/* * Copyright (C) 2004 Benjamin Herrenschmuidt (benh@kernel.crashing.org), * IBM Corp. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #undef DEBUG #include <linux/kernel.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/string.h> #include <linux/init.h> #include <linux/irq.h> #include <asm/sections.h> #include <asm/io.h> #include <asm/prom.h> #include <asm/pci-bridge.h> #include <asm/machdep.h> #include <asm/iommu.h> #include <asm/ppc-pci.h> #include "maple.h" #ifdef DEBUG #define DBG(x...) printk(x) #else #define DBG(x...) #endif static struct pci_controller *u3_agp, *u3_ht, *u4_pcie; static int __init fixup_one_level_bus_range(struct device_node *node, int higher) { for (; node != 0;node = node->sibling) { const int *bus_range; const unsigned int *class_code; int len; /* For PCI<->PCI bridges or CardBus bridges, we go down */ class_code = of_get_property(node, "class-code", NULL); if (!class_code || ((*class_code >> 8) != PCI_CLASS_BRIDGE_PCI && (*class_code >> 8) != PCI_CLASS_BRIDGE_CARDBUS)) continue; bus_range = of_get_property(node, "bus-range", &len); if (bus_range != NULL && len > 2 * sizeof(int)) { if (bus_range[1] > higher) higher = bus_range[1]; } higher = fixup_one_level_bus_range(node->child, higher); } return higher; } /* This routine fixes the "bus-range" property of all bridges in the * system since they tend to have their "last" member wrong on macs * * Note that the bus numbers manipulated here are OF bus numbers, they * are not Linux bus numbers. */ static void __init fixup_bus_range(struct device_node *bridge) { int *bus_range; struct property *prop; int len; /* Lookup the "bus-range" property for the hose */ prop = of_find_property(bridge, "bus-range", &len); if (prop == NULL || prop->value == NULL || len < 2 * sizeof(int)) { printk(KERN_WARNING "Can't get bus-range for %s\n", bridge->full_name); return; } bus_range = prop->value; bus_range[1] = fixup_one_level_bus_range(bridge->child, bus_range[1]); } static unsigned long u3_agp_cfa0(u8 devfn, u8 off) { return (1 << (unsigned long)PCI_SLOT(devfn)) | ((unsigned long)PCI_FUNC(devfn) << 8) | ((unsigned long)off & 0xFCUL); } static unsigned long u3_agp_cfa1(u8 bus, u8 devfn, u8 off) { return ((unsigned long)bus << 16) | ((unsigned long)devfn << 8) | ((unsigned long)off & 0xFCUL) | 1UL; } static volatile void __iomem *u3_agp_cfg_access(struct pci_controller* hose, u8 bus, u8 dev_fn, u8 offset) { unsigned int caddr; if (bus == hose->first_busno) { if (dev_fn < (11 << 3)) return NULL; caddr = u3_agp_cfa0(dev_fn, offset); } else caddr = u3_agp_cfa1(bus, dev_fn, offset); /* Uninorth will return garbage if we don't read back the value ! */ do { out_le32(hose->cfg_addr, caddr); } while (in_le32(hose->cfg_addr) != caddr); offset &= 0x07; return hose->cfg_data + offset; } static int u3_agp_read_config(struct pci_bus *bus, unsigned int devfn, int offset, int len, u32 *val) { struct pci_controller *hose; volatile void __iomem *addr; hose = pci_bus_to_host(bus); if (hose == NULL) return PCIBIOS_DEVICE_NOT_FOUND; addr = u3_agp_cfg_access(hose, bus->number, devfn, offset); if (!addr) return PCIBIOS_DEVICE_NOT_FOUND; /* * Note: the caller has already checked that offset is * suitably aligned and that len is 1, 2 or 4. */ switch (len) { case 1: *val = in_8(addr); break; case 2: *val = in_le16(addr); break; default: *val = in_le32(addr); break; } return PCIBIOS_SUCCESSFUL; } static int u3_agp_write_config(struct pci_bus *bus, unsigned int devfn, int offset, int len, u32 val) { struct pci_controller *hose; volatile void __iomem *addr; hose = pci_bus_to_host(bus); if (hose == NULL) return PCIBIOS_DEVICE_NOT_FOUND; addr = u3_agp_cfg_access(hose, bus->number, devfn, offset); if (!addr) return PCIBIOS_DEVICE_NOT_FOUND; /* * Note: the caller has already checked that offset is * suitably aligned and that len is 1, 2 or 4. */ switch (len) { case 1: out_8(addr, val); break; case 2: out_le16(addr, val); break; default: out_le32(addr, val); break; } return PCIBIOS_SUCCESSFUL; } static struct pci_ops u3_agp_pci_ops = { .read = u3_agp_read_config, .write = u3_agp_write_config, }; static unsigned long u3_ht_cfa0(u8 devfn, u8 off) { return (devfn << 8) | off; } static unsigned long u3_ht_cfa1(u8 bus, u8 devfn, u8 off) { return u3_ht_cfa0(devfn, off) + (bus << 16) + 0x01000000UL; } static volatile void __iomem *u3_ht_cfg_access(struct pci_controller* hose, u8 bus, u8 devfn, u8 offset) { if (bus == hose->first_busno) { if (PCI_SLOT(devfn) == 0) return NULL; return hose->cfg_data + u3_ht_cfa0(devfn, offset); } else return hose->cfg_data + u3_ht_cfa1(bus, devfn, offset); } static int u3_ht_root_read_config(struct pci_controller *hose, u8 offset, int len, u32 *val) { volatile void __iomem *addr; addr = hose->cfg_addr; addr += ((offset & ~3) << 2) + (4 - len - (offset & 3)); switch (len) { case 1: *val = in_8(addr); break; case 2: *val = in_be16(addr); break; default: *val = in_be32(addr); break; } return PCIBIOS_SUCCESSFUL; } static int u3_ht_root_write_config(struct pci_controller *hose, u8 offset, int len, u32 val) { volatile void __iomem *addr; addr = hose->cfg_addr + ((offset & ~3) << 2) + (4 - len - (offset & 3)); if (offset >= PCI_BASE_ADDRESS_0 && offset < PCI_CAPABILITY_LIST) return PCIBIOS_SUCCESSFUL; switch (len) { case 1: out_8(addr, val); break; case 2: out_be16(addr, val); break; default: out_be32(addr, val); break; } return PCIBIOS_SUCCESSFUL; } static int u3_ht_read_config(struct pci_bus *bus, unsigned int devfn, int offset, int len, u32 *val) { struct pci_controller *hose; volatile void __iomem *addr; hose = pci_bus_to_host(bus); if (hose == NULL) return PCIBIOS_DEVICE_NOT_FOUND; if (bus->number == hose->first_busno && devfn == PCI_DEVFN(0, 0)) return u3_ht_root_read_config(hose, offset, len, val); if (offset > 0xff) return PCIBIOS_BAD_REGISTER_NUMBER; addr = u3_ht_cfg_access(hose, bus->number, devfn, offset); if (!addr) return PCIBIOS_DEVICE_NOT_FOUND; /* * Note: the caller has already checked that offset is * suitably aligned and that len is 1, 2 or 4. */ switch (len) { case 1: *val = in_8(addr); break; case 2: *val = in_le16(addr); break; default: *val = in_le32(addr); break; } return PCIBIOS_SUCCESSFUL; } static int u3_ht_write_config(struct pci_bus *bus, unsigned int devfn, int offset, int len, u32 val) { struct pci_controller *hose; volatile void __iomem *addr; hose = pci_bus_to_host(bus); if (hose == NULL) return PCIBIOS_DEVICE_NOT_FOUND; if (bus->number == hose->first_busno && devfn == PCI_DEVFN(0, 0)) return u3_ht_root_write_config(hose, offset, len, val); if (offset > 0xff) return PCIBIOS_BAD_REGISTER_NUMBER; addr = u3_ht_cfg_access(hose, bus->number, devfn, offset); if (!addr) return PCIBIOS_DEVICE_NOT_FOUND; /* * Note: the caller has already checked that offset is * suitably aligned and that len is 1, 2 or 4. */ switch (len) { case 1: out_8(addr, val); break; case 2: out_le16(addr, val); break; default: out_le32(addr, val); break; } return PCIBIOS_SUCCESSFUL; } static struct pci_ops u3_ht_pci_ops = { .read = u3_ht_read_config, .write = u3_ht_write_config, }; static unsigned int u4_pcie_cfa0(unsigned int devfn, unsigned int off) { return (1 << PCI_SLOT(devfn)) | (PCI_FUNC(devfn) << 8) | ((off >> 8) << 28) | (off & 0xfcu); } static unsigned int u4_pcie_cfa1(unsigned int bus, unsigned int devfn, unsigned int off) { return (bus << 16) | (devfn << 8) | ((off >> 8) << 28) | (off & 0xfcu) | 1u; } static volatile void __iomem *u4_pcie_cfg_access(struct pci_controller* hose, u8 bus, u8 dev_fn, int offset) { unsigned int caddr; if (bus == hose->first_busno) caddr = u4_pcie_cfa0(dev_fn, offset); else caddr = u4_pcie_cfa1(bus, dev_fn, offset); /* Uninorth will return garbage if we don't read back the value ! */ do { out_le32(hose->cfg_addr, caddr); } while (in_le32(hose->cfg_addr) != caddr); offset &= 0x03; return hose->cfg_data + offset; } static int u4_pcie_read_config(struct pci_bus *bus, unsigned int devfn, int offset, int len, u32 *val) { struct pci_controller *hose; volatile void __iomem *addr; hose = pci_bus_to_host(bus); if (hose == NULL) return PCIBIOS_DEVICE_NOT_FOUND; if (offset >= 0x1000) return PCIBIOS_BAD_REGISTER_NUMBER; addr = u4_pcie_cfg_access(hose, bus->number, devfn, offset); if (!addr) return PCIBIOS_DEVICE_NOT_FOUND; /* * Note: the caller has already checked that offset is * suitably aligned and that len is 1, 2 or 4. */ switch (len) { case 1: *val = in_8(addr); break; case 2: *val = in_le16(addr); break; default: *val = in_le32(addr); break; } return PCIBIOS_SUCCESSFUL; } static int u4_pcie_write_config(struct pci_bus *bus, unsigned int devfn, int offset, int len, u32 val) { struct pci_controller *hose; volatile void __iomem *addr; hose = pci_bus_to_host(bus); if (hose == NULL) return PCIBIOS_DEVICE_NOT_FOUND; if (offset >= 0x1000) return PCIBIOS_BAD_REGISTER_NUMBER; addr = u4_pcie_cfg_access(hose, bus->number, devfn, offset); if (!addr) return PCIBIOS_DEVICE_NOT_FOUND; /* * Note: the caller has already checked that offset is * suitably aligned and that len is 1, 2 or 4. */ switch (len) { case 1: out_8(addr, val); break; case 2: out_le16(addr, val); break; default: out_le32(addr, val); break; } return PCIBIOS_SUCCESSFUL; } static struct pci_ops u4_pcie_pci_ops = { .read = u4_pcie_read_config, .write = u4_pcie_write_config, }; static void __init setup_u3_agp(struct pci_controller* hose) { /* On G5, we move AGP up to high bus number so we don't need * to reassign bus numbers for HT. If we ever have P2P bridges * on AGP, we'll have to move pci_assign_all_buses to the * pci_controller structure so we enable it for AGP and not for * HT childs. * We hard code the address because of the different size of * the reg address cell, we shall fix that by killing struct * reg_property and using some accessor functions instead */ hose->first_busno = 0xf0; hose->last_busno = 0xff; hose->ops = &u3_agp_pci_ops; hose->cfg_addr = ioremap(0xf0000000 + 0x800000, 0x1000); hose->cfg_data = ioremap(0xf0000000 + 0xc00000, 0x1000); u3_agp = hose; } static void __init setup_u4_pcie(struct pci_controller* hose) { /* We currently only implement the "non-atomic" config space, to * be optimised later. */ hose->ops = &u4_pcie_pci_ops; hose->cfg_addr = ioremap(0xf0000000 + 0x800000, 0x1000); hose->cfg_data = ioremap(0xf0000000 + 0xc00000, 0x1000); u4_pcie = hose; } static void __init setup_u3_ht(struct pci_controller* hose) { hose->ops = &u3_ht_pci_ops; /* We hard code the address because of the different size of * the reg address cell, we shall fix that by killing struct * reg_property and using some accessor functions instead */ hose->cfg_data = ioremap(0xf2000000, 0x02000000); hose->cfg_addr = ioremap(0xf8070000, 0x1000); hose->first_busno = 0; hose->last_busno = 0xef; u3_ht = hose; } static int __init maple_add_bridge(struct device_node *dev) { int len; struct pci_controller *hose; char* disp_name; const int *bus_range; int primary = 1; DBG("Adding PCI host bridge %s\n", dev->full_name); bus_range = of_get_property(dev, "bus-range", &len); if (bus_range == NULL || len < 2 * sizeof(int)) { printk(KERN_WARNING "Can't get bus-range for %s, assume bus 0\n", dev->full_name); } hose = pcibios_alloc_controller(dev); if (hose == NULL) return -ENOMEM; hose->first_busno = bus_range ? bus_range[0] : 0; hose->last_busno = bus_range ? bus_range[1] : 0xff; hose->controller_ops = maple_pci_controller_ops; disp_name = NULL; if (of_device_is_compatible(dev, "u3-agp")) { setup_u3_agp(hose); disp_name = "U3-AGP"; primary = 0; } else if (of_device_is_compatible(dev, "u3-ht")) { setup_u3_ht(hose); disp_name = "U3-HT"; primary = 1; } else if (of_device_is_compatible(dev, "u4-pcie")) { setup_u4_pcie(hose); disp_name = "U4-PCIE"; primary = 0; } printk(KERN_INFO "Found %s PCI host bridge. Firmware bus number: %d->%d\n", disp_name, hose->first_busno, hose->last_busno); /* Interpret the "ranges" property */ /* This also maps the I/O region and sets isa_io/mem_base */ pci_process_bridge_OF_ranges(hose, dev, primary); /* Fixup "bus-range" OF property */ fixup_bus_range(dev); /* Check for legacy IOs */ isa_bridge_find_early(hose); return 0; } void maple_pci_irq_fixup(struct pci_dev *dev) { DBG(" -> maple_pci_irq_fixup\n"); /* Fixup IRQ for PCIe host */ if (u4_pcie != NULL && dev->bus->number == 0 && pci_bus_to_host(dev->bus) == u4_pcie) { printk(KERN_DEBUG "Fixup U4 PCIe IRQ\n"); dev->irq = irq_create_mapping(NULL, 1); if (dev->irq != NO_IRQ) irq_set_irq_type(dev->irq, IRQ_TYPE_LEVEL_LOW); } /* Hide AMD8111 IDE interrupt when in legacy mode so * the driver calls pci_get_legacy_ide_irq() */ if (dev->vendor == PCI_VENDOR_ID_AMD && dev->device == PCI_DEVICE_ID_AMD_8111_IDE && (dev->class & 5) != 5) { dev->irq = NO_IRQ; } DBG(" <- maple_pci_irq_fixup\n"); } void __init maple_pci_init(void) { struct device_node *np, *root; struct device_node *ht = NULL; /* Probe root PCI hosts, that is on U3 the AGP host and the * HyperTransport host. That one is actually "kept" around * and actually added last as it's resource management relies * on the AGP resources to have been setup first */ root = of_find_node_by_path("/"); if (root == NULL) { printk(KERN_CRIT "maple_find_bridges: can't find root of device tree\n"); return; } for (np = NULL; (np = of_get_next_child(root, np)) != NULL;) { if (!np->type) continue; if (strcmp(np->type, "pci") && strcmp(np->type, "ht")) continue; if ((of_device_is_compatible(np, "u4-pcie") || of_device_is_compatible(np, "u3-agp")) && maple_add_bridge(np) == 0) of_node_get(np); if (of_device_is_compatible(np, "u3-ht")) { of_node_get(np); ht = np; } } of_node_put(root); /* Now setup the HyperTransport host if we found any */ if (ht && maple_add_bridge(ht) != 0) of_node_put(ht); /* Setup the linkage between OF nodes and PHBs */ pci_devs_phb_init(); /* Fixup the PCI<->OF mapping for U3 AGP due to bus renumbering. We * assume there is no P2P bridge on the AGP bus, which should be a * safe assumptions hopefully. */ if (u3_agp) { struct device_node *np = u3_agp->dn; PCI_DN(np)->busno = 0xf0; for (np = np->child; np; np = np->sibling) PCI_DN(np)->busno = 0xf0; } /* Tell pci.c to not change any resource allocations. */ pci_add_flags(PCI_PROBE_ONLY); } int maple_pci_get_legacy_ide_irq(struct pci_dev *pdev, int channel) { struct device_node *np; unsigned int defirq = channel ? 15 : 14; unsigned int irq; if (pdev->vendor != PCI_VENDOR_ID_AMD || pdev->device != PCI_DEVICE_ID_AMD_8111_IDE) return defirq; np = pci_device_to_OF_node(pdev); if (np == NULL) { printk("Failed to locate OF node for IDE %s\n", pci_name(pdev)); return defirq; } irq = irq_of_parse_and_map(np, channel & 0x1); if (irq == NO_IRQ) { printk("Failed to map onboard IDE interrupt for channel %d\n", channel); return defirq; } return irq; } static void quirk_ipr_msi(struct pci_dev *dev) { /* Something prevents MSIs from the IPR from working on Bimini, * and the driver has no smarts to recover. So disable MSI * on it for now. */ if (machine_is(maple)) { dev->no_msi = 1; dev_info(&dev->dev, "Quirk disabled MSI\n"); } } DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_OBSIDIAN, quirk_ipr_msi); struct pci_controller_ops maple_pci_controller_ops = { };