/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive * for more details. */ #undef DEBUG #include <linux/dma-mapping.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/export.h> #include <asm/pgalloc.h> #if defined(CONFIG_MMU) && !defined(CONFIG_COLDFIRE) void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t flag) { struct page *page, **map; pgprot_t pgprot; void *addr; int i, order; pr_debug("dma_alloc_coherent: %d,%x\n", size, flag); size = PAGE_ALIGN(size); order = get_order(size); page = alloc_pages(flag, order); if (!page) return NULL; *handle = page_to_phys(page); map = kmalloc(sizeof(struct page *) << order, flag & ~__GFP_DMA); if (!map) { __free_pages(page, order); return NULL; } split_page(page, order); order = 1 << order; size >>= PAGE_SHIFT; map[0] = page; for (i = 1; i < size; i++) map[i] = page + i; for (; i < order; i++) __free_page(page + i); pgprot = __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_DIRTY); if (CPU_IS_040_OR_060) pgprot_val(pgprot) |= _PAGE_GLOBAL040 | _PAGE_NOCACHE_S; else pgprot_val(pgprot) |= _PAGE_NOCACHE030; addr = vmap(map, size, VM_MAP, pgprot); kfree(map); return addr; } void dma_free_coherent(struct device *dev, size_t size, void *addr, dma_addr_t handle) { pr_debug("dma_free_coherent: %p, %x\n", addr, handle); vfree(addr); } #else #include <asm/cacheflush.h> void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp) { void *ret; /* ignore region specifiers */ gfp &= ~(__GFP_DMA | __GFP_HIGHMEM); if (dev == NULL || (*dev->dma_mask < 0xffffffff)) gfp |= GFP_DMA; ret = (void *)__get_free_pages(gfp, get_order(size)); if (ret != NULL) { memset(ret, 0, size); *dma_handle = virt_to_phys(ret); } return ret; } void dma_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle) { free_pages((unsigned long)vaddr, get_order(size)); } #endif /* CONFIG_MMU && !CONFIG_COLDFIRE */ EXPORT_SYMBOL(dma_alloc_coherent); EXPORT_SYMBOL(dma_free_coherent); void dma_sync_single_for_device(struct device *dev, dma_addr_t handle, size_t size, enum dma_data_direction dir) { switch (dir) { case DMA_BIDIRECTIONAL: case DMA_TO_DEVICE: cache_push(handle, size); break; case DMA_FROM_DEVICE: cache_clear(handle, size); break; default: if (printk_ratelimit()) printk("dma_sync_single_for_device: unsupported dir %u\n", dir); break; } } EXPORT_SYMBOL(dma_sync_single_for_device); void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { int i; for (i = 0; i < nents; sg++, i++) dma_sync_single_for_device(dev, sg->dma_address, sg->length, dir); } EXPORT_SYMBOL(dma_sync_sg_for_device); dma_addr_t dma_map_single(struct device *dev, void *addr, size_t size, enum dma_data_direction dir) { dma_addr_t handle = virt_to_bus(addr); dma_sync_single_for_device(dev, handle, size, dir); return handle; } EXPORT_SYMBOL(dma_map_single); dma_addr_t dma_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir) { dma_addr_t handle = page_to_phys(page) + offset; dma_sync_single_for_device(dev, handle, size, dir); return handle; } EXPORT_SYMBOL(dma_map_page); int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { int i; for (i = 0; i < nents; sg++, i++) { sg->dma_address = sg_phys(sg); dma_sync_single_for_device(dev, sg->dma_address, sg->length, dir); } return nents; } EXPORT_SYMBOL(dma_map_sg);