/* * Copyright 2013 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. * * A code-rewriter that handles unaligned exception. */ #include <linux/smp.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/thread_info.h> #include <linux/uaccess.h> #include <linux/mman.h> #include <linux/types.h> #include <linux/err.h> #include <linux/module.h> #include <linux/compat.h> #include <linux/prctl.h> #include <linux/context_tracking.h> #include <asm/cacheflush.h> #include <asm/traps.h> #include <asm/uaccess.h> #include <asm/unaligned.h> #include <arch/abi.h> #include <arch/spr_def.h> #include <arch/opcode.h> /* * This file handles unaligned exception for tile-Gx. The tilepro's unaligned * exception is supported out of single_step.c */ int unaligned_printk; static int __init setup_unaligned_printk(char *str) { long val; if (kstrtol(str, 0, &val) != 0) return 0; unaligned_printk = val; pr_info("Printk for each unaligned data accesses is %s\n", unaligned_printk ? "enabled" : "disabled"); return 1; } __setup("unaligned_printk=", setup_unaligned_printk); unsigned int unaligned_fixup_count; #ifdef __tilegx__ /* * Unalign data jit fixup code fragement. Reserved space is 128 bytes. * The 1st 64-bit word saves fault PC address, 2nd word is the fault * instruction bundle followed by 14 JIT bundles. */ struct unaligned_jit_fragment { unsigned long pc; tilegx_bundle_bits bundle; tilegx_bundle_bits insn[14]; }; /* * Check if a nop or fnop at bundle's pipeline X0. */ static bool is_bundle_x0_nop(tilegx_bundle_bits bundle) { return (((get_UnaryOpcodeExtension_X0(bundle) == NOP_UNARY_OPCODE_X0) && (get_RRROpcodeExtension_X0(bundle) == UNARY_RRR_0_OPCODE_X0) && (get_Opcode_X0(bundle) == RRR_0_OPCODE_X0)) || ((get_UnaryOpcodeExtension_X0(bundle) == FNOP_UNARY_OPCODE_X0) && (get_RRROpcodeExtension_X0(bundle) == UNARY_RRR_0_OPCODE_X0) && (get_Opcode_X0(bundle) == RRR_0_OPCODE_X0))); } /* * Check if nop or fnop at bundle's pipeline X1. */ static bool is_bundle_x1_nop(tilegx_bundle_bits bundle) { return (((get_UnaryOpcodeExtension_X1(bundle) == NOP_UNARY_OPCODE_X1) && (get_RRROpcodeExtension_X1(bundle) == UNARY_RRR_0_OPCODE_X1) && (get_Opcode_X1(bundle) == RRR_0_OPCODE_X1)) || ((get_UnaryOpcodeExtension_X1(bundle) == FNOP_UNARY_OPCODE_X1) && (get_RRROpcodeExtension_X1(bundle) == UNARY_RRR_0_OPCODE_X1) && (get_Opcode_X1(bundle) == RRR_0_OPCODE_X1))); } /* * Check if nop or fnop at bundle's Y0 pipeline. */ static bool is_bundle_y0_nop(tilegx_bundle_bits bundle) { return (((get_UnaryOpcodeExtension_Y0(bundle) == NOP_UNARY_OPCODE_Y0) && (get_RRROpcodeExtension_Y0(bundle) == UNARY_RRR_1_OPCODE_Y0) && (get_Opcode_Y0(bundle) == RRR_1_OPCODE_Y0)) || ((get_UnaryOpcodeExtension_Y0(bundle) == FNOP_UNARY_OPCODE_Y0) && (get_RRROpcodeExtension_Y0(bundle) == UNARY_RRR_1_OPCODE_Y0) && (get_Opcode_Y0(bundle) == RRR_1_OPCODE_Y0))); } /* * Check if nop or fnop at bundle's pipeline Y1. */ static bool is_bundle_y1_nop(tilegx_bundle_bits bundle) { return (((get_UnaryOpcodeExtension_Y1(bundle) == NOP_UNARY_OPCODE_Y1) && (get_RRROpcodeExtension_Y1(bundle) == UNARY_RRR_1_OPCODE_Y1) && (get_Opcode_Y1(bundle) == RRR_1_OPCODE_Y1)) || ((get_UnaryOpcodeExtension_Y1(bundle) == FNOP_UNARY_OPCODE_Y1) && (get_RRROpcodeExtension_Y1(bundle) == UNARY_RRR_1_OPCODE_Y1) && (get_Opcode_Y1(bundle) == RRR_1_OPCODE_Y1))); } /* * Test if a bundle's y0 and y1 pipelines are both nop or fnop. */ static bool is_y0_y1_nop(tilegx_bundle_bits bundle) { return is_bundle_y0_nop(bundle) && is_bundle_y1_nop(bundle); } /* * Test if a bundle's x0 and x1 pipelines are both nop or fnop. */ static bool is_x0_x1_nop(tilegx_bundle_bits bundle) { return is_bundle_x0_nop(bundle) && is_bundle_x1_nop(bundle); } /* * Find the destination, source registers of fault unalign access instruction * at X1 or Y2. Also, allocate up to 3 scratch registers clob1, clob2 and * clob3, which are guaranteed different from any register used in the fault * bundle. r_alias is used to return if the other instructions other than the * unalign load/store shares same register with ra, rb and rd. */ static void find_regs(tilegx_bundle_bits bundle, uint64_t *rd, uint64_t *ra, uint64_t *rb, uint64_t *clob1, uint64_t *clob2, uint64_t *clob3, bool *r_alias) { int i; uint64_t reg; uint64_t reg_map = 0, alias_reg_map = 0, map; bool alias = false; /* * Parse fault bundle, find potential used registers and mark * corresponding bits in reg_map and alias_map. These 2 bit maps * are used to find the scratch registers and determine if there * is register alais. */ if (bundle & TILEGX_BUNDLE_MODE_MASK) { /* Y Mode Bundle. */ reg = get_SrcA_Y2(bundle); reg_map |= 1ULL << reg; *ra = reg; reg = get_SrcBDest_Y2(bundle); reg_map |= 1ULL << reg; if (rd) { /* Load. */ *rd = reg; alias_reg_map = (1ULL << *rd) | (1ULL << *ra); } else { /* Store. */ *rb = reg; alias_reg_map = (1ULL << *ra) | (1ULL << *rb); } if (!is_bundle_y1_nop(bundle)) { reg = get_SrcA_Y1(bundle); reg_map |= (1ULL << reg); map = (1ULL << reg); reg = get_SrcB_Y1(bundle); reg_map |= (1ULL << reg); map |= (1ULL << reg); reg = get_Dest_Y1(bundle); reg_map |= (1ULL << reg); map |= (1ULL << reg); if (map & alias_reg_map) alias = true; } if (!is_bundle_y0_nop(bundle)) { reg = get_SrcA_Y0(bundle); reg_map |= (1ULL << reg); map = (1ULL << reg); reg = get_SrcB_Y0(bundle); reg_map |= (1ULL << reg); map |= (1ULL << reg); reg = get_Dest_Y0(bundle); reg_map |= (1ULL << reg); map |= (1ULL << reg); if (map & alias_reg_map) alias = true; } } else { /* X Mode Bundle. */ reg = get_SrcA_X1(bundle); reg_map |= (1ULL << reg); *ra = reg; if (rd) { /* Load. */ reg = get_Dest_X1(bundle); reg_map |= (1ULL << reg); *rd = reg; alias_reg_map = (1ULL << *rd) | (1ULL << *ra); } else { /* Store. */ reg = get_SrcB_X1(bundle); reg_map |= (1ULL << reg); *rb = reg; alias_reg_map = (1ULL << *ra) | (1ULL << *rb); } if (!is_bundle_x0_nop(bundle)) { reg = get_SrcA_X0(bundle); reg_map |= (1ULL << reg); map = (1ULL << reg); reg = get_SrcB_X0(bundle); reg_map |= (1ULL << reg); map |= (1ULL << reg); reg = get_Dest_X0(bundle); reg_map |= (1ULL << reg); map |= (1ULL << reg); if (map & alias_reg_map) alias = true; } } /* * "alias" indicates if the unalign access registers have collision * with others in the same bundle. We jsut simply test all register * operands case (RRR), ignored the case with immidate. If a bundle * has no register alias, we may do fixup in a simple or fast manner. * So if an immidata field happens to hit with a register, we may end * up fall back to the generic handling. */ *r_alias = alias; /* Flip bits on reg_map. */ reg_map ^= -1ULL; /* Scan reg_map lower 54(TREG_SP) bits to find 3 set bits. */ for (i = 0; i < TREG_SP; i++) { if (reg_map & (0x1ULL << i)) { if (*clob1 == -1) { *clob1 = i; } else if (*clob2 == -1) { *clob2 = i; } else if (*clob3 == -1) { *clob3 = i; return; } } } } /* * Sanity check for register ra, rb, rd, clob1/2/3. Return true if any of them * is unexpected. */ static bool check_regs(uint64_t rd, uint64_t ra, uint64_t rb, uint64_t clob1, uint64_t clob2, uint64_t clob3) { bool unexpected = false; if ((ra >= 56) && (ra != TREG_ZERO)) unexpected = true; if ((clob1 >= 56) || (clob2 >= 56) || (clob3 >= 56)) unexpected = true; if (rd != -1) { if ((rd >= 56) && (rd != TREG_ZERO)) unexpected = true; } else { if ((rb >= 56) && (rb != TREG_ZERO)) unexpected = true; } return unexpected; } #define GX_INSN_X0_MASK ((1ULL << 31) - 1) #define GX_INSN_X1_MASK (((1ULL << 31) - 1) << 31) #define GX_INSN_Y0_MASK ((0xFULL << 27) | (0xFFFFFULL)) #define GX_INSN_Y1_MASK (GX_INSN_Y0_MASK << 31) #define GX_INSN_Y2_MASK ((0x7FULL << 51) | (0x7FULL << 20)) #ifdef __LITTLE_ENDIAN #define GX_INSN_BSWAP(_bundle_) (_bundle_) #else #define GX_INSN_BSWAP(_bundle_) swab64(_bundle_) #endif /* __LITTLE_ENDIAN */ /* * __JIT_CODE(.) creates template bundles in .rodata.unalign_data section. * The corresponding static function jix_x#_###(.) generates partial or * whole bundle based on the template and given arguments. */ #define __JIT_CODE(_X_) \ asm (".pushsection .rodata.unalign_data, \"a\"\n" \ _X_"\n" \ ".popsection\n") __JIT_CODE("__unalign_jit_x1_mtspr: {mtspr 0, r0}"); static tilegx_bundle_bits jit_x1_mtspr(int spr, int reg) { extern tilegx_bundle_bits __unalign_jit_x1_mtspr; return (GX_INSN_BSWAP(__unalign_jit_x1_mtspr) & GX_INSN_X1_MASK) | create_MT_Imm14_X1(spr) | create_SrcA_X1(reg); } __JIT_CODE("__unalign_jit_x1_mfspr: {mfspr r0, 0}"); static tilegx_bundle_bits jit_x1_mfspr(int reg, int spr) { extern tilegx_bundle_bits __unalign_jit_x1_mfspr; return (GX_INSN_BSWAP(__unalign_jit_x1_mfspr) & GX_INSN_X1_MASK) | create_MF_Imm14_X1(spr) | create_Dest_X1(reg); } __JIT_CODE("__unalign_jit_x0_addi: {addi r0, r0, 0; iret}"); static tilegx_bundle_bits jit_x0_addi(int rd, int ra, int imm8) { extern tilegx_bundle_bits __unalign_jit_x0_addi; return (GX_INSN_BSWAP(__unalign_jit_x0_addi) & GX_INSN_X0_MASK) | create_Dest_X0(rd) | create_SrcA_X0(ra) | create_Imm8_X0(imm8); } __JIT_CODE("__unalign_jit_x1_ldna: {ldna r0, r0}"); static tilegx_bundle_bits jit_x1_ldna(int rd, int ra) { extern tilegx_bundle_bits __unalign_jit_x1_ldna; return (GX_INSN_BSWAP(__unalign_jit_x1_ldna) & GX_INSN_X1_MASK) | create_Dest_X1(rd) | create_SrcA_X1(ra); } __JIT_CODE("__unalign_jit_x0_dblalign: {dblalign r0, r0 ,r0}"); static tilegx_bundle_bits jit_x0_dblalign(int rd, int ra, int rb) { extern tilegx_bundle_bits __unalign_jit_x0_dblalign; return (GX_INSN_BSWAP(__unalign_jit_x0_dblalign) & GX_INSN_X0_MASK) | create_Dest_X0(rd) | create_SrcA_X0(ra) | create_SrcB_X0(rb); } __JIT_CODE("__unalign_jit_x1_iret: {iret}"); static tilegx_bundle_bits jit_x1_iret(void) { extern tilegx_bundle_bits __unalign_jit_x1_iret; return GX_INSN_BSWAP(__unalign_jit_x1_iret) & GX_INSN_X1_MASK; } __JIT_CODE("__unalign_jit_x01_fnop: {fnop;fnop}"); static tilegx_bundle_bits jit_x0_fnop(void) { extern tilegx_bundle_bits __unalign_jit_x01_fnop; return GX_INSN_BSWAP(__unalign_jit_x01_fnop) & GX_INSN_X0_MASK; } static tilegx_bundle_bits jit_x1_fnop(void) { extern tilegx_bundle_bits __unalign_jit_x01_fnop; return GX_INSN_BSWAP(__unalign_jit_x01_fnop) & GX_INSN_X1_MASK; } __JIT_CODE("__unalign_jit_y2_dummy: {fnop; fnop; ld zero, sp}"); static tilegx_bundle_bits jit_y2_dummy(void) { extern tilegx_bundle_bits __unalign_jit_y2_dummy; return GX_INSN_BSWAP(__unalign_jit_y2_dummy) & GX_INSN_Y2_MASK; } static tilegx_bundle_bits jit_y1_fnop(void) { extern tilegx_bundle_bits __unalign_jit_y2_dummy; return GX_INSN_BSWAP(__unalign_jit_y2_dummy) & GX_INSN_Y1_MASK; } __JIT_CODE("__unalign_jit_x1_st1_add: {st1_add r1, r0, 0}"); static tilegx_bundle_bits jit_x1_st1_add(int ra, int rb, int imm8) { extern tilegx_bundle_bits __unalign_jit_x1_st1_add; return (GX_INSN_BSWAP(__unalign_jit_x1_st1_add) & (~create_SrcA_X1(-1)) & GX_INSN_X1_MASK) | create_SrcA_X1(ra) | create_SrcB_X1(rb) | create_Dest_Imm8_X1(imm8); } __JIT_CODE("__unalign_jit_x1_st: {crc32_8 r1, r0, r0; st r0, r0}"); static tilegx_bundle_bits jit_x1_st(int ra, int rb) { extern tilegx_bundle_bits __unalign_jit_x1_st; return (GX_INSN_BSWAP(__unalign_jit_x1_st) & GX_INSN_X1_MASK) | create_SrcA_X1(ra) | create_SrcB_X1(rb); } __JIT_CODE("__unalign_jit_x1_st_add: {st_add r1, r0, 0}"); static tilegx_bundle_bits jit_x1_st_add(int ra, int rb, int imm8) { extern tilegx_bundle_bits __unalign_jit_x1_st_add; return (GX_INSN_BSWAP(__unalign_jit_x1_st_add) & (~create_SrcA_X1(-1)) & GX_INSN_X1_MASK) | create_SrcA_X1(ra) | create_SrcB_X1(rb) | create_Dest_Imm8_X1(imm8); } __JIT_CODE("__unalign_jit_x1_ld: {crc32_8 r1, r0, r0; ld r0, r0}"); static tilegx_bundle_bits jit_x1_ld(int rd, int ra) { extern tilegx_bundle_bits __unalign_jit_x1_ld; return (GX_INSN_BSWAP(__unalign_jit_x1_ld) & GX_INSN_X1_MASK) | create_Dest_X1(rd) | create_SrcA_X1(ra); } __JIT_CODE("__unalign_jit_x1_ld_add: {ld_add r1, r0, 0}"); static tilegx_bundle_bits jit_x1_ld_add(int rd, int ra, int imm8) { extern tilegx_bundle_bits __unalign_jit_x1_ld_add; return (GX_INSN_BSWAP(__unalign_jit_x1_ld_add) & (~create_Dest_X1(-1)) & GX_INSN_X1_MASK) | create_Dest_X1(rd) | create_SrcA_X1(ra) | create_Imm8_X1(imm8); } __JIT_CODE("__unalign_jit_x0_bfexts: {bfexts r0, r0, 0, 0}"); static tilegx_bundle_bits jit_x0_bfexts(int rd, int ra, int bfs, int bfe) { extern tilegx_bundle_bits __unalign_jit_x0_bfexts; return (GX_INSN_BSWAP(__unalign_jit_x0_bfexts) & GX_INSN_X0_MASK) | create_Dest_X0(rd) | create_SrcA_X0(ra) | create_BFStart_X0(bfs) | create_BFEnd_X0(bfe); } __JIT_CODE("__unalign_jit_x0_bfextu: {bfextu r0, r0, 0, 0}"); static tilegx_bundle_bits jit_x0_bfextu(int rd, int ra, int bfs, int bfe) { extern tilegx_bundle_bits __unalign_jit_x0_bfextu; return (GX_INSN_BSWAP(__unalign_jit_x0_bfextu) & GX_INSN_X0_MASK) | create_Dest_X0(rd) | create_SrcA_X0(ra) | create_BFStart_X0(bfs) | create_BFEnd_X0(bfe); } __JIT_CODE("__unalign_jit_x1_addi: {bfextu r1, r1, 0, 0; addi r0, r0, 0}"); static tilegx_bundle_bits jit_x1_addi(int rd, int ra, int imm8) { extern tilegx_bundle_bits __unalign_jit_x1_addi; return (GX_INSN_BSWAP(__unalign_jit_x1_addi) & GX_INSN_X1_MASK) | create_Dest_X1(rd) | create_SrcA_X1(ra) | create_Imm8_X1(imm8); } __JIT_CODE("__unalign_jit_x0_shrui: {shrui r0, r0, 0; iret}"); static tilegx_bundle_bits jit_x0_shrui(int rd, int ra, int imm6) { extern tilegx_bundle_bits __unalign_jit_x0_shrui; return (GX_INSN_BSWAP(__unalign_jit_x0_shrui) & GX_INSN_X0_MASK) | create_Dest_X0(rd) | create_SrcA_X0(ra) | create_ShAmt_X0(imm6); } __JIT_CODE("__unalign_jit_x0_rotli: {rotli r0, r0, 0; iret}"); static tilegx_bundle_bits jit_x0_rotli(int rd, int ra, int imm6) { extern tilegx_bundle_bits __unalign_jit_x0_rotli; return (GX_INSN_BSWAP(__unalign_jit_x0_rotli) & GX_INSN_X0_MASK) | create_Dest_X0(rd) | create_SrcA_X0(ra) | create_ShAmt_X0(imm6); } __JIT_CODE("__unalign_jit_x1_bnezt: {bnezt r0, __unalign_jit_x1_bnezt}"); static tilegx_bundle_bits jit_x1_bnezt(int ra, int broff) { extern tilegx_bundle_bits __unalign_jit_x1_bnezt; return (GX_INSN_BSWAP(__unalign_jit_x1_bnezt) & GX_INSN_X1_MASK) | create_SrcA_X1(ra) | create_BrOff_X1(broff); } #undef __JIT_CODE /* * This function generates unalign fixup JIT. * * We first find unalign load/store instruction's destination, source * registers: ra, rb and rd. and 3 scratch registers by calling * find_regs(...). 3 scratch clobbers should not alias with any register * used in the fault bundle. Then analyze the fault bundle to determine * if it's a load or store, operand width, branch or address increment etc. * At last generated JIT is copied into JIT code area in user space. */ static void jit_bundle_gen(struct pt_regs *regs, tilegx_bundle_bits bundle, int align_ctl) { struct thread_info *info = current_thread_info(); struct unaligned_jit_fragment frag; struct unaligned_jit_fragment *jit_code_area; tilegx_bundle_bits bundle_2 = 0; /* If bundle_2_enable = false, bundle_2 is fnop/nop operation. */ bool bundle_2_enable = true; uint64_t ra = -1, rb = -1, rd = -1, clob1 = -1, clob2 = -1, clob3 = -1; /* * Indicate if the unalign access * instruction's registers hit with * others in the same bundle. */ bool alias = false; bool load_n_store = true; bool load_store_signed = false; unsigned int load_store_size = 8; bool y1_br = false; /* True, for a branch in same bundle at Y1.*/ int y1_br_reg = 0; /* True for link operation. i.e. jalr or lnk at Y1 */ bool y1_lr = false; int y1_lr_reg = 0; bool x1_add = false;/* True, for load/store ADD instruction at X1*/ int x1_add_imm8 = 0; bool unexpected = false; int n = 0, k; jit_code_area = (struct unaligned_jit_fragment *)(info->unalign_jit_base); memset((void *)&frag, 0, sizeof(frag)); /* 0: X mode, Otherwise: Y mode. */ if (bundle & TILEGX_BUNDLE_MODE_MASK) { unsigned int mod, opcode; if (get_Opcode_Y1(bundle) == RRR_1_OPCODE_Y1 && get_RRROpcodeExtension_Y1(bundle) == UNARY_RRR_1_OPCODE_Y1) { opcode = get_UnaryOpcodeExtension_Y1(bundle); /* * Test "jalr", "jalrp", "jr", "jrp" instruction at Y1 * pipeline. */ switch (opcode) { case JALR_UNARY_OPCODE_Y1: case JALRP_UNARY_OPCODE_Y1: y1_lr = true; y1_lr_reg = 55; /* Link register. */ /* FALLTHROUGH */ case JR_UNARY_OPCODE_Y1: case JRP_UNARY_OPCODE_Y1: y1_br = true; y1_br_reg = get_SrcA_Y1(bundle); break; case LNK_UNARY_OPCODE_Y1: /* "lnk" at Y1 pipeline. */ y1_lr = true; y1_lr_reg = get_Dest_Y1(bundle); break; } } opcode = get_Opcode_Y2(bundle); mod = get_Mode(bundle); /* * bundle_2 is bundle after making Y2 as a dummy operation * - ld zero, sp */ bundle_2 = (bundle & (~GX_INSN_Y2_MASK)) | jit_y2_dummy(); /* Make Y1 as fnop if Y1 is a branch or lnk operation. */ if (y1_br || y1_lr) { bundle_2 &= ~(GX_INSN_Y1_MASK); bundle_2 |= jit_y1_fnop(); } if (is_y0_y1_nop(bundle_2)) bundle_2_enable = false; if (mod == MODE_OPCODE_YC2) { /* Store. */ load_n_store = false; load_store_size = 1 << opcode; load_store_signed = false; find_regs(bundle, 0, &ra, &rb, &clob1, &clob2, &clob3, &alias); if (load_store_size > 8) unexpected = true; } else { /* Load. */ load_n_store = true; if (mod == MODE_OPCODE_YB2) { switch (opcode) { case LD_OPCODE_Y2: load_store_signed = false; load_store_size = 8; break; case LD4S_OPCODE_Y2: load_store_signed = true; load_store_size = 4; break; case LD4U_OPCODE_Y2: load_store_signed = false; load_store_size = 4; break; default: unexpected = true; } } else if (mod == MODE_OPCODE_YA2) { if (opcode == LD2S_OPCODE_Y2) { load_store_signed = true; load_store_size = 2; } else if (opcode == LD2U_OPCODE_Y2) { load_store_signed = false; load_store_size = 2; } else unexpected = true; } else unexpected = true; find_regs(bundle, &rd, &ra, &rb, &clob1, &clob2, &clob3, &alias); } } else { unsigned int opcode; /* bundle_2 is bundle after making X1 as "fnop". */ bundle_2 = (bundle & (~GX_INSN_X1_MASK)) | jit_x1_fnop(); if (is_x0_x1_nop(bundle_2)) bundle_2_enable = false; if (get_Opcode_X1(bundle) == RRR_0_OPCODE_X1) { opcode = get_UnaryOpcodeExtension_X1(bundle); if (get_RRROpcodeExtension_X1(bundle) == UNARY_RRR_0_OPCODE_X1) { load_n_store = true; find_regs(bundle, &rd, &ra, &rb, &clob1, &clob2, &clob3, &alias); switch (opcode) { case LD_UNARY_OPCODE_X1: load_store_signed = false; load_store_size = 8; break; case LD4S_UNARY_OPCODE_X1: load_store_signed = true; /* FALLTHROUGH */ case LD4U_UNARY_OPCODE_X1: load_store_size = 4; break; case LD2S_UNARY_OPCODE_X1: load_store_signed = true; /* FALLTHROUGH */ case LD2U_UNARY_OPCODE_X1: load_store_size = 2; break; default: unexpected = true; } } else { load_n_store = false; load_store_signed = false; find_regs(bundle, 0, &ra, &rb, &clob1, &clob2, &clob3, &alias); opcode = get_RRROpcodeExtension_X1(bundle); switch (opcode) { case ST_RRR_0_OPCODE_X1: load_store_size = 8; break; case ST4_RRR_0_OPCODE_X1: load_store_size = 4; break; case ST2_RRR_0_OPCODE_X1: load_store_size = 2; break; default: unexpected = true; } } } else if (get_Opcode_X1(bundle) == IMM8_OPCODE_X1) { load_n_store = true; opcode = get_Imm8OpcodeExtension_X1(bundle); switch (opcode) { case LD_ADD_IMM8_OPCODE_X1: load_store_size = 8; break; case LD4S_ADD_IMM8_OPCODE_X1: load_store_signed = true; /* FALLTHROUGH */ case LD4U_ADD_IMM8_OPCODE_X1: load_store_size = 4; break; case LD2S_ADD_IMM8_OPCODE_X1: load_store_signed = true; /* FALLTHROUGH */ case LD2U_ADD_IMM8_OPCODE_X1: load_store_size = 2; break; case ST_ADD_IMM8_OPCODE_X1: load_n_store = false; load_store_size = 8; break; case ST4_ADD_IMM8_OPCODE_X1: load_n_store = false; load_store_size = 4; break; case ST2_ADD_IMM8_OPCODE_X1: load_n_store = false; load_store_size = 2; break; default: unexpected = true; } if (!unexpected) { x1_add = true; if (load_n_store) x1_add_imm8 = get_Imm8_X1(bundle); else x1_add_imm8 = get_Dest_Imm8_X1(bundle); } find_regs(bundle, load_n_store ? (&rd) : NULL, &ra, &rb, &clob1, &clob2, &clob3, &alias); } else unexpected = true; } /* * Some sanity check for register numbers extracted from fault bundle. */ if (check_regs(rd, ra, rb, clob1, clob2, clob3) == true) unexpected = true; /* Give warning if register ra has an aligned address. */ if (!unexpected) WARN_ON(!((load_store_size - 1) & (regs->regs[ra]))); /* * Fault came from kernel space, here we only need take care of * unaligned "get_user/put_user" macros defined in "uaccess.h". * Basically, we will handle bundle like this: * {ld/2u/4s rd, ra; movei rx, 0} or {st/2/4 ra, rb; movei rx, 0} * (Refer to file "arch/tile/include/asm/uaccess.h" for details). * For either load or store, byte-wise operation is performed by calling * get_user() or put_user(). If the macro returns non-zero value, * set the value to rx, otherwise set zero to rx. Finally make pc point * to next bundle and return. */ if (EX1_PL(regs->ex1) != USER_PL) { unsigned long rx = 0; unsigned long x = 0, ret = 0; if (y1_br || y1_lr || x1_add || (load_store_signed != (load_n_store && load_store_size == 4))) { /* No branch, link, wrong sign-ext or load/store add. */ unexpected = true; } else if (!unexpected) { if (bundle & TILEGX_BUNDLE_MODE_MASK) { /* * Fault bundle is Y mode. * Check if the Y1 and Y0 is the form of * { movei rx, 0; nop/fnop }, if yes, * find the rx. */ if ((get_Opcode_Y1(bundle) == ADDI_OPCODE_Y1) && (get_SrcA_Y1(bundle) == TREG_ZERO) && (get_Imm8_Y1(bundle) == 0) && is_bundle_y0_nop(bundle)) { rx = get_Dest_Y1(bundle); } else if ((get_Opcode_Y0(bundle) == ADDI_OPCODE_Y0) && (get_SrcA_Y0(bundle) == TREG_ZERO) && (get_Imm8_Y0(bundle) == 0) && is_bundle_y1_nop(bundle)) { rx = get_Dest_Y0(bundle); } else { unexpected = true; } } else { /* * Fault bundle is X mode. * Check if the X0 is 'movei rx, 0', * if yes, find the rx. */ if ((get_Opcode_X0(bundle) == IMM8_OPCODE_X0) && (get_Imm8OpcodeExtension_X0(bundle) == ADDI_IMM8_OPCODE_X0) && (get_SrcA_X0(bundle) == TREG_ZERO) && (get_Imm8_X0(bundle) == 0)) { rx = get_Dest_X0(bundle); } else { unexpected = true; } } /* rx should be less than 56. */ if (!unexpected && (rx >= 56)) unexpected = true; } if (!search_exception_tables(regs->pc)) { /* No fixup in the exception tables for the pc. */ unexpected = true; } if (unexpected) { /* Unexpected unalign kernel fault. */ struct task_struct *tsk = validate_current(); bust_spinlocks(1); show_regs(regs); if (unlikely(tsk->pid < 2)) { panic("Kernel unalign fault running %s!", tsk->pid ? "init" : "the idle task"); } #ifdef SUPPORT_DIE die("Oops", regs); #endif bust_spinlocks(1); do_group_exit(SIGKILL); } else { unsigned long i, b = 0; unsigned char *ptr = (unsigned char *)regs->regs[ra]; if (load_n_store) { /* handle get_user(x, ptr) */ for (i = 0; i < load_store_size; i++) { ret = get_user(b, ptr++); if (!ret) { /* Success! update x. */ #ifdef __LITTLE_ENDIAN x |= (b << (8 * i)); #else x <<= 8; x |= b; #endif /* __LITTLE_ENDIAN */ } else { x = 0; break; } } /* Sign-extend 4-byte loads. */ if (load_store_size == 4) x = (long)(int)x; /* Set register rd. */ regs->regs[rd] = x; /* Set register rx. */ regs->regs[rx] = ret; /* Bump pc. */ regs->pc += 8; } else { /* Handle put_user(x, ptr) */ x = regs->regs[rb]; #ifdef __LITTLE_ENDIAN b = x; #else /* * Swap x in order to store x from low * to high memory same as the * little-endian case. */ switch (load_store_size) { case 8: b = swab64(x); break; case 4: b = swab32(x); break; case 2: b = swab16(x); break; } #endif /* __LITTLE_ENDIAN */ for (i = 0; i < load_store_size; i++) { ret = put_user(b, ptr++); if (ret) break; /* Success! shift 1 byte. */ b >>= 8; } /* Set register rx. */ regs->regs[rx] = ret; /* Bump pc. */ regs->pc += 8; } } unaligned_fixup_count++; if (unaligned_printk) { pr_info("%s/%d - Unalign fixup for kernel access to userspace %lx\n", current->comm, current->pid, regs->regs[ra]); } /* Done! Return to the exception handler. */ return; } if ((align_ctl == 0) || unexpected) { siginfo_t info = { .si_signo = SIGBUS, .si_code = BUS_ADRALN, .si_addr = (unsigned char __user *)0 }; if (unaligned_printk) pr_info("Unalign bundle: unexp @%llx, %llx\n", (unsigned long long)regs->pc, (unsigned long long)bundle); if (ra < 56) { unsigned long uaa = (unsigned long)regs->regs[ra]; /* Set bus Address. */ info.si_addr = (unsigned char __user *)uaa; } unaligned_fixup_count++; trace_unhandled_signal("unaligned fixup trap", regs, (unsigned long)info.si_addr, SIGBUS); force_sig_info(info.si_signo, &info, current); return; } #ifdef __LITTLE_ENDIAN #define UA_FIXUP_ADDR_DELTA 1 #define UA_FIXUP_BFEXT_START(_B_) 0 #define UA_FIXUP_BFEXT_END(_B_) (8 * (_B_) - 1) #else /* __BIG_ENDIAN */ #define UA_FIXUP_ADDR_DELTA -1 #define UA_FIXUP_BFEXT_START(_B_) (64 - 8 * (_B_)) #define UA_FIXUP_BFEXT_END(_B_) 63 #endif /* __LITTLE_ENDIAN */ if ((ra != rb) && (rd != TREG_SP) && !alias && !y1_br && !y1_lr && !x1_add) { /* * Simple case: ra != rb and no register alias found, * and no branch or link. This will be the majority. * We can do a little better for simplae case than the * generic scheme below. */ if (!load_n_store) { /* * Simple store: ra != rb, no need for scratch register. * Just store and rotate to right bytewise. */ #ifdef __BIG_ENDIAN frag.insn[n++] = jit_x0_addi(ra, ra, load_store_size - 1) | jit_x1_fnop(); #endif /* __BIG_ENDIAN */ for (k = 0; k < load_store_size; k++) { /* Store a byte. */ frag.insn[n++] = jit_x0_rotli(rb, rb, 56) | jit_x1_st1_add(ra, rb, UA_FIXUP_ADDR_DELTA); } #ifdef __BIG_ENDIAN frag.insn[n] = jit_x1_addi(ra, ra, 1); #else frag.insn[n] = jit_x1_addi(ra, ra, -1 * load_store_size); #endif /* __LITTLE_ENDIAN */ if (load_store_size == 8) { frag.insn[n] |= jit_x0_fnop(); } else if (load_store_size == 4) { frag.insn[n] |= jit_x0_rotli(rb, rb, 32); } else { /* = 2 */ frag.insn[n] |= jit_x0_rotli(rb, rb, 16); } n++; if (bundle_2_enable) frag.insn[n++] = bundle_2; frag.insn[n++] = jit_x0_fnop() | jit_x1_iret(); } else { if (rd == ra) { /* Use two clobber registers: clob1/2. */ frag.insn[n++] = jit_x0_addi(TREG_SP, TREG_SP, -16) | jit_x1_fnop(); frag.insn[n++] = jit_x0_addi(clob1, ra, 7) | jit_x1_st_add(TREG_SP, clob1, -8); frag.insn[n++] = jit_x0_addi(clob2, ra, 0) | jit_x1_st(TREG_SP, clob2); frag.insn[n++] = jit_x0_fnop() | jit_x1_ldna(rd, ra); frag.insn[n++] = jit_x0_fnop() | jit_x1_ldna(clob1, clob1); /* * Note: we must make sure that rd must not * be sp. Recover clob1/2 from stack. */ frag.insn[n++] = jit_x0_dblalign(rd, clob1, clob2) | jit_x1_ld_add(clob2, TREG_SP, 8); frag.insn[n++] = jit_x0_fnop() | jit_x1_ld_add(clob1, TREG_SP, 16); } else { /* Use one clobber register: clob1 only. */ frag.insn[n++] = jit_x0_addi(TREG_SP, TREG_SP, -16) | jit_x1_fnop(); frag.insn[n++] = jit_x0_addi(clob1, ra, 7) | jit_x1_st(TREG_SP, clob1); frag.insn[n++] = jit_x0_fnop() | jit_x1_ldna(rd, ra); frag.insn[n++] = jit_x0_fnop() | jit_x1_ldna(clob1, clob1); /* * Note: we must make sure that rd must not * be sp. Recover clob1 from stack. */ frag.insn[n++] = jit_x0_dblalign(rd, clob1, ra) | jit_x1_ld_add(clob1, TREG_SP, 16); } if (bundle_2_enable) frag.insn[n++] = bundle_2; /* * For non 8-byte load, extract corresponding bytes and * signed extension. */ if (load_store_size == 4) { if (load_store_signed) frag.insn[n++] = jit_x0_bfexts( rd, rd, UA_FIXUP_BFEXT_START(4), UA_FIXUP_BFEXT_END(4)) | jit_x1_fnop(); else frag.insn[n++] = jit_x0_bfextu( rd, rd, UA_FIXUP_BFEXT_START(4), UA_FIXUP_BFEXT_END(4)) | jit_x1_fnop(); } else if (load_store_size == 2) { if (load_store_signed) frag.insn[n++] = jit_x0_bfexts( rd, rd, UA_FIXUP_BFEXT_START(2), UA_FIXUP_BFEXT_END(2)) | jit_x1_fnop(); else frag.insn[n++] = jit_x0_bfextu( rd, rd, UA_FIXUP_BFEXT_START(2), UA_FIXUP_BFEXT_END(2)) | jit_x1_fnop(); } frag.insn[n++] = jit_x0_fnop() | jit_x1_iret(); } } else if (!load_n_store) { /* * Generic memory store cases: use 3 clobber registers. * * Alloc space for saveing clob2,1,3 on user's stack. * register clob3 points to where clob2 saved, followed by * clob1 and 3 from high to low memory. */ frag.insn[n++] = jit_x0_addi(TREG_SP, TREG_SP, -32) | jit_x1_fnop(); frag.insn[n++] = jit_x0_addi(clob3, TREG_SP, 16) | jit_x1_st_add(TREG_SP, clob3, 8); #ifdef __LITTLE_ENDIAN frag.insn[n++] = jit_x0_addi(clob1, ra, 0) | jit_x1_st_add(TREG_SP, clob1, 8); #else frag.insn[n++] = jit_x0_addi(clob1, ra, load_store_size - 1) | jit_x1_st_add(TREG_SP, clob1, 8); #endif if (load_store_size == 8) { /* * We save one byte a time, not for fast, but compact * code. After each store, data source register shift * right one byte. unchanged after 8 stores. */ frag.insn[n++] = jit_x0_addi(clob2, TREG_ZERO, 7) | jit_x1_st_add(TREG_SP, clob2, 16); frag.insn[n++] = jit_x0_rotli(rb, rb, 56) | jit_x1_st1_add(clob1, rb, UA_FIXUP_ADDR_DELTA); frag.insn[n++] = jit_x0_addi(clob2, clob2, -1) | jit_x1_bnezt(clob2, -1); frag.insn[n++] = jit_x0_fnop() | jit_x1_addi(clob2, y1_br_reg, 0); } else if (load_store_size == 4) { frag.insn[n++] = jit_x0_addi(clob2, TREG_ZERO, 3) | jit_x1_st_add(TREG_SP, clob2, 16); frag.insn[n++] = jit_x0_rotli(rb, rb, 56) | jit_x1_st1_add(clob1, rb, UA_FIXUP_ADDR_DELTA); frag.insn[n++] = jit_x0_addi(clob2, clob2, -1) | jit_x1_bnezt(clob2, -1); /* * same as 8-byte case, but need shift another 4 * byte to recover rb for 4-byte store. */ frag.insn[n++] = jit_x0_rotli(rb, rb, 32) | jit_x1_addi(clob2, y1_br_reg, 0); } else { /* =2 */ frag.insn[n++] = jit_x0_addi(clob2, rb, 0) | jit_x1_st_add(TREG_SP, clob2, 16); for (k = 0; k < 2; k++) { frag.insn[n++] = jit_x0_shrui(rb, rb, 8) | jit_x1_st1_add(clob1, rb, UA_FIXUP_ADDR_DELTA); } frag.insn[n++] = jit_x0_addi(rb, clob2, 0) | jit_x1_addi(clob2, y1_br_reg, 0); } if (bundle_2_enable) frag.insn[n++] = bundle_2; if (y1_lr) { frag.insn[n++] = jit_x0_fnop() | jit_x1_mfspr(y1_lr_reg, SPR_EX_CONTEXT_0_0); } if (y1_br) { frag.insn[n++] = jit_x0_fnop() | jit_x1_mtspr(SPR_EX_CONTEXT_0_0, clob2); } if (x1_add) { frag.insn[n++] = jit_x0_addi(ra, ra, x1_add_imm8) | jit_x1_ld_add(clob2, clob3, -8); } else { frag.insn[n++] = jit_x0_fnop() | jit_x1_ld_add(clob2, clob3, -8); } frag.insn[n++] = jit_x0_fnop() | jit_x1_ld_add(clob1, clob3, -8); frag.insn[n++] = jit_x0_fnop() | jit_x1_ld(clob3, clob3); frag.insn[n++] = jit_x0_fnop() | jit_x1_iret(); } else { /* * Generic memory load cases. * * Alloc space for saveing clob1,2,3 on user's stack. * register clob3 points to where clob1 saved, followed * by clob2 and 3 from high to low memory. */ frag.insn[n++] = jit_x0_addi(TREG_SP, TREG_SP, -32) | jit_x1_fnop(); frag.insn[n++] = jit_x0_addi(clob3, TREG_SP, 16) | jit_x1_st_add(TREG_SP, clob3, 8); frag.insn[n++] = jit_x0_addi(clob2, ra, 0) | jit_x1_st_add(TREG_SP, clob2, 8); if (y1_br) { frag.insn[n++] = jit_x0_addi(clob1, y1_br_reg, 0) | jit_x1_st_add(TREG_SP, clob1, 16); } else { frag.insn[n++] = jit_x0_fnop() | jit_x1_st_add(TREG_SP, clob1, 16); } if (bundle_2_enable) frag.insn[n++] = bundle_2; if (y1_lr) { frag.insn[n++] = jit_x0_fnop() | jit_x1_mfspr(y1_lr_reg, SPR_EX_CONTEXT_0_0); } if (y1_br) { frag.insn[n++] = jit_x0_fnop() | jit_x1_mtspr(SPR_EX_CONTEXT_0_0, clob1); } frag.insn[n++] = jit_x0_addi(clob1, clob2, 7) | jit_x1_ldna(rd, clob2); frag.insn[n++] = jit_x0_fnop() | jit_x1_ldna(clob1, clob1); frag.insn[n++] = jit_x0_dblalign(rd, clob1, clob2) | jit_x1_ld_add(clob1, clob3, -8); if (x1_add) { frag.insn[n++] = jit_x0_addi(ra, ra, x1_add_imm8) | jit_x1_ld_add(clob2, clob3, -8); } else { frag.insn[n++] = jit_x0_fnop() | jit_x1_ld_add(clob2, clob3, -8); } frag.insn[n++] = jit_x0_fnop() | jit_x1_ld(clob3, clob3); if (load_store_size == 4) { if (load_store_signed) frag.insn[n++] = jit_x0_bfexts( rd, rd, UA_FIXUP_BFEXT_START(4), UA_FIXUP_BFEXT_END(4)) | jit_x1_fnop(); else frag.insn[n++] = jit_x0_bfextu( rd, rd, UA_FIXUP_BFEXT_START(4), UA_FIXUP_BFEXT_END(4)) | jit_x1_fnop(); } else if (load_store_size == 2) { if (load_store_signed) frag.insn[n++] = jit_x0_bfexts( rd, rd, UA_FIXUP_BFEXT_START(2), UA_FIXUP_BFEXT_END(2)) | jit_x1_fnop(); else frag.insn[n++] = jit_x0_bfextu( rd, rd, UA_FIXUP_BFEXT_START(2), UA_FIXUP_BFEXT_END(2)) | jit_x1_fnop(); } frag.insn[n++] = jit_x0_fnop() | jit_x1_iret(); } /* Max JIT bundle count is 14. */ WARN_ON(n > 14); if (!unexpected) { int status = 0; int idx = (regs->pc >> 3) & ((1ULL << (PAGE_SHIFT - UNALIGN_JIT_SHIFT)) - 1); frag.pc = regs->pc; frag.bundle = bundle; if (unaligned_printk) { pr_info("%s/%d, Unalign fixup: pc=%lx bundle=%lx %d %d %d %d %d %d %d %d\n", current->comm, current->pid, (unsigned long)frag.pc, (unsigned long)frag.bundle, (int)alias, (int)rd, (int)ra, (int)rb, (int)bundle_2_enable, (int)y1_lr, (int)y1_br, (int)x1_add); for (k = 0; k < n; k += 2) pr_info("[%d] %016llx %016llx\n", k, (unsigned long long)frag.insn[k], (unsigned long long)frag.insn[k+1]); } /* Swap bundle byte order for big endian sys. */ #ifdef __BIG_ENDIAN frag.bundle = GX_INSN_BSWAP(frag.bundle); for (k = 0; k < n; k++) frag.insn[k] = GX_INSN_BSWAP(frag.insn[k]); #endif /* __BIG_ENDIAN */ status = copy_to_user((void __user *)&jit_code_area[idx], &frag, sizeof(frag)); if (status) { /* Fail to copy JIT into user land. send SIGSEGV. */ siginfo_t info = { .si_signo = SIGSEGV, .si_code = SEGV_MAPERR, .si_addr = (void __user *)&jit_code_area[idx] }; pr_warn("Unalign fixup: pid=%d %s jit_code_area=%llx\n", current->pid, current->comm, (unsigned long long)&jit_code_area[idx]); trace_unhandled_signal("segfault in unalign fixup", regs, (unsigned long)info.si_addr, SIGSEGV); force_sig_info(info.si_signo, &info, current); return; } /* Do a cheaper increment, not accurate. */ unaligned_fixup_count++; __flush_icache_range((unsigned long)&jit_code_area[idx], (unsigned long)&jit_code_area[idx] + sizeof(frag)); /* Setup SPR_EX_CONTEXT_0_0/1 for returning to user program.*/ __insn_mtspr(SPR_EX_CONTEXT_0_0, regs->pc + 8); __insn_mtspr(SPR_EX_CONTEXT_0_1, PL_ICS_EX1(USER_PL, 0)); /* Modify pc at the start of new JIT. */ regs->pc = (unsigned long)&jit_code_area[idx].insn[0]; /* Set ICS in SPR_EX_CONTEXT_K_1. */ regs->ex1 = PL_ICS_EX1(USER_PL, 1); } } /* * C function to generate unalign data JIT. Called from unalign data * interrupt handler. * * First check if unalign fix is disabled or exception did not not come from * user space or sp register points to unalign address, if true, generate a * SIGBUS. Then map a page into user space as JIT area if it is not mapped * yet. Genenerate JIT code by calling jit_bundle_gen(). After that return * back to exception handler. * * The exception handler will "iret" to new generated JIT code after * restoring caller saved registers. In theory, the JIT code will perform * another "iret" to resume user's program. */ void do_unaligned(struct pt_regs *regs, int vecnum) { enum ctx_state prev_state = exception_enter(); tilegx_bundle_bits __user *pc; tilegx_bundle_bits bundle; struct thread_info *info = current_thread_info(); int align_ctl; /* Checks the per-process unaligned JIT flags */ align_ctl = unaligned_fixup; switch (task_thread_info(current)->align_ctl) { case PR_UNALIGN_NOPRINT: align_ctl = 1; break; case PR_UNALIGN_SIGBUS: align_ctl = 0; break; } /* Enable iterrupt in order to access user land. */ local_irq_enable(); /* * The fault came from kernel space. Two choices: * (a) unaligned_fixup < 1, we will first call get/put_user fixup * to return -EFAULT. If no fixup, simply panic the kernel. * (b) unaligned_fixup >=1, we will try to fix the unaligned access * if it was triggered by get_user/put_user() macros. Panic the * kernel if it is not fixable. */ if (EX1_PL(regs->ex1) != USER_PL) { if (align_ctl < 1) { unaligned_fixup_count++; /* If exception came from kernel, try fix it up. */ if (fixup_exception(regs)) { if (unaligned_printk) pr_info("Unalign fixup: %d %llx @%llx\n", (int)unaligned_fixup, (unsigned long long)regs->ex1, (unsigned long long)regs->pc); } else { /* Not fixable. Go panic. */ panic("Unalign exception in Kernel. pc=%lx", regs->pc); } } else { /* * Try to fix the exception. If we can't, panic the * kernel. */ bundle = GX_INSN_BSWAP( *((tilegx_bundle_bits *)(regs->pc))); jit_bundle_gen(regs, bundle, align_ctl); } goto done; } /* * Fault came from user with ICS or stack is not aligned. * If so, we will trigger SIGBUS. */ if ((regs->sp & 0x7) || (regs->ex1) || (align_ctl < 0)) { siginfo_t info = { .si_signo = SIGBUS, .si_code = BUS_ADRALN, .si_addr = (unsigned char __user *)0 }; if (unaligned_printk) pr_info("Unalign fixup: %d %llx @%llx\n", (int)unaligned_fixup, (unsigned long long)regs->ex1, (unsigned long long)regs->pc); unaligned_fixup_count++; trace_unhandled_signal("unaligned fixup trap", regs, 0, SIGBUS); force_sig_info(info.si_signo, &info, current); goto done; } /* Read the bundle casued the exception! */ pc = (tilegx_bundle_bits __user *)(regs->pc); if (get_user(bundle, pc) != 0) { /* Probably never be here since pc is valid user address.*/ siginfo_t info = { .si_signo = SIGSEGV, .si_code = SEGV_MAPERR, .si_addr = (void __user *)pc }; pr_err("Couldn't read instruction at %p trying to step\n", pc); trace_unhandled_signal("segfault in unalign fixup", regs, (unsigned long)info.si_addr, SIGSEGV); force_sig_info(info.si_signo, &info, current); goto done; } if (!info->unalign_jit_base) { void __user *user_page; /* * Allocate a page in userland. * For 64-bit processes we try to place the mapping far * from anything else that might be going on (specifically * 64 GB below the top of the user address space). If it * happens not to be possible to put it there, it's OK; * the kernel will choose another location and we'll * remember it for later. */ if (is_compat_task()) user_page = NULL; else user_page = (void __user *)(TASK_SIZE - (1UL << 36)) + (current->pid << PAGE_SHIFT); user_page = (void __user *) vm_mmap(NULL, (unsigned long)user_page, PAGE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, #ifdef CONFIG_HOMECACHE MAP_CACHE_HOME_TASK | #endif MAP_PRIVATE | MAP_ANONYMOUS, 0); if (IS_ERR((void __force *)user_page)) { pr_err("Out of kernel pages trying do_mmap\n"); goto done; } /* Save the address in the thread_info struct */ info->unalign_jit_base = user_page; if (unaligned_printk) pr_info("Unalign bundle: %d:%d, allocate page @%llx\n", raw_smp_processor_id(), current->pid, (unsigned long long)user_page); } /* Generate unalign JIT */ jit_bundle_gen(regs, GX_INSN_BSWAP(bundle), align_ctl); done: exception_exit(prev_state); } #endif /* __tilegx__ */