/* * * Procedures for interfacing to the RTAS on CHRP machines. * * Peter Bergner, IBM March 2001. * Copyright (C) 2001 IBM. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <stdarg.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/export.h> #include <linux/init.h> #include <linux/capability.h> #include <linux/delay.h> #include <linux/cpu.h> #include <linux/smp.h> #include <linux/completion.h> #include <linux/cpumask.h> #include <linux/memblock.h> #include <linux/slab.h> #include <linux/reboot.h> #include <asm/prom.h> #include <asm/rtas.h> #include <asm/hvcall.h> #include <asm/machdep.h> #include <asm/firmware.h> #include <asm/page.h> #include <asm/param.h> #include <asm/delay.h> #include <asm/uaccess.h> #include <asm/udbg.h> #include <asm/syscalls.h> #include <asm/smp.h> #include <linux/atomic.h> #include <asm/time.h> #include <asm/mmu.h> #include <asm/topology.h> struct rtas_t rtas = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; EXPORT_SYMBOL(rtas); DEFINE_SPINLOCK(rtas_data_buf_lock); EXPORT_SYMBOL(rtas_data_buf_lock); char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned; EXPORT_SYMBOL(rtas_data_buf); unsigned long rtas_rmo_buf; /* * If non-NULL, this gets called when the kernel terminates. * This is done like this so rtas_flash can be a module. */ void (*rtas_flash_term_hook)(int); EXPORT_SYMBOL(rtas_flash_term_hook); /* RTAS use home made raw locking instead of spin_lock_irqsave * because those can be called from within really nasty contexts * such as having the timebase stopped which would lockup with * normal locks and spinlock debugging enabled */ static unsigned long lock_rtas(void) { unsigned long flags; local_irq_save(flags); preempt_disable(); arch_spin_lock_flags(&rtas.lock, flags); return flags; } static void unlock_rtas(unsigned long flags) { arch_spin_unlock(&rtas.lock); local_irq_restore(flags); preempt_enable(); } /* * call_rtas_display_status and call_rtas_display_status_delay * are designed only for very early low-level debugging, which * is why the token is hard-coded to 10. */ static void call_rtas_display_status(unsigned char c) { struct rtas_args *args = &rtas.args; unsigned long s; if (!rtas.base) return; s = lock_rtas(); args->token = cpu_to_be32(10); args->nargs = cpu_to_be32(1); args->nret = cpu_to_be32(1); args->rets = &(args->args[1]); args->args[0] = cpu_to_be32(c); enter_rtas(__pa(args)); unlock_rtas(s); } static void call_rtas_display_status_delay(char c) { static int pending_newline = 0; /* did last write end with unprinted newline? */ static int width = 16; if (c == '\n') { while (width-- > 0) call_rtas_display_status(' '); width = 16; mdelay(500); pending_newline = 1; } else { if (pending_newline) { call_rtas_display_status('\r'); call_rtas_display_status('\n'); } pending_newline = 0; if (width--) { call_rtas_display_status(c); udelay(10000); } } } void __init udbg_init_rtas_panel(void) { udbg_putc = call_rtas_display_status_delay; } #ifdef CONFIG_UDBG_RTAS_CONSOLE /* If you think you're dying before early_init_dt_scan_rtas() does its * work, you can hard code the token values for your firmware here and * hardcode rtas.base/entry etc. */ static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE; static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE; static void udbg_rtascon_putc(char c) { int tries; if (!rtas.base) return; /* Add CRs before LFs */ if (c == '\n') udbg_rtascon_putc('\r'); /* if there is more than one character to be displayed, wait a bit */ for (tries = 0; tries < 16; tries++) { if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0) break; udelay(1000); } } static int udbg_rtascon_getc_poll(void) { int c; if (!rtas.base) return -1; if (rtas_call(rtas_getchar_token, 0, 2, &c)) return -1; return c; } static int udbg_rtascon_getc(void) { int c; while ((c = udbg_rtascon_getc_poll()) == -1) ; return c; } void __init udbg_init_rtas_console(void) { udbg_putc = udbg_rtascon_putc; udbg_getc = udbg_rtascon_getc; udbg_getc_poll = udbg_rtascon_getc_poll; } #endif /* CONFIG_UDBG_RTAS_CONSOLE */ void rtas_progress(char *s, unsigned short hex) { struct device_node *root; int width; const __be32 *p; char *os; static int display_character, set_indicator; static int display_width, display_lines, form_feed; static const int *row_width; static DEFINE_SPINLOCK(progress_lock); static int current_line; static int pending_newline = 0; /* did last write end with unprinted newline? */ if (!rtas.base) return; if (display_width == 0) { display_width = 0x10; if ((root = of_find_node_by_path("/rtas"))) { if ((p = of_get_property(root, "ibm,display-line-length", NULL))) display_width = be32_to_cpu(*p); if ((p = of_get_property(root, "ibm,form-feed", NULL))) form_feed = be32_to_cpu(*p); if ((p = of_get_property(root, "ibm,display-number-of-lines", NULL))) display_lines = be32_to_cpu(*p); row_width = of_get_property(root, "ibm,display-truncation-length", NULL); of_node_put(root); } display_character = rtas_token("display-character"); set_indicator = rtas_token("set-indicator"); } if (display_character == RTAS_UNKNOWN_SERVICE) { /* use hex display if available */ if (set_indicator != RTAS_UNKNOWN_SERVICE) rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex); return; } spin_lock(&progress_lock); /* * Last write ended with newline, but we didn't print it since * it would just clear the bottom line of output. Print it now * instead. * * If no newline is pending and form feed is supported, clear the * display with a form feed; otherwise, print a CR to start output * at the beginning of the line. */ if (pending_newline) { rtas_call(display_character, 1, 1, NULL, '\r'); rtas_call(display_character, 1, 1, NULL, '\n'); pending_newline = 0; } else { current_line = 0; if (form_feed) rtas_call(display_character, 1, 1, NULL, (char)form_feed); else rtas_call(display_character, 1, 1, NULL, '\r'); } if (row_width) width = row_width[current_line]; else width = display_width; os = s; while (*os) { if (*os == '\n' || *os == '\r') { /* If newline is the last character, save it * until next call to avoid bumping up the * display output. */ if (*os == '\n' && !os[1]) { pending_newline = 1; current_line++; if (current_line > display_lines-1) current_line = display_lines-1; spin_unlock(&progress_lock); return; } /* RTAS wants CR-LF, not just LF */ if (*os == '\n') { rtas_call(display_character, 1, 1, NULL, '\r'); rtas_call(display_character, 1, 1, NULL, '\n'); } else { /* CR might be used to re-draw a line, so we'll * leave it alone and not add LF. */ rtas_call(display_character, 1, 1, NULL, *os); } if (row_width) width = row_width[current_line]; else width = display_width; } else { width--; rtas_call(display_character, 1, 1, NULL, *os); } os++; /* if we overwrite the screen length */ if (width <= 0) while ((*os != 0) && (*os != '\n') && (*os != '\r')) os++; } spin_unlock(&progress_lock); } EXPORT_SYMBOL(rtas_progress); /* needed by rtas_flash module */ int rtas_token(const char *service) { const __be32 *tokp; if (rtas.dev == NULL) return RTAS_UNKNOWN_SERVICE; tokp = of_get_property(rtas.dev, service, NULL); return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE; } EXPORT_SYMBOL(rtas_token); int rtas_service_present(const char *service) { return rtas_token(service) != RTAS_UNKNOWN_SERVICE; } EXPORT_SYMBOL(rtas_service_present); #ifdef CONFIG_RTAS_ERROR_LOGGING /* * Return the firmware-specified size of the error log buffer * for all rtas calls that require an error buffer argument. * This includes 'check-exception' and 'rtas-last-error'. */ int rtas_get_error_log_max(void) { static int rtas_error_log_max; if (rtas_error_log_max) return rtas_error_log_max; rtas_error_log_max = rtas_token ("rtas-error-log-max"); if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) || (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) { printk (KERN_WARNING "RTAS: bad log buffer size %d\n", rtas_error_log_max); rtas_error_log_max = RTAS_ERROR_LOG_MAX; } return rtas_error_log_max; } EXPORT_SYMBOL(rtas_get_error_log_max); static char rtas_err_buf[RTAS_ERROR_LOG_MAX]; static int rtas_last_error_token; /** Return a copy of the detailed error text associated with the * most recent failed call to rtas. Because the error text * might go stale if there are any other intervening rtas calls, * this routine must be called atomically with whatever produced * the error (i.e. with rtas.lock still held from the previous call). */ static char *__fetch_rtas_last_error(char *altbuf) { struct rtas_args err_args, save_args; u32 bufsz; char *buf = NULL; if (rtas_last_error_token == -1) return NULL; bufsz = rtas_get_error_log_max(); err_args.token = cpu_to_be32(rtas_last_error_token); err_args.nargs = cpu_to_be32(2); err_args.nret = cpu_to_be32(1); err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf)); err_args.args[1] = cpu_to_be32(bufsz); err_args.args[2] = 0; save_args = rtas.args; rtas.args = err_args; enter_rtas(__pa(&rtas.args)); err_args = rtas.args; rtas.args = save_args; /* Log the error in the unlikely case that there was one. */ if (unlikely(err_args.args[2] == 0)) { if (altbuf) { buf = altbuf; } else { buf = rtas_err_buf; if (slab_is_available()) buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC); } if (buf) memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX); } return buf; } #define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL) #else /* CONFIG_RTAS_ERROR_LOGGING */ #define __fetch_rtas_last_error(x) NULL #define get_errorlog_buffer() NULL #endif int rtas_call(int token, int nargs, int nret, int *outputs, ...) { va_list list; int i; unsigned long s; struct rtas_args *rtas_args; char *buff_copy = NULL; int ret; if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE) return -1; s = lock_rtas(); rtas_args = &rtas.args; rtas_args->token = cpu_to_be32(token); rtas_args->nargs = cpu_to_be32(nargs); rtas_args->nret = cpu_to_be32(nret); rtas_args->rets = &(rtas_args->args[nargs]); va_start(list, outputs); for (i = 0; i < nargs; ++i) rtas_args->args[i] = cpu_to_be32(va_arg(list, __u32)); va_end(list); for (i = 0; i < nret; ++i) rtas_args->rets[i] = 0; enter_rtas(__pa(rtas_args)); /* A -1 return code indicates that the last command couldn't be completed due to a hardware error. */ if (be32_to_cpu(rtas_args->rets[0]) == -1) buff_copy = __fetch_rtas_last_error(NULL); if (nret > 1 && outputs != NULL) for (i = 0; i < nret-1; ++i) outputs[i] = be32_to_cpu(rtas_args->rets[i+1]); ret = (nret > 0)? be32_to_cpu(rtas_args->rets[0]): 0; unlock_rtas(s); if (buff_copy) { log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); if (slab_is_available()) kfree(buff_copy); } return ret; } EXPORT_SYMBOL(rtas_call); /* For RTAS_BUSY (-2), delay for 1 millisecond. For an extended busy status * code of 990n, perform the hinted delay of 10^n (last digit) milliseconds. */ unsigned int rtas_busy_delay_time(int status) { int order; unsigned int ms = 0; if (status == RTAS_BUSY) { ms = 1; } else if (status >= 9900 && status <= 9905) { order = status - 9900; for (ms = 1; order > 0; order--) ms *= 10; } return ms; } EXPORT_SYMBOL(rtas_busy_delay_time); /* For an RTAS busy status code, perform the hinted delay. */ unsigned int rtas_busy_delay(int status) { unsigned int ms; might_sleep(); ms = rtas_busy_delay_time(status); if (ms && need_resched()) msleep(ms); return ms; } EXPORT_SYMBOL(rtas_busy_delay); static int rtas_error_rc(int rtas_rc) { int rc; switch (rtas_rc) { case -1: /* Hardware Error */ rc = -EIO; break; case -3: /* Bad indicator/domain/etc */ rc = -EINVAL; break; case -9000: /* Isolation error */ rc = -EFAULT; break; case -9001: /* Outstanding TCE/PTE */ rc = -EEXIST; break; case -9002: /* No usable slot */ rc = -ENODEV; break; default: printk(KERN_ERR "%s: unexpected RTAS error %d\n", __func__, rtas_rc); rc = -ERANGE; break; } return rc; } int rtas_get_power_level(int powerdomain, int *level) { int token = rtas_token("get-power-level"); int rc; if (token == RTAS_UNKNOWN_SERVICE) return -ENOENT; while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY) udelay(1); if (rc < 0) return rtas_error_rc(rc); return rc; } EXPORT_SYMBOL(rtas_get_power_level); int rtas_set_power_level(int powerdomain, int level, int *setlevel) { int token = rtas_token("set-power-level"); int rc; if (token == RTAS_UNKNOWN_SERVICE) return -ENOENT; do { rc = rtas_call(token, 2, 2, setlevel, powerdomain, level); } while (rtas_busy_delay(rc)); if (rc < 0) return rtas_error_rc(rc); return rc; } EXPORT_SYMBOL(rtas_set_power_level); int rtas_get_sensor(int sensor, int index, int *state) { int token = rtas_token("get-sensor-state"); int rc; if (token == RTAS_UNKNOWN_SERVICE) return -ENOENT; do { rc = rtas_call(token, 2, 2, state, sensor, index); } while (rtas_busy_delay(rc)); if (rc < 0) return rtas_error_rc(rc); return rc; } EXPORT_SYMBOL(rtas_get_sensor); bool rtas_indicator_present(int token, int *maxindex) { int proplen, count, i; const struct indicator_elem { __be32 token; __be32 maxindex; } *indicators; indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen); if (!indicators) return false; count = proplen / sizeof(struct indicator_elem); for (i = 0; i < count; i++) { if (__be32_to_cpu(indicators[i].token) != token) continue; if (maxindex) *maxindex = __be32_to_cpu(indicators[i].maxindex); return true; } return false; } EXPORT_SYMBOL(rtas_indicator_present); int rtas_set_indicator(int indicator, int index, int new_value) { int token = rtas_token("set-indicator"); int rc; if (token == RTAS_UNKNOWN_SERVICE) return -ENOENT; do { rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); } while (rtas_busy_delay(rc)); if (rc < 0) return rtas_error_rc(rc); return rc; } EXPORT_SYMBOL(rtas_set_indicator); /* * Ignoring RTAS extended delay */ int rtas_set_indicator_fast(int indicator, int index, int new_value) { int rc; int token = rtas_token("set-indicator"); if (token == RTAS_UNKNOWN_SERVICE) return -ENOENT; rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); WARN_ON(rc == -2 || (rc >= 9900 && rc <= 9905)); if (rc < 0) return rtas_error_rc(rc); return rc; } void rtas_restart(char *cmd) { if (rtas_flash_term_hook) rtas_flash_term_hook(SYS_RESTART); printk("RTAS system-reboot returned %d\n", rtas_call(rtas_token("system-reboot"), 0, 1, NULL)); for (;;); } void rtas_power_off(void) { if (rtas_flash_term_hook) rtas_flash_term_hook(SYS_POWER_OFF); /* allow power on only with power button press */ printk("RTAS power-off returned %d\n", rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); for (;;); } void rtas_halt(void) { if (rtas_flash_term_hook) rtas_flash_term_hook(SYS_HALT); /* allow power on only with power button press */ printk("RTAS power-off returned %d\n", rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); for (;;); } /* Must be in the RMO region, so we place it here */ static char rtas_os_term_buf[2048]; void rtas_os_term(char *str) { int status; /* * Firmware with the ibm,extended-os-term property is guaranteed * to always return from an ibm,os-term call. Earlier versions without * this property may terminate the partition which we want to avoid * since it interferes with panic_timeout. */ if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term") || RTAS_UNKNOWN_SERVICE == rtas_token("ibm,extended-os-term")) return; snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str); do { status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL, __pa(rtas_os_term_buf)); } while (rtas_busy_delay(status)); if (status != 0) printk(KERN_EMERG "ibm,os-term call failed %d\n", status); } static int ibm_suspend_me_token = RTAS_UNKNOWN_SERVICE; #ifdef CONFIG_PPC_PSERIES static int __rtas_suspend_last_cpu(struct rtas_suspend_me_data *data, int wake_when_done) { u16 slb_size = mmu_slb_size; int rc = H_MULTI_THREADS_ACTIVE; int cpu; slb_set_size(SLB_MIN_SIZE); printk(KERN_DEBUG "calling ibm,suspend-me on cpu %i\n", smp_processor_id()); while (rc == H_MULTI_THREADS_ACTIVE && !atomic_read(&data->done) && !atomic_read(&data->error)) rc = rtas_call(data->token, 0, 1, NULL); if (rc || atomic_read(&data->error)) { printk(KERN_DEBUG "ibm,suspend-me returned %d\n", rc); slb_set_size(slb_size); } if (atomic_read(&data->error)) rc = atomic_read(&data->error); atomic_set(&data->error, rc); pSeries_coalesce_init(); if (wake_when_done) { atomic_set(&data->done, 1); for_each_online_cpu(cpu) plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu)); } if (atomic_dec_return(&data->working) == 0) complete(data->complete); return rc; } int rtas_suspend_last_cpu(struct rtas_suspend_me_data *data) { atomic_inc(&data->working); return __rtas_suspend_last_cpu(data, 0); } static int __rtas_suspend_cpu(struct rtas_suspend_me_data *data, int wake_when_done) { long rc = H_SUCCESS; unsigned long msr_save; int cpu; atomic_inc(&data->working); /* really need to ensure MSR.EE is off for H_JOIN */ msr_save = mfmsr(); mtmsr(msr_save & ~(MSR_EE)); while (rc == H_SUCCESS && !atomic_read(&data->done) && !atomic_read(&data->error)) rc = plpar_hcall_norets(H_JOIN); mtmsr(msr_save); if (rc == H_SUCCESS) { /* This cpu was prodded and the suspend is complete. */ goto out; } else if (rc == H_CONTINUE) { /* All other cpus are in H_JOIN, this cpu does * the suspend. */ return __rtas_suspend_last_cpu(data, wake_when_done); } else { printk(KERN_ERR "H_JOIN on cpu %i failed with rc = %ld\n", smp_processor_id(), rc); atomic_set(&data->error, rc); } if (wake_when_done) { atomic_set(&data->done, 1); /* This cpu did the suspend or got an error; in either case, * we need to prod all other other cpus out of join state. * Extra prods are harmless. */ for_each_online_cpu(cpu) plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu)); } out: if (atomic_dec_return(&data->working) == 0) complete(data->complete); return rc; } int rtas_suspend_cpu(struct rtas_suspend_me_data *data) { return __rtas_suspend_cpu(data, 0); } static void rtas_percpu_suspend_me(void *info) { __rtas_suspend_cpu((struct rtas_suspend_me_data *)info, 1); } enum rtas_cpu_state { DOWN, UP, }; #ifndef CONFIG_SMP static int rtas_cpu_state_change_mask(enum rtas_cpu_state state, cpumask_var_t cpus) { if (!cpumask_empty(cpus)) { cpumask_clear(cpus); return -EINVAL; } else return 0; } #else /* On return cpumask will be altered to indicate CPUs changed. * CPUs with states changed will be set in the mask, * CPUs with status unchanged will be unset in the mask. */ static int rtas_cpu_state_change_mask(enum rtas_cpu_state state, cpumask_var_t cpus) { int cpu; int cpuret = 0; int ret = 0; if (cpumask_empty(cpus)) return 0; for_each_cpu(cpu, cpus) { switch (state) { case DOWN: cpuret = cpu_down(cpu); break; case UP: cpuret = cpu_up(cpu); break; } if (cpuret) { pr_debug("%s: cpu_%s for cpu#%d returned %d.\n", __func__, ((state == UP) ? "up" : "down"), cpu, cpuret); if (!ret) ret = cpuret; if (state == UP) { /* clear bits for unchanged cpus, return */ cpumask_shift_right(cpus, cpus, cpu); cpumask_shift_left(cpus, cpus, cpu); break; } else { /* clear bit for unchanged cpu, continue */ cpumask_clear_cpu(cpu, cpus); } } } return ret; } #endif int rtas_online_cpus_mask(cpumask_var_t cpus) { int ret; ret = rtas_cpu_state_change_mask(UP, cpus); if (ret) { cpumask_var_t tmp_mask; if (!alloc_cpumask_var(&tmp_mask, GFP_TEMPORARY)) return ret; /* Use tmp_mask to preserve cpus mask from first failure */ cpumask_copy(tmp_mask, cpus); rtas_offline_cpus_mask(tmp_mask); free_cpumask_var(tmp_mask); } return ret; } EXPORT_SYMBOL(rtas_online_cpus_mask); int rtas_offline_cpus_mask(cpumask_var_t cpus) { return rtas_cpu_state_change_mask(DOWN, cpus); } EXPORT_SYMBOL(rtas_offline_cpus_mask); int rtas_ibm_suspend_me(u64 handle) { long state; long rc; unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; struct rtas_suspend_me_data data; DECLARE_COMPLETION_ONSTACK(done); cpumask_var_t offline_mask; int cpuret; if (!rtas_service_present("ibm,suspend-me")) return -ENOSYS; /* Make sure the state is valid */ rc = plpar_hcall(H_VASI_STATE, retbuf, handle); state = retbuf[0]; if (rc) { printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned %ld\n",rc); return rc; } else if (state == H_VASI_ENABLED) { return -EAGAIN; } else if (state != H_VASI_SUSPENDING) { printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned state %ld\n", state); return -EIO; } if (!alloc_cpumask_var(&offline_mask, GFP_TEMPORARY)) return -ENOMEM; atomic_set(&data.working, 0); atomic_set(&data.done, 0); atomic_set(&data.error, 0); data.token = rtas_token("ibm,suspend-me"); data.complete = &done; /* All present CPUs must be online */ cpumask_andnot(offline_mask, cpu_present_mask, cpu_online_mask); cpuret = rtas_online_cpus_mask(offline_mask); if (cpuret) { pr_err("%s: Could not bring present CPUs online.\n", __func__); atomic_set(&data.error, cpuret); goto out; } stop_topology_update(); /* Call function on all CPUs. One of us will make the * rtas call */ if (on_each_cpu(rtas_percpu_suspend_me, &data, 0)) atomic_set(&data.error, -EINVAL); wait_for_completion(&done); if (atomic_read(&data.error) != 0) printk(KERN_ERR "Error doing global join\n"); start_topology_update(); /* Take down CPUs not online prior to suspend */ cpuret = rtas_offline_cpus_mask(offline_mask); if (cpuret) pr_warn("%s: Could not restore CPUs to offline state.\n", __func__); out: free_cpumask_var(offline_mask); return atomic_read(&data.error); } #else /* CONFIG_PPC_PSERIES */ int rtas_ibm_suspend_me(u64 handle) { return -ENOSYS; } #endif /** * Find a specific pseries error log in an RTAS extended event log. * @log: RTAS error/event log * @section_id: two character section identifier * * Returns a pointer to the specified errorlog or NULL if not found. */ struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log, uint16_t section_id) { struct rtas_ext_event_log_v6 *ext_log = (struct rtas_ext_event_log_v6 *)log->buffer; struct pseries_errorlog *sect; unsigned char *p, *log_end; uint32_t ext_log_length = rtas_error_extended_log_length(log); uint8_t log_format = rtas_ext_event_log_format(ext_log); uint32_t company_id = rtas_ext_event_company_id(ext_log); /* Check that we understand the format */ if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) || log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG || company_id != RTAS_V6EXT_COMPANY_ID_IBM) return NULL; log_end = log->buffer + ext_log_length; p = ext_log->vendor_log; while (p < log_end) { sect = (struct pseries_errorlog *)p; if (pseries_errorlog_id(sect) == section_id) return sect; p += pseries_errorlog_length(sect); } return NULL; } /* We assume to be passed big endian arguments */ asmlinkage int ppc_rtas(struct rtas_args __user *uargs) { struct rtas_args args; unsigned long flags; char *buff_copy, *errbuf = NULL; int nargs, nret, token; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0) return -EFAULT; nargs = be32_to_cpu(args.nargs); nret = be32_to_cpu(args.nret); token = be32_to_cpu(args.token); if (nargs > ARRAY_SIZE(args.args) || nret > ARRAY_SIZE(args.args) || nargs + nret > ARRAY_SIZE(args.args)) return -EINVAL; /* Copy in args. */ if (copy_from_user(args.args, uargs->args, nargs * sizeof(rtas_arg_t)) != 0) return -EFAULT; if (token == RTAS_UNKNOWN_SERVICE) return -EINVAL; args.rets = &args.args[nargs]; memset(args.rets, 0, nret * sizeof(rtas_arg_t)); /* Need to handle ibm,suspend_me call specially */ if (token == ibm_suspend_me_token) { /* * rtas_ibm_suspend_me assumes the streamid handle is in cpu * endian, or at least the hcall within it requires it. */ int rc = 0; u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32) | be32_to_cpu(args.args[1]); rc = rtas_ibm_suspend_me(handle); if (rc == -EAGAIN) args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE); else if (rc == -EIO) args.rets[0] = cpu_to_be32(-1); else if (rc) return rc; goto copy_return; } buff_copy = get_errorlog_buffer(); flags = lock_rtas(); rtas.args = args; enter_rtas(__pa(&rtas.args)); args = rtas.args; /* A -1 return code indicates that the last command couldn't be completed due to a hardware error. */ if (be32_to_cpu(args.rets[0]) == -1) errbuf = __fetch_rtas_last_error(buff_copy); unlock_rtas(flags); if (buff_copy) { if (errbuf) log_error(errbuf, ERR_TYPE_RTAS_LOG, 0); kfree(buff_copy); } copy_return: /* Copy out args. */ if (copy_to_user(uargs->args + nargs, args.args + nargs, nret * sizeof(rtas_arg_t)) != 0) return -EFAULT; return 0; } /* * Call early during boot, before mem init, to retrieve the RTAS * information from the device-tree and allocate the RMO buffer for userland * accesses. */ void __init rtas_initialize(void) { unsigned long rtas_region = RTAS_INSTANTIATE_MAX; /* Get RTAS dev node and fill up our "rtas" structure with infos * about it. */ rtas.dev = of_find_node_by_name(NULL, "rtas"); if (rtas.dev) { const __be32 *basep, *entryp, *sizep; basep = of_get_property(rtas.dev, "linux,rtas-base", NULL); sizep = of_get_property(rtas.dev, "rtas-size", NULL); if (basep != NULL && sizep != NULL) { rtas.base = __be32_to_cpu(*basep); rtas.size = __be32_to_cpu(*sizep); entryp = of_get_property(rtas.dev, "linux,rtas-entry", NULL); if (entryp == NULL) /* Ugh */ rtas.entry = rtas.base; else rtas.entry = __be32_to_cpu(*entryp); } else rtas.dev = NULL; } if (!rtas.dev) return; /* If RTAS was found, allocate the RMO buffer for it and look for * the stop-self token if any */ #ifdef CONFIG_PPC64 if (machine_is(pseries) && firmware_has_feature(FW_FEATURE_LPAR)) { rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX); ibm_suspend_me_token = rtas_token("ibm,suspend-me"); } #endif rtas_rmo_buf = memblock_alloc_base(RTAS_RMOBUF_MAX, PAGE_SIZE, rtas_region); #ifdef CONFIG_RTAS_ERROR_LOGGING rtas_last_error_token = rtas_token("rtas-last-error"); #endif } int __init early_init_dt_scan_rtas(unsigned long node, const char *uname, int depth, void *data) { const u32 *basep, *entryp, *sizep; if (depth != 1 || strcmp(uname, "rtas") != 0) return 0; basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL); entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL); sizep = of_get_flat_dt_prop(node, "rtas-size", NULL); if (basep && entryp && sizep) { rtas.base = *basep; rtas.entry = *entryp; rtas.size = *sizep; } #ifdef CONFIG_UDBG_RTAS_CONSOLE basep = of_get_flat_dt_prop(node, "put-term-char", NULL); if (basep) rtas_putchar_token = *basep; basep = of_get_flat_dt_prop(node, "get-term-char", NULL); if (basep) rtas_getchar_token = *basep; if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE && rtas_getchar_token != RTAS_UNKNOWN_SERVICE) udbg_init_rtas_console(); #endif /* break now */ return 1; } static arch_spinlock_t timebase_lock; static u64 timebase = 0; void rtas_give_timebase(void) { unsigned long flags; local_irq_save(flags); hard_irq_disable(); arch_spin_lock(&timebase_lock); rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL); timebase = get_tb(); arch_spin_unlock(&timebase_lock); while (timebase) barrier(); rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL); local_irq_restore(flags); } void rtas_take_timebase(void) { while (!timebase) barrier(); arch_spin_lock(&timebase_lock); set_tb(timebase >> 32, timebase & 0xffffffff); timebase = 0; arch_spin_unlock(&timebase_lock); }