/* * OMAP2+ common Power & Reset Management (PRM) IP block functions * * Copyright (C) 2011 Texas Instruments, Inc. * Tero Kristo <t-kristo@ti.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * * For historical purposes, the API used to configure the PRM * interrupt handler refers to it as the "PRCM interrupt." The * underlying registers are located in the PRM on OMAP3/4. * * XXX This code should eventually be moved to a PRM driver. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/clk-provider.h> #include <linux/clk/ti.h> #include "soc.h" #include "prm2xxx_3xxx.h" #include "prm2xxx.h" #include "prm3xxx.h" #include "prm33xx.h" #include "prm44xx.h" #include "prm54xx.h" #include "prm7xx.h" #include "prcm43xx.h" #include "common.h" #include "clock.h" #include "cm.h" #include "control.h" /* * OMAP_PRCM_MAX_NR_PENDING_REG: maximum number of PRM_IRQ*_MPU regs * XXX this is technically not needed, since * omap_prcm_register_chain_handler() could allocate this based on the * actual amount of memory needed for the SoC */ #define OMAP_PRCM_MAX_NR_PENDING_REG 2 /* * prcm_irq_chips: an array of all of the "generic IRQ chips" in use * by the PRCM interrupt handler code. There will be one 'chip' per * PRM_{IRQSTATUS,IRQENABLE}_MPU register pair. (So OMAP3 will have * one "chip" and OMAP4 will have two.) */ static struct irq_chip_generic **prcm_irq_chips; /* * prcm_irq_setup: the PRCM IRQ parameters for the hardware the code * is currently running on. Defined and passed by initialization code * that calls omap_prcm_register_chain_handler(). */ static struct omap_prcm_irq_setup *prcm_irq_setup; /* prm_base: base virtual address of the PRM IP block */ void __iomem *prm_base; u16 prm_features; /* * prm_ll_data: function pointers to SoC-specific implementations of * common PRM functions */ static struct prm_ll_data null_prm_ll_data; static struct prm_ll_data *prm_ll_data = &null_prm_ll_data; /* Private functions */ /* * Move priority events from events to priority_events array */ static void omap_prcm_events_filter_priority(unsigned long *events, unsigned long *priority_events) { int i; for (i = 0; i < prcm_irq_setup->nr_regs; i++) { priority_events[i] = events[i] & prcm_irq_setup->priority_mask[i]; events[i] ^= priority_events[i]; } } /* * PRCM Interrupt Handler * * This is a common handler for the OMAP PRCM interrupts. Pending * interrupts are detected by a call to prcm_pending_events and * dispatched accordingly. Clearing of the wakeup events should be * done by the SoC specific individual handlers. */ static void omap_prcm_irq_handler(unsigned int irq, struct irq_desc *desc) { unsigned long pending[OMAP_PRCM_MAX_NR_PENDING_REG]; unsigned long priority_pending[OMAP_PRCM_MAX_NR_PENDING_REG]; struct irq_chip *chip = irq_desc_get_chip(desc); unsigned int virtirq; int nr_irq = prcm_irq_setup->nr_regs * 32; /* * If we are suspended, mask all interrupts from PRCM level, * this does not ack them, and they will be pending until we * re-enable the interrupts, at which point the * omap_prcm_irq_handler will be executed again. The * _save_and_clear_irqen() function must ensure that the PRM * write to disable all IRQs has reached the PRM before * returning, or spurious PRCM interrupts may occur during * suspend. */ if (prcm_irq_setup->suspended) { prcm_irq_setup->save_and_clear_irqen(prcm_irq_setup->saved_mask); prcm_irq_setup->suspend_save_flag = true; } /* * Loop until all pending irqs are handled, since * generic_handle_irq() can cause new irqs to come */ while (!prcm_irq_setup->suspended) { prcm_irq_setup->read_pending_irqs(pending); /* No bit set, then all IRQs are handled */ if (find_first_bit(pending, nr_irq) >= nr_irq) break; omap_prcm_events_filter_priority(pending, priority_pending); /* * Loop on all currently pending irqs so that new irqs * cannot starve previously pending irqs */ /* Serve priority events first */ for_each_set_bit(virtirq, priority_pending, nr_irq) generic_handle_irq(prcm_irq_setup->base_irq + virtirq); /* Serve normal events next */ for_each_set_bit(virtirq, pending, nr_irq) generic_handle_irq(prcm_irq_setup->base_irq + virtirq); } if (chip->irq_ack) chip->irq_ack(&desc->irq_data); if (chip->irq_eoi) chip->irq_eoi(&desc->irq_data); chip->irq_unmask(&desc->irq_data); prcm_irq_setup->ocp_barrier(); /* avoid spurious IRQs */ } /* Public functions */ /** * omap_prcm_event_to_irq - given a PRCM event name, returns the * corresponding IRQ on which the handler should be registered * @name: name of the PRCM interrupt bit to look up - see struct omap_prcm_irq * * Returns the Linux internal IRQ ID corresponding to @name upon success, * or -ENOENT upon failure. */ int omap_prcm_event_to_irq(const char *name) { int i; if (!prcm_irq_setup || !name) return -ENOENT; for (i = 0; i < prcm_irq_setup->nr_irqs; i++) if (!strcmp(prcm_irq_setup->irqs[i].name, name)) return prcm_irq_setup->base_irq + prcm_irq_setup->irqs[i].offset; return -ENOENT; } /** * omap_prcm_irq_cleanup - reverses memory allocated and other steps * done by omap_prcm_register_chain_handler() * * No return value. */ void omap_prcm_irq_cleanup(void) { unsigned int irq; int i; if (!prcm_irq_setup) { pr_err("PRCM: IRQ handler not initialized; cannot cleanup\n"); return; } if (prcm_irq_chips) { for (i = 0; i < prcm_irq_setup->nr_regs; i++) { if (prcm_irq_chips[i]) irq_remove_generic_chip(prcm_irq_chips[i], 0xffffffff, 0, 0); prcm_irq_chips[i] = NULL; } kfree(prcm_irq_chips); prcm_irq_chips = NULL; } kfree(prcm_irq_setup->saved_mask); prcm_irq_setup->saved_mask = NULL; kfree(prcm_irq_setup->priority_mask); prcm_irq_setup->priority_mask = NULL; if (prcm_irq_setup->xlate_irq) irq = prcm_irq_setup->xlate_irq(prcm_irq_setup->irq); else irq = prcm_irq_setup->irq; irq_set_chained_handler(irq, NULL); if (prcm_irq_setup->base_irq > 0) irq_free_descs(prcm_irq_setup->base_irq, prcm_irq_setup->nr_regs * 32); prcm_irq_setup->base_irq = 0; } void omap_prcm_irq_prepare(void) { prcm_irq_setup->suspended = true; } void omap_prcm_irq_complete(void) { prcm_irq_setup->suspended = false; /* If we have not saved the masks, do not attempt to restore */ if (!prcm_irq_setup->suspend_save_flag) return; prcm_irq_setup->suspend_save_flag = false; /* * Re-enable all masked PRCM irq sources, this causes the PRCM * interrupt to fire immediately if the events were masked * previously in the chain handler */ prcm_irq_setup->restore_irqen(prcm_irq_setup->saved_mask); } /** * omap_prcm_register_chain_handler - initializes the prcm chained interrupt * handler based on provided parameters * @irq_setup: hardware data about the underlying PRM/PRCM * * Set up the PRCM chained interrupt handler on the PRCM IRQ. Sets up * one generic IRQ chip per PRM interrupt status/enable register pair. * Returns 0 upon success, -EINVAL if called twice or if invalid * arguments are passed, or -ENOMEM on any other error. */ int omap_prcm_register_chain_handler(struct omap_prcm_irq_setup *irq_setup) { int nr_regs; u32 mask[OMAP_PRCM_MAX_NR_PENDING_REG]; int offset, i; struct irq_chip_generic *gc; struct irq_chip_type *ct; unsigned int irq; if (!irq_setup) return -EINVAL; nr_regs = irq_setup->nr_regs; if (prcm_irq_setup) { pr_err("PRCM: already initialized; won't reinitialize\n"); return -EINVAL; } if (nr_regs > OMAP_PRCM_MAX_NR_PENDING_REG) { pr_err("PRCM: nr_regs too large\n"); return -EINVAL; } prcm_irq_setup = irq_setup; prcm_irq_chips = kzalloc(sizeof(void *) * nr_regs, GFP_KERNEL); prcm_irq_setup->saved_mask = kzalloc(sizeof(u32) * nr_regs, GFP_KERNEL); prcm_irq_setup->priority_mask = kzalloc(sizeof(u32) * nr_regs, GFP_KERNEL); if (!prcm_irq_chips || !prcm_irq_setup->saved_mask || !prcm_irq_setup->priority_mask) { pr_err("PRCM: kzalloc failed\n"); goto err; } memset(mask, 0, sizeof(mask)); for (i = 0; i < irq_setup->nr_irqs; i++) { offset = irq_setup->irqs[i].offset; mask[offset >> 5] |= 1 << (offset & 0x1f); if (irq_setup->irqs[i].priority) irq_setup->priority_mask[offset >> 5] |= 1 << (offset & 0x1f); } if (irq_setup->xlate_irq) irq = irq_setup->xlate_irq(irq_setup->irq); else irq = irq_setup->irq; irq_set_chained_handler(irq, omap_prcm_irq_handler); irq_setup->base_irq = irq_alloc_descs(-1, 0, irq_setup->nr_regs * 32, 0); if (irq_setup->base_irq < 0) { pr_err("PRCM: failed to allocate irq descs: %d\n", irq_setup->base_irq); goto err; } for (i = 0; i < irq_setup->nr_regs; i++) { gc = irq_alloc_generic_chip("PRCM", 1, irq_setup->base_irq + i * 32, prm_base, handle_level_irq); if (!gc) { pr_err("PRCM: failed to allocate generic chip\n"); goto err; } ct = gc->chip_types; ct->chip.irq_ack = irq_gc_ack_set_bit; ct->chip.irq_mask = irq_gc_mask_clr_bit; ct->chip.irq_unmask = irq_gc_mask_set_bit; ct->regs.ack = irq_setup->ack + i * 4; ct->regs.mask = irq_setup->mask + i * 4; irq_setup_generic_chip(gc, mask[i], 0, IRQ_NOREQUEST, 0); prcm_irq_chips[i] = gc; } if (of_have_populated_dt()) { int irq = omap_prcm_event_to_irq("io"); omap_pcs_legacy_init(irq, irq_setup->reconfigure_io_chain); } return 0; err: omap_prcm_irq_cleanup(); return -ENOMEM; } /** * omap2_set_globals_prm - set the PRM base address (for early use) * @prm: PRM base virtual address * * XXX Will be replaced when the PRM/CM drivers are completed. */ void __init omap2_set_globals_prm(void __iomem *prm) { prm_base = prm; } /** * prm_read_reset_sources - return the sources of the SoC's last reset * * Return a u32 bitmask representing the reset sources that caused the * SoC to reset. The low-level per-SoC functions called by this * function remap the SoC-specific reset source bits into an * OMAP-common set of reset source bits, defined in * arch/arm/mach-omap2/prm.h. Returns the standardized reset source * u32 bitmask from the hardware upon success, or returns (1 << * OMAP_UNKNOWN_RST_SRC_ID_SHIFT) if no low-level read_reset_sources() * function was registered. */ u32 prm_read_reset_sources(void) { u32 ret = 1 << OMAP_UNKNOWN_RST_SRC_ID_SHIFT; if (prm_ll_data->read_reset_sources) ret = prm_ll_data->read_reset_sources(); else WARN_ONCE(1, "prm: %s: no mapping function defined for reset sources\n", __func__); return ret; } /** * prm_was_any_context_lost_old - was device context lost? (old API) * @part: PRM partition ID (e.g., OMAP4430_PRM_PARTITION) * @inst: PRM instance offset (e.g., OMAP4430_PRM_MPU_INST) * @idx: CONTEXT register offset * * Return 1 if any bits were set in the *_CONTEXT_* register * identified by (@part, @inst, @idx), which means that some context * was lost for that module; otherwise, return 0. XXX Deprecated; * callers need to use a less-SoC-dependent way to identify hardware * IP blocks. */ bool prm_was_any_context_lost_old(u8 part, s16 inst, u16 idx) { bool ret = true; if (prm_ll_data->was_any_context_lost_old) ret = prm_ll_data->was_any_context_lost_old(part, inst, idx); else WARN_ONCE(1, "prm: %s: no mapping function defined\n", __func__); return ret; } /** * prm_clear_context_lost_flags_old - clear context loss flags (old API) * @part: PRM partition ID (e.g., OMAP4430_PRM_PARTITION) * @inst: PRM instance offset (e.g., OMAP4430_PRM_MPU_INST) * @idx: CONTEXT register offset * * Clear hardware context loss bits for the module identified by * (@part, @inst, @idx). No return value. XXX Deprecated; callers * need to use a less-SoC-dependent way to identify hardware IP * blocks. */ void prm_clear_context_loss_flags_old(u8 part, s16 inst, u16 idx) { if (prm_ll_data->clear_context_loss_flags_old) prm_ll_data->clear_context_loss_flags_old(part, inst, idx); else WARN_ONCE(1, "prm: %s: no mapping function defined\n", __func__); } /** * omap_prm_assert_hardreset - assert hardreset for an IP block * @shift: register bit shift corresponding to the reset line * @part: PRM partition * @prm_mod: PRM submodule base or instance offset * @offset: register offset * * Asserts a hardware reset line for an IP block. */ int omap_prm_assert_hardreset(u8 shift, u8 part, s16 prm_mod, u16 offset) { if (!prm_ll_data->assert_hardreset) { WARN_ONCE(1, "prm: %s: no mapping function defined\n", __func__); return -EINVAL; } return prm_ll_data->assert_hardreset(shift, part, prm_mod, offset); } /** * omap_prm_deassert_hardreset - deassert hardreset for an IP block * @shift: register bit shift corresponding to the reset line * @st_shift: reset status bit shift corresponding to the reset line * @part: PRM partition * @prm_mod: PRM submodule base or instance offset * @offset: register offset * @st_offset: status register offset * * Deasserts a hardware reset line for an IP block. */ int omap_prm_deassert_hardreset(u8 shift, u8 st_shift, u8 part, s16 prm_mod, u16 offset, u16 st_offset) { if (!prm_ll_data->deassert_hardreset) { WARN_ONCE(1, "prm: %s: no mapping function defined\n", __func__); return -EINVAL; } return prm_ll_data->deassert_hardreset(shift, st_shift, part, prm_mod, offset, st_offset); } /** * omap_prm_is_hardreset_asserted - check the hardreset status for an IP block * @shift: register bit shift corresponding to the reset line * @part: PRM partition * @prm_mod: PRM submodule base or instance offset * @offset: register offset * * Checks if a hardware reset line for an IP block is enabled or not. */ int omap_prm_is_hardreset_asserted(u8 shift, u8 part, s16 prm_mod, u16 offset) { if (!prm_ll_data->is_hardreset_asserted) { WARN_ONCE(1, "prm: %s: no mapping function defined\n", __func__); return -EINVAL; } return prm_ll_data->is_hardreset_asserted(shift, part, prm_mod, offset); } /** * omap_prm_reconfigure_io_chain - clear latches and reconfigure I/O chain * * Clear any previously-latched I/O wakeup events and ensure that the * I/O wakeup gates are aligned with the current mux settings. * Calls SoC specific I/O chain reconfigure function if available, * otherwise does nothing. */ void omap_prm_reconfigure_io_chain(void) { if (!prcm_irq_setup || !prcm_irq_setup->reconfigure_io_chain) return; prcm_irq_setup->reconfigure_io_chain(); } /** * omap_prm_reset_system - trigger global SW reset * * Triggers SoC specific global warm reset to reboot the device. */ void omap_prm_reset_system(void) { if (!prm_ll_data->reset_system) { WARN_ONCE(1, "prm: %s: no mapping function defined\n", __func__); return; } prm_ll_data->reset_system(); while (1) cpu_relax(); } /** * omap_prm_clear_mod_irqs - clear wake-up events from PRCM interrupt * @module: PRM module to clear wakeups from * @regs: register to clear * @wkst_mask: wkst bits to clear * * Clears any wakeup events for the module and register set defined. * Uses SoC specific implementation to do the actual wakeup status * clearing. */ int omap_prm_clear_mod_irqs(s16 module, u8 regs, u32 wkst_mask) { if (!prm_ll_data->clear_mod_irqs) { WARN_ONCE(1, "prm: %s: no mapping function defined\n", __func__); return -EINVAL; } return prm_ll_data->clear_mod_irqs(module, regs, wkst_mask); } /** * omap_prm_vp_check_txdone - check voltage processor TX done status * * Checks if voltage processor transmission has been completed. * Returns non-zero if a transmission has completed, 0 otherwise. */ u32 omap_prm_vp_check_txdone(u8 vp_id) { if (!prm_ll_data->vp_check_txdone) { WARN_ONCE(1, "prm: %s: no mapping function defined\n", __func__); return 0; } return prm_ll_data->vp_check_txdone(vp_id); } /** * omap_prm_vp_clear_txdone - clears voltage processor TX done status * * Clears the status bit for completed voltage processor transmission * returned by prm_vp_check_txdone. */ void omap_prm_vp_clear_txdone(u8 vp_id) { if (!prm_ll_data->vp_clear_txdone) { WARN_ONCE(1, "prm: %s: no mapping function defined\n", __func__); return; } prm_ll_data->vp_clear_txdone(vp_id); } /** * prm_register - register per-SoC low-level data with the PRM * @pld: low-level per-SoC OMAP PRM data & function pointers to register * * Register per-SoC low-level OMAP PRM data and function pointers with * the OMAP PRM common interface. The caller must keep the data * pointed to by @pld valid until it calls prm_unregister() and * it returns successfully. Returns 0 upon success, -EINVAL if @pld * is NULL, or -EEXIST if prm_register() has already been called * without an intervening prm_unregister(). */ int prm_register(struct prm_ll_data *pld) { if (!pld) return -EINVAL; if (prm_ll_data != &null_prm_ll_data) return -EEXIST; prm_ll_data = pld; return 0; } /** * prm_unregister - unregister per-SoC low-level data & function pointers * @pld: low-level per-SoC OMAP PRM data & function pointers to unregister * * Unregister per-SoC low-level OMAP PRM data and function pointers * that were previously registered with prm_register(). The * caller may not destroy any of the data pointed to by @pld until * this function returns successfully. Returns 0 upon success, or * -EINVAL if @pld is NULL or if @pld does not match the struct * prm_ll_data * previously registered by prm_register(). */ int prm_unregister(struct prm_ll_data *pld) { if (!pld || prm_ll_data != pld) return -EINVAL; prm_ll_data = &null_prm_ll_data; return 0; } #ifdef CONFIG_ARCH_OMAP2 static struct omap_prcm_init_data omap2_prm_data __initdata = { .index = TI_CLKM_PRM, .init = omap2xxx_prm_init, }; #endif #ifdef CONFIG_ARCH_OMAP3 static struct omap_prcm_init_data omap3_prm_data __initdata = { .index = TI_CLKM_PRM, .init = omap3xxx_prm_init, /* * IVA2 offset is a negative value, must offset the prm_base * address by this to get it to positive */ .offset = -OMAP3430_IVA2_MOD, }; #endif #if defined(CONFIG_SOC_AM33XX) || defined(CONFIG_SOC_TI81XX) static struct omap_prcm_init_data am3_prm_data __initdata = { .index = TI_CLKM_PRM, .init = am33xx_prm_init, }; #endif #ifdef CONFIG_ARCH_OMAP4 static struct omap_prcm_init_data omap4_prm_data __initdata = { .index = TI_CLKM_PRM, .init = omap44xx_prm_init, .device_inst_offset = OMAP4430_PRM_DEVICE_INST, .flags = PRM_HAS_IO_WAKEUP | PRM_HAS_VOLTAGE | PRM_IRQ_DEFAULT, }; #endif #ifdef CONFIG_SOC_OMAP5 static struct omap_prcm_init_data omap5_prm_data __initdata = { .index = TI_CLKM_PRM, .init = omap44xx_prm_init, .device_inst_offset = OMAP54XX_PRM_DEVICE_INST, .flags = PRM_HAS_IO_WAKEUP | PRM_HAS_VOLTAGE, }; #endif #ifdef CONFIG_SOC_DRA7XX static struct omap_prcm_init_data dra7_prm_data __initdata = { .index = TI_CLKM_PRM, .init = omap44xx_prm_init, .device_inst_offset = DRA7XX_PRM_DEVICE_INST, .flags = PRM_HAS_IO_WAKEUP, }; #endif #ifdef CONFIG_SOC_AM43XX static struct omap_prcm_init_data am4_prm_data __initdata = { .index = TI_CLKM_PRM, .init = omap44xx_prm_init, .device_inst_offset = AM43XX_PRM_DEVICE_INST, }; #endif #if defined(CONFIG_ARCH_OMAP4) || defined(CONFIG_SOC_OMAP5) static struct omap_prcm_init_data scrm_data __initdata = { .index = TI_CLKM_SCRM, }; #endif static const struct of_device_id omap_prcm_dt_match_table[] __initconst = { #ifdef CONFIG_SOC_AM33XX { .compatible = "ti,am3-prcm", .data = &am3_prm_data }, #endif #ifdef CONFIG_SOC_AM43XX { .compatible = "ti,am4-prcm", .data = &am4_prm_data }, #endif #ifdef CONFIG_SOC_TI81XX { .compatible = "ti,dm814-prcm", .data = &am3_prm_data }, { .compatible = "ti,dm816-prcm", .data = &am3_prm_data }, #endif #ifdef CONFIG_ARCH_OMAP2 { .compatible = "ti,omap2-prcm", .data = &omap2_prm_data }, #endif #ifdef CONFIG_ARCH_OMAP3 { .compatible = "ti,omap3-prm", .data = &omap3_prm_data }, #endif #ifdef CONFIG_ARCH_OMAP4 { .compatible = "ti,omap4-prm", .data = &omap4_prm_data }, { .compatible = "ti,omap4-scrm", .data = &scrm_data }, #endif #ifdef CONFIG_SOC_OMAP5 { .compatible = "ti,omap5-prm", .data = &omap5_prm_data }, { .compatible = "ti,omap5-scrm", .data = &scrm_data }, #endif #ifdef CONFIG_SOC_DRA7XX { .compatible = "ti,dra7-prm", .data = &dra7_prm_data }, #endif { } }; /** * omap2_prm_base_init - initialize iomappings for the PRM driver * * Detects and initializes the iomappings for the PRM driver, based * on the DT data. Returns 0 in success, negative error value * otherwise. */ int __init omap2_prm_base_init(void) { struct device_node *np; const struct of_device_id *match; struct omap_prcm_init_data *data; void __iomem *mem; for_each_matching_node_and_match(np, omap_prcm_dt_match_table, &match) { data = (struct omap_prcm_init_data *)match->data; mem = of_iomap(np, 0); if (!mem) return -ENOMEM; if (data->index == TI_CLKM_PRM) prm_base = mem + data->offset; data->mem = mem; data->np = np; if (data->init) data->init(data); } return 0; } int __init omap2_prcm_base_init(void) { int ret; ret = omap2_prm_base_init(); if (ret) return ret; return omap2_cm_base_init(); } /** * omap_prcm_init - low level init for the PRCM drivers * * Initializes the low level clock infrastructure for PRCM drivers. * Returns 0 in success, negative error value in failure. */ int __init omap_prcm_init(void) { struct device_node *np; const struct of_device_id *match; const struct omap_prcm_init_data *data; int ret; for_each_matching_node_and_match(np, omap_prcm_dt_match_table, &match) { data = match->data; ret = omap2_clk_provider_init(np, data->index, NULL, data->mem); if (ret) return ret; } omap_cm_init(); return 0; } static int __init prm_late_init(void) { if (prm_ll_data->late_init) return prm_ll_data->late_init(); return 0; } subsys_initcall(prm_late_init);