CRYPTO) || defined(CONFIG_CRYPTO_MODULE)
error = sep_crypto_setup();
if (error) {
dev_err(&sep->pdev->dev, "crypto setup failed\n");
goto end_function_free_irq;
}
#endif
goto end_function;
end_function_free_irq:
free_irq(pdev->irq, sep);
end_function_deallocate_sep_shared_area:
/* De-allocate shared area */
sep_unmap_and_free_shared_area(sep);
end_function_error:
iounmap(sep->reg_addr);
end_function_free_sep_dev:
pci_dev_put(sep_dev->pdev);
kfree(sep_dev);
sep_dev = NULL;
end_function_disable_device:
pci_disable_device(pdev);
end_function:
return error;
}
/**
* sep_remove - handles removing device from pci subsystem
* @pdev: pointer to pci device
*
* This function will handle removing our sep device from pci subsystem on exit
* or unloading this module. It should free up all used resources, and unmap if
* any memory regions mapped.
*/
static void sep_remove(struct pci_dev *pdev)
{
struct sep_device *sep = sep_dev;
/* Unregister from fs */
misc_deregister(&sep->miscdev_sep);
/* Unregister from kernel crypto */
#if defined(CONFIG_CRYPTO) || defined(CONFIG_CRYPTO_MODULE)
sep_crypto_takedown();
#endif
/* Free the irq */
free_irq(sep->pdev->irq, sep);
/* Free the shared area */
sep_unmap_and_free_shared_area(sep_dev);
iounmap(sep_dev->reg_addr);
#ifdef SEP_ENABLE_RUNTIME_PM
if (sep->in_use) {
sep->in_use = 0;
pm_runtime_forbid(&sep->pdev->dev);
pm_runtime_get_noresume(&sep->pdev->dev);
}
#endif
pci_dev_put(sep_dev->pdev);
kfree(sep_dev);
sep_dev = NULL;
}
/* Initialize struct pci_device_id for our driver */
static DEFINE_PCI_DEVICE_TABLE(sep_pci_id_tbl) = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0826)},
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x08e9)},
{0}
};
/* Export our pci_device_id structure to user space */
MODULE_DEVICE_TABLE(pci, sep_pci_id_tbl);
#ifdef SEP_ENABLE_RUNTIME_PM
/**
* sep_pm_resume - rsume routine while waking up from S3 state
* @dev: pointer to sep device
*
* This function is to be used to wake up sep driver while system awakes from S3
* state i.e. suspend to ram. The RAM in intact.
* Notes - revisit with more understanding of pm, ICR/IMR & counters.
*/
static int sep_pci_resume(struct device *dev)
{
struct sep_device *sep = sep_dev;
dev_dbg(&sep->pdev->dev, "pci resume called\n");
if (sep->power_state == SEP_DRIVER_POWERON)
return 0;
/* Clear ICR register */
sep_write_reg(sep, HW_HOST_ICR_REG_ADDR, 0xFFFFFFFF);
/* Set the IMR register - open only GPR 2 */
sep_write_reg(sep, HW_HOST_IMR_REG_ADDR, (~(0x1 << 13)));
/* Read send/receive counters from SEP */
sep->reply_ct = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR);
sep->reply_ct &= 0x3FFFFFFF;
sep->send_ct = sep->reply_ct;
sep->power_state = SEP_DRIVER_POWERON;
return 0;
}
/**
* sep_pm_suspend - suspend routine while going to S3 state
* @dev: pointer to sep device
*
* This function is to be used to suspend sep driver while system goes to S3
* state i.e. suspend to ram. The RAM in intact and ON during this suspend.
* Notes - revisit with more understanding of pm, ICR/IMR
*/
static int sep_pci_suspend(struct device *dev)
{
struct sep_device *sep = sep_dev;
dev_dbg(&sep->pdev->dev, "pci suspend called\n");
if (sep->in_use == 1)
return -EAGAIN;
sep->power_state = SEP_DRIVER_POWEROFF;
/* Clear ICR register */
sep_write_reg(sep, HW_HOST_ICR_REG_ADDR, 0xFFFFFFFF);
/* Set the IMR to block all */
sep_write_reg(sep, HW_HOST_IMR_REG_ADDR, 0xFFFFFFFF);
return 0;
}
/**
* sep_pm_runtime_resume - runtime resume routine
* @dev: pointer to sep device
*
* Notes - revisit with more understanding of pm, ICR/IMR & counters
*/
static int sep_pm_runtime_resume(struct device *dev)
{
u32 retval2;
u32 delay_count;
struct sep_device *sep = sep_dev;
dev_dbg(&sep->pdev->dev, "pm runtime resume called\n");
/**
* Wait until the SCU boot is ready
* This is done by iterating SCU_DELAY_ITERATION (10
* microseconds each) up to SCU_DELAY_MAX (50) times.
* This bit can be set in a random time that is less
* than 500 microseconds after each power resume
*/
retval2 = 0;
delay_count = 0;
while ((!retval2) && (delay_count < SCU_DELAY_MAX)) {
retval2 = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR3_REG_ADDR);
retval2 &= 0x00000008;
if (!retval2) {
udelay(SCU_DELAY_ITERATION);
delay_count += 1;
}
}
if (!retval2) {
dev_warn(&sep->pdev->dev, "scu boot bit not set at resume\n");
return -EINVAL;
}
/* Clear ICR register */
sep_write_reg(sep, HW_HOST_ICR_REG_ADDR, 0xFFFFFFFF);
/* Set the IMR register - open only GPR 2 */
sep_write_reg(sep, HW_HOST_IMR_REG_ADDR, (~(0x1 << 13)));
/* Read send/receive counters from SEP */
sep->reply_ct = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR);
sep->reply_ct &= 0x3FFFFFFF;
sep->send_ct = sep->reply_ct;
return 0;
}
/**
* sep_pm_runtime_suspend - runtime suspend routine
* @dev: pointer to sep device
*
* Notes - revisit with more understanding of pm
*/
static int sep_pm_runtime_suspend(struct device *dev)
{
struct sep_device *sep = sep_dev;
dev_dbg(&sep->pdev->dev, "pm runtime suspend called\n");
/* Clear ICR register */
sep_write_reg(sep, HW_HOST_ICR_REG_ADDR, 0xFFFFFFFF);
return 0;
}
/**
* sep_pm - power management for sep driver
* @sep_pm_runtime_resume: resume- no communication with cpu & main memory
* @sep_pm_runtime_suspend: suspend- no communication with cpu & main memory
* @sep_pci_suspend: suspend - main memory is still ON
* @sep_pci_resume: resume - main meory is still ON
*/
static const struct dev_pm_ops sep_pm = {
.runtime_resume = sep_pm_runtime_resume,
.runtime_suspend = sep_pm_runtime_suspend,
.resume = sep_pci_resume,
.suspend = sep_pci_suspend,
};
#endif /* SEP_ENABLE_RUNTIME_PM */
/**
* sep_pci_driver - registers this device with pci subsystem
* @name: name identifier for this driver
* @sep_pci_id_tbl: pointer to struct pci_device_id table
* @sep_probe: pointer to probe function in PCI driver
* @sep_remove: pointer to remove function in PCI driver
*/
static struct pci_driver sep_pci_driver = {
#ifdef SEP_ENABLE_RUNTIME_PM
.driver = {
.pm = &sep_pm,
},
#endif
.name = "sep_sec_driver",
.id_table = sep_pci_id_tbl,
.probe = sep_probe,
.remove = sep_remove
};
/**
* sep_init - init function
*
* Module load time. Register the PCI device driver.
*/
static int __init sep_init(void)
{
return pci_register_driver(&sep_pci_driver);
}
/**
* sep_exit - called to unload driver
*
* Unregister the driver The device will perform all the cleanup required.
*/
static void __exit sep_exit(void)
{
pci_unregister_driver(&sep_pci_driver);
}
module_init(sep_init);
module_exit(sep_exit);
MODULE_LICENSE("GPL");