/* * Copytight (C) 1999, 2000, 05, 06 Ralf Baechle (ralf@linux-mips.org) * Copytight (C) 1999, 2000 Silicon Graphics, Inc. */ #include <linux/bcd.h> #include <linux/clockchips.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/sched_clock.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/param.h> #include <linux/smp.h> #include <linux/time.h> #include <linux/timex.h> #include <linux/mm.h> #include <linux/platform_device.h> #include <asm/time.h> #include <asm/pgtable.h> #include <asm/sgialib.h> #include <asm/sn/ioc3.h> #include <asm/sn/klconfig.h> #include <asm/sn/arch.h> #include <asm/sn/addrs.h> #include <asm/sn/sn_private.h> #include <asm/sn/sn0/ip27.h> #include <asm/sn/sn0/hub.h> #define TICK_SIZE (tick_nsec / 1000) /* Includes for ioc3_init(). */ #include <asm/sn/types.h> #include <asm/sn/sn0/addrs.h> #include <asm/sn/sn0/hubni.h> #include <asm/sn/sn0/hubio.h> #include <asm/pci/bridge.h> static void enable_rt_irq(struct irq_data *d) { } static void disable_rt_irq(struct irq_data *d) { } static struct irq_chip rt_irq_type = { .name = "SN HUB RT timer", .irq_mask = disable_rt_irq, .irq_unmask = enable_rt_irq, }; static int rt_next_event(unsigned long delta, struct clock_event_device *evt) { unsigned int cpu = smp_processor_id(); int slice = cputoslice(cpu); unsigned long cnt; cnt = LOCAL_HUB_L(PI_RT_COUNT); cnt += delta; LOCAL_HUB_S(PI_RT_COMPARE_A + PI_COUNT_OFFSET * slice, cnt); return LOCAL_HUB_L(PI_RT_COUNT) >= cnt ? -ETIME : 0; } static void rt_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { /* Nothing to do ... */ } unsigned int rt_timer_irq; static DEFINE_PER_CPU(struct clock_event_device, hub_rt_clockevent); static DEFINE_PER_CPU(char [11], hub_rt_name); static irqreturn_t hub_rt_counter_handler(int irq, void *dev_id) { unsigned int cpu = smp_processor_id(); struct clock_event_device *cd = &per_cpu(hub_rt_clockevent, cpu); int slice = cputoslice(cpu); /* * Ack */ LOCAL_HUB_S(PI_RT_PEND_A + PI_COUNT_OFFSET * slice, 0); cd->event_handler(cd); return IRQ_HANDLED; } struct irqaction hub_rt_irqaction = { .handler = hub_rt_counter_handler, .flags = IRQF_PERCPU | IRQF_TIMER, .name = "hub-rt", }; /* * This is a hack; we really need to figure these values out dynamically * * Since 800 ns works very well with various HUB frequencies, such as * 360, 380, 390 and 400 MHZ, we use 800 ns rtc cycle time. * * Ralf: which clock rate is used to feed the counter? */ #define NSEC_PER_CYCLE 800 #define CYCLES_PER_SEC (NSEC_PER_SEC / NSEC_PER_CYCLE) void hub_rt_clock_event_init(void) { unsigned int cpu = smp_processor_id(); struct clock_event_device *cd = &per_cpu(hub_rt_clockevent, cpu); unsigned char *name = per_cpu(hub_rt_name, cpu); int irq = rt_timer_irq; sprintf(name, "hub-rt %d", cpu); cd->name = name; cd->features = CLOCK_EVT_FEAT_ONESHOT; clockevent_set_clock(cd, CYCLES_PER_SEC); cd->max_delta_ns = clockevent_delta2ns(0xfffffffffffff, cd); cd->min_delta_ns = clockevent_delta2ns(0x300, cd); cd->rating = 200; cd->irq = irq; cd->cpumask = cpumask_of(cpu); cd->set_next_event = rt_next_event; cd->set_mode = rt_set_mode; clockevents_register_device(cd); } static void __init hub_rt_clock_event_global_init(void) { int irq; do { smp_wmb(); irq = rt_timer_irq; if (irq) break; irq = allocate_irqno(); if (irq < 0) panic("Allocation of irq number for timer failed"); } while (xchg(&rt_timer_irq, irq)); irq_set_chip_and_handler(irq, &rt_irq_type, handle_percpu_irq); setup_irq(irq, &hub_rt_irqaction); } static cycle_t hub_rt_read(struct clocksource *cs) { return REMOTE_HUB_L(cputonasid(0), PI_RT_COUNT); } struct clocksource hub_rt_clocksource = { .name = "HUB-RT", .rating = 200, .read = hub_rt_read, .mask = CLOCKSOURCE_MASK(52), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static u64 notrace hub_rt_read_sched_clock(void) { return REMOTE_HUB_L(cputonasid(0), PI_RT_COUNT); } static void __init hub_rt_clocksource_init(void) { struct clocksource *cs = &hub_rt_clocksource; clocksource_register_hz(cs, CYCLES_PER_SEC); sched_clock_register(hub_rt_read_sched_clock, 52, CYCLES_PER_SEC); } void __init plat_time_init(void) { hub_rt_clocksource_init(); hub_rt_clock_event_global_init(); hub_rt_clock_event_init(); } void cpu_time_init(void) { lboard_t *board; klcpu_t *cpu; int cpuid; /* Don't use ARCS. ARCS is fragile. Klconfig is simple and sane. */ board = find_lboard(KL_CONFIG_INFO(get_nasid()), KLTYPE_IP27); if (!board) panic("Can't find board info for myself."); cpuid = LOCAL_HUB_L(PI_CPU_NUM) ? IP27_CPU0_INDEX : IP27_CPU1_INDEX; cpu = (klcpu_t *) KLCF_COMP(board, cpuid); if (!cpu) panic("No information about myself?"); printk("CPU %d clock is %dMHz.\n", smp_processor_id(), cpu->cpu_speed); set_c0_status(SRB_TIMOCLK); } void hub_rtc_init(cnodeid_t cnode) { /* * We only need to initialize the current node. * If this is not the current node then it is a cpuless * node and timeouts will not happen there. */ if (get_compact_nodeid() == cnode) { LOCAL_HUB_S(PI_RT_EN_A, 1); LOCAL_HUB_S(PI_RT_EN_B, 1); LOCAL_HUB_S(PI_PROF_EN_A, 0); LOCAL_HUB_S(PI_PROF_EN_B, 0); LOCAL_HUB_S(PI_RT_COUNT, 0); LOCAL_HUB_S(PI_RT_PEND_A, 0); LOCAL_HUB_S(PI_RT_PEND_B, 0); } } static int __init sgi_ip27_rtc_devinit(void) { struct resource res; memset(&res, 0, sizeof(res)); res.start = XPHYSADDR(KL_CONFIG_CH_CONS_INFO(master_nasid)->memory_base + IOC3_BYTEBUS_DEV0); res.end = res.start + 32767; res.flags = IORESOURCE_MEM; return IS_ERR(platform_device_register_simple("rtc-m48t35", -1, &res, 1)); } /* * kludge make this a device_initcall after ioc3 resource conflicts * are resolved */ late_initcall(sgi_ip27_rtc_devinit);