/* * Memory barrier definitions. This is based on information published * in the Processor Abstraction Layer and the System Abstraction Layer * manual. * * Copyright (C) 1998-2003 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com> * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> */ #ifndef _ASM_IA64_BARRIER_H #define _ASM_IA64_BARRIER_H #include <linux/compiler.h> /* * Macros to force memory ordering. In these descriptions, "previous" * and "subsequent" refer to program order; "visible" means that all * architecturally visible effects of a memory access have occurred * (at a minimum, this means the memory has been read or written). * * wmb(): Guarantees that all preceding stores to memory- * like regions are visible before any subsequent * stores and that all following stores will be * visible only after all previous stores. * rmb(): Like wmb(), but for reads. * mb(): wmb()/rmb() combo, i.e., all previous memory * accesses are visible before all subsequent * accesses and vice versa. This is also known as * a "fence." * * Note: "mb()" and its variants cannot be used as a fence to order * accesses to memory mapped I/O registers. For that, mf.a needs to * be used. However, we don't want to always use mf.a because (a) * it's (presumably) much slower than mf and (b) mf.a is supported for * sequential memory pages only. */ #define mb() ia64_mf() #define rmb() mb() #define wmb() mb() #define dma_rmb() mb() #define dma_wmb() mb() #ifdef CONFIG_SMP # define smp_mb() mb() #else # define smp_mb() barrier() #endif #define smp_rmb() smp_mb() #define smp_wmb() smp_mb() #define read_barrier_depends() do { } while (0) #define smp_read_barrier_depends() do { } while (0) #define smp_mb__before_atomic() barrier() #define smp_mb__after_atomic() barrier() /* * IA64 GCC turns volatile stores into st.rel and volatile loads into ld.acq no * need for asm trickery! */ #define smp_store_release(p, v) \ do { \ compiletime_assert_atomic_type(*p); \ barrier(); \ ACCESS_ONCE(*p) = (v); \ } while (0) #define smp_load_acquire(p) \ ({ \ typeof(*p) ___p1 = ACCESS_ONCE(*p); \ compiletime_assert_atomic_type(*p); \ barrier(); \ ___p1; \ }) /* * XXX check on this ---I suspect what Linus really wants here is * acquire vs release semantics but we can't discuss this stuff with * Linus just yet. Grrr... */ #define set_mb(var, value) do { (var) = (value); mb(); } while (0) /* * The group barrier in front of the rsm & ssm are necessary to ensure * that none of the previous instructions in the same group are * affected by the rsm/ssm. */ #endif /* _ASM_IA64_BARRIER_H */