/* * MPIC timer driver * * Copyright 2013 Freescale Semiconductor, Inc. * Author: Dongsheng Wang <Dongsheng.Wang@freescale.com> * Li Yang <leoli@freescale.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/errno.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/of_irq.h> #include <linux/syscore_ops.h> #include <sysdev/fsl_soc.h> #include <asm/io.h> #include <asm/mpic_timer.h> #define FSL_GLOBAL_TIMER 0x1 /* Clock Ratio * Divide by 64 0x00000300 * Divide by 32 0x00000200 * Divide by 16 0x00000100 * Divide by 8 0x00000000 (Hardware default div) */ #define MPIC_TIMER_TCR_CLKDIV 0x00000300 #define MPIC_TIMER_TCR_ROVR_OFFSET 24 #define TIMER_STOP 0x80000000 #define GTCCR_TOG 0x80000000 #define TIMERS_PER_GROUP 4 #define MAX_TICKS (~0U >> 1) #define MAX_TICKS_CASCADE (~0U) #define TIMER_OFFSET(num) (1 << (TIMERS_PER_GROUP - 1 - num)) /* tv_usec should be less than ONE_SECOND, otherwise use tv_sec */ #define ONE_SECOND 1000000 struct timer_regs { u32 gtccr; u32 res0[3]; u32 gtbcr; u32 res1[3]; u32 gtvpr; u32 res2[3]; u32 gtdr; u32 res3[3]; }; struct cascade_priv { u32 tcr_value; /* TCR register: CASC & ROVR value */ unsigned int cascade_map; /* cascade map */ unsigned int timer_num; /* cascade control timer */ }; struct timer_group_priv { struct timer_regs __iomem *regs; struct mpic_timer timer[TIMERS_PER_GROUP]; struct list_head node; unsigned int timerfreq; unsigned int idle; unsigned int flags; spinlock_t lock; void __iomem *group_tcr; }; static struct cascade_priv cascade_timer[] = { /* cascade timer 0 and 1 */ {0x1, 0xc, 0x1}, /* cascade timer 1 and 2 */ {0x2, 0x6, 0x2}, /* cascade timer 2 and 3 */ {0x4, 0x3, 0x3} }; static LIST_HEAD(timer_group_list); static void convert_ticks_to_time(struct timer_group_priv *priv, const u64 ticks, struct timeval *time) { u64 tmp_sec; time->tv_sec = (__kernel_time_t)div_u64(ticks, priv->timerfreq); tmp_sec = (u64)time->tv_sec * (u64)priv->timerfreq; time->tv_usec = 0; if (tmp_sec <= ticks) time->tv_usec = (__kernel_suseconds_t) div_u64((ticks - tmp_sec) * 1000000, priv->timerfreq); return; } /* the time set by the user is converted to "ticks" */ static int convert_time_to_ticks(struct timer_group_priv *priv, const struct timeval *time, u64 *ticks) { u64 max_value; /* prevent u64 overflow */ u64 tmp = 0; u64 tmp_sec; u64 tmp_ms; u64 tmp_us; max_value = div_u64(ULLONG_MAX, priv->timerfreq); if (time->tv_sec > max_value || (time->tv_sec == max_value && time->tv_usec > 0)) return -EINVAL; tmp_sec = (u64)time->tv_sec * (u64)priv->timerfreq; tmp += tmp_sec; tmp_ms = time->tv_usec / 1000; tmp_ms = div_u64((u64)tmp_ms * (u64)priv->timerfreq, 1000); tmp += tmp_ms; tmp_us = time->tv_usec % 1000; tmp_us = div_u64((u64)tmp_us * (u64)priv->timerfreq, 1000000); tmp += tmp_us; *ticks = tmp; return 0; } /* detect whether there is a cascade timer available */ static struct mpic_timer *detect_idle_cascade_timer( struct timer_group_priv *priv) { struct cascade_priv *casc_priv; unsigned int map; unsigned int array_size = ARRAY_SIZE(cascade_timer); unsigned int num; unsigned int i; unsigned long flags; casc_priv = cascade_timer; for (i = 0; i < array_size; i++) { spin_lock_irqsave(&priv->lock, flags); map = casc_priv->cascade_map & priv->idle; if (map == casc_priv->cascade_map) { num = casc_priv->timer_num; priv->timer[num].cascade_handle = casc_priv; /* set timer busy */ priv->idle &= ~casc_priv->cascade_map; spin_unlock_irqrestore(&priv->lock, flags); return &priv->timer[num]; } spin_unlock_irqrestore(&priv->lock, flags); casc_priv++; } return NULL; } static int set_cascade_timer(struct timer_group_priv *priv, u64 ticks, unsigned int num) { struct cascade_priv *casc_priv; u32 tcr; u32 tmp_ticks; u32 rem_ticks; /* set group tcr reg for cascade */ casc_priv = priv->timer[num].cascade_handle; if (!casc_priv) return -EINVAL; tcr = casc_priv->tcr_value | (casc_priv->tcr_value << MPIC_TIMER_TCR_ROVR_OFFSET); setbits32(priv->group_tcr, tcr); tmp_ticks = div_u64_rem(ticks, MAX_TICKS_CASCADE, &rem_ticks); out_be32(&priv->regs[num].gtccr, 0); out_be32(&priv->regs[num].gtbcr, tmp_ticks | TIMER_STOP); out_be32(&priv->regs[num - 1].gtccr, 0); out_be32(&priv->regs[num - 1].gtbcr, rem_ticks); return 0; } static struct mpic_timer *get_cascade_timer(struct timer_group_priv *priv, u64 ticks) { struct mpic_timer *allocated_timer; /* Two cascade timers: Support the maximum time */ const u64 max_ticks = (u64)MAX_TICKS * (u64)MAX_TICKS_CASCADE; int ret; if (ticks > max_ticks) return NULL; /* detect idle timer */ allocated_timer = detect_idle_cascade_timer(priv); if (!allocated_timer) return NULL; /* set ticks to timer */ ret = set_cascade_timer(priv, ticks, allocated_timer->num); if (ret < 0) return NULL; return allocated_timer; } static struct mpic_timer *get_timer(const struct timeval *time) { struct timer_group_priv *priv; struct mpic_timer *timer; u64 ticks; unsigned int num; unsigned int i; unsigned long flags; int ret; list_for_each_entry(priv, &timer_group_list, node) { ret = convert_time_to_ticks(priv, time, &ticks); if (ret < 0) return NULL; if (ticks > MAX_TICKS) { if (!(priv->flags & FSL_GLOBAL_TIMER)) return NULL; timer = get_cascade_timer(priv, ticks); if (!timer) continue; return timer; } for (i = 0; i < TIMERS_PER_GROUP; i++) { /* one timer: Reverse allocation */ num = TIMERS_PER_GROUP - 1 - i; spin_lock_irqsave(&priv->lock, flags); if (priv->idle & (1 << i)) { /* set timer busy */ priv->idle &= ~(1 << i); /* set ticks & stop timer */ out_be32(&priv->regs[num].gtbcr, ticks | TIMER_STOP); out_be32(&priv->regs[num].gtccr, 0); priv->timer[num].cascade_handle = NULL; spin_unlock_irqrestore(&priv->lock, flags); return &priv->timer[num]; } spin_unlock_irqrestore(&priv->lock, flags); } } return NULL; } /** * mpic_start_timer - start hardware timer * @handle: the timer to be started. * * It will do ->fn(->dev) callback from the hardware interrupt at * the ->timeval point in the future. */ void mpic_start_timer(struct mpic_timer *handle) { struct timer_group_priv *priv = container_of(handle, struct timer_group_priv, timer[handle->num]); clrbits32(&priv->regs[handle->num].gtbcr, TIMER_STOP); } EXPORT_SYMBOL(mpic_start_timer); /** * mpic_stop_timer - stop hardware timer * @handle: the timer to be stoped * * The timer periodically generates an interrupt. Unless user stops the timer. */ void mpic_stop_timer(struct mpic_timer *handle) { struct timer_group_priv *priv = container_of(handle, struct timer_group_priv, timer[handle->num]); struct cascade_priv *casc_priv; setbits32(&priv->regs[handle->num].gtbcr, TIMER_STOP); casc_priv = priv->timer[handle->num].cascade_handle; if (casc_priv) { out_be32(&priv->regs[handle->num].gtccr, 0); out_be32(&priv->regs[handle->num - 1].gtccr, 0); } else { out_be32(&priv->regs[handle->num].gtccr, 0); } } EXPORT_SYMBOL(mpic_stop_timer); /** * mpic_get_remain_time - get timer time * @handle: the timer to be selected. * @time: time for timer * * Query timer remaining time. */ void mpic_get_remain_time(struct mpic_timer *handle, struct timeval *time) { struct timer_group_priv *priv = container_of(handle, struct timer_group_priv, timer[handle->num]); struct cascade_priv *casc_priv; u64 ticks; u32 tmp_ticks; casc_priv = priv->timer[handle->num].cascade_handle; if (casc_priv) { tmp_ticks = in_be32(&priv->regs[handle->num].gtccr); tmp_ticks &= ~GTCCR_TOG; ticks = ((u64)tmp_ticks & UINT_MAX) * (u64)MAX_TICKS_CASCADE; tmp_ticks = in_be32(&priv->regs[handle->num - 1].gtccr); ticks += tmp_ticks; } else { ticks = in_be32(&priv->regs[handle->num].gtccr); ticks &= ~GTCCR_TOG; } convert_ticks_to_time(priv, ticks, time); } EXPORT_SYMBOL(mpic_get_remain_time); /** * mpic_free_timer - free hardware timer * @handle: the timer to be removed. * * Free the timer. * * Note: can not be used in interrupt context. */ void mpic_free_timer(struct mpic_timer *handle) { struct timer_group_priv *priv = container_of(handle, struct timer_group_priv, timer[handle->num]); struct cascade_priv *casc_priv; unsigned long flags; mpic_stop_timer(handle); casc_priv = priv->timer[handle->num].cascade_handle; free_irq(priv->timer[handle->num].irq, priv->timer[handle->num].dev); spin_lock_irqsave(&priv->lock, flags); if (casc_priv) { u32 tcr; tcr = casc_priv->tcr_value | (casc_priv->tcr_value << MPIC_TIMER_TCR_ROVR_OFFSET); clrbits32(priv->group_tcr, tcr); priv->idle |= casc_priv->cascade_map; priv->timer[handle->num].cascade_handle = NULL; } else { priv->idle |= TIMER_OFFSET(handle->num); } spin_unlock_irqrestore(&priv->lock, flags); } EXPORT_SYMBOL(mpic_free_timer); /** * mpic_request_timer - get a hardware timer * @fn: interrupt handler function * @dev: callback function of the data * @time: time for timer * * This executes the "request_irq", returning NULL * else "handle" on success. */ struct mpic_timer *mpic_request_timer(irq_handler_t fn, void *dev, const struct timeval *time) { struct mpic_timer *allocated_timer; int ret; if (list_empty(&timer_group_list)) return NULL; if (!(time->tv_sec + time->tv_usec) || time->tv_sec < 0 || time->tv_usec < 0) return NULL; if (time->tv_usec > ONE_SECOND) return NULL; allocated_timer = get_timer(time); if (!allocated_timer) return NULL; ret = request_irq(allocated_timer->irq, fn, IRQF_TRIGGER_LOW, "global-timer", dev); if (ret) { mpic_free_timer(allocated_timer); return NULL; } allocated_timer->dev = dev; return allocated_timer; } EXPORT_SYMBOL(mpic_request_timer); static int timer_group_get_freq(struct device_node *np, struct timer_group_priv *priv) { u32 div; if (priv->flags & FSL_GLOBAL_TIMER) { struct device_node *dn; dn = of_find_compatible_node(NULL, NULL, "fsl,mpic"); if (dn) { of_property_read_u32(dn, "clock-frequency", &priv->timerfreq); of_node_put(dn); } } if (priv->timerfreq <= 0) return -EINVAL; if (priv->flags & FSL_GLOBAL_TIMER) { div = (1 << (MPIC_TIMER_TCR_CLKDIV >> 8)) * 8; priv->timerfreq /= div; } return 0; } static int timer_group_get_irq(struct device_node *np, struct timer_group_priv *priv) { const u32 all_timer[] = { 0, TIMERS_PER_GROUP }; const u32 *p; u32 offset; u32 count; unsigned int i; unsigned int j; unsigned int irq_index = 0; unsigned int irq; int len; p = of_get_property(np, "fsl,available-ranges", &len); if (p && len % (2 * sizeof(u32)) != 0) { pr_err("%s: malformed available-ranges property.\n", np->full_name); return -EINVAL; } if (!p) { p = all_timer; len = sizeof(all_timer); } len /= 2 * sizeof(u32); for (i = 0; i < len; i++) { offset = p[i * 2]; count = p[i * 2 + 1]; for (j = 0; j < count; j++) { irq = irq_of_parse_and_map(np, irq_index); if (!irq) { pr_err("%s: irq parse and map failed.\n", np->full_name); return -EINVAL; } /* Set timer idle */ priv->idle |= TIMER_OFFSET((offset + j)); priv->timer[offset + j].irq = irq; priv->timer[offset + j].num = offset + j; irq_index++; } } return 0; } static void timer_group_init(struct device_node *np) { struct timer_group_priv *priv; unsigned int i = 0; int ret; priv = kzalloc(sizeof(struct timer_group_priv), GFP_KERNEL); if (!priv) { pr_err("%s: cannot allocate memory for group.\n", np->full_name); return; } if (of_device_is_compatible(np, "fsl,mpic-global-timer")) priv->flags |= FSL_GLOBAL_TIMER; priv->regs = of_iomap(np, i++); if (!priv->regs) { pr_err("%s: cannot ioremap timer register address.\n", np->full_name); goto out; } if (priv->flags & FSL_GLOBAL_TIMER) { priv->group_tcr = of_iomap(np, i++); if (!priv->group_tcr) { pr_err("%s: cannot ioremap tcr address.\n", np->full_name); goto out; } } ret = timer_group_get_freq(np, priv); if (ret < 0) { pr_err("%s: cannot get timer frequency.\n", np->full_name); goto out; } ret = timer_group_get_irq(np, priv); if (ret < 0) { pr_err("%s: cannot get timer irqs.\n", np->full_name); goto out; } spin_lock_init(&priv->lock); /* Init FSL timer hardware */ if (priv->flags & FSL_GLOBAL_TIMER) setbits32(priv->group_tcr, MPIC_TIMER_TCR_CLKDIV); list_add_tail(&priv->node, &timer_group_list); return; out: if (priv->regs) iounmap(priv->regs); if (priv->group_tcr) iounmap(priv->group_tcr); kfree(priv); } static void mpic_timer_resume(void) { struct timer_group_priv *priv; list_for_each_entry(priv, &timer_group_list, node) { /* Init FSL timer hardware */ if (priv->flags & FSL_GLOBAL_TIMER) setbits32(priv->group_tcr, MPIC_TIMER_TCR_CLKDIV); } } static const struct of_device_id mpic_timer_ids[] = { { .compatible = "fsl,mpic-global-timer", }, {}, }; static struct syscore_ops mpic_timer_syscore_ops = { .resume = mpic_timer_resume, }; static int __init mpic_timer_init(void) { struct device_node *np = NULL; for_each_matching_node(np, mpic_timer_ids) timer_group_init(np); register_syscore_ops(&mpic_timer_syscore_ops); if (list_empty(&timer_group_list)) return -ENODEV; return 0; } subsys_initcall(mpic_timer_init);