#ifndef _ASM_X86_SPINLOCK_H #define _ASM_X86_SPINLOCK_H #include <linux/jump_label.h> #include <linux/atomic.h> #include <asm/page.h> #include <asm/processor.h> #include <linux/compiler.h> #include <asm/paravirt.h> #include <asm/bitops.h> /* * Your basic SMP spinlocks, allowing only a single CPU anywhere * * Simple spin lock operations. There are two variants, one clears IRQ's * on the local processor, one does not. * * These are fair FIFO ticket locks, which support up to 2^16 CPUs. * * (the type definitions are in asm/spinlock_types.h) */ #ifdef CONFIG_X86_32 # define LOCK_PTR_REG "a" #else # define LOCK_PTR_REG "D" #endif #if defined(CONFIG_X86_32) && (defined(CONFIG_X86_PPRO_FENCE)) /* * On PPro SMP, we use a locked operation to unlock * (PPro errata 66, 92) */ # define UNLOCK_LOCK_PREFIX LOCK_PREFIX #else # define UNLOCK_LOCK_PREFIX #endif /* How long a lock should spin before we consider blocking */ #define SPIN_THRESHOLD (1 << 15) extern struct static_key paravirt_ticketlocks_enabled; static __always_inline bool static_key_false(struct static_key *key); #ifdef CONFIG_PARAVIRT_SPINLOCKS static inline void __ticket_enter_slowpath(arch_spinlock_t *lock) { set_bit(0, (volatile unsigned long *)&lock->tickets.head); } #else /* !CONFIG_PARAVIRT_SPINLOCKS */ static __always_inline void __ticket_lock_spinning(arch_spinlock_t *lock, __ticket_t ticket) { } static inline void __ticket_unlock_kick(arch_spinlock_t *lock, __ticket_t ticket) { } #endif /* CONFIG_PARAVIRT_SPINLOCKS */ static inline int __tickets_equal(__ticket_t one, __ticket_t two) { return !((one ^ two) & ~TICKET_SLOWPATH_FLAG); } static inline void __ticket_check_and_clear_slowpath(arch_spinlock_t *lock, __ticket_t head) { if (head & TICKET_SLOWPATH_FLAG) { arch_spinlock_t old, new; old.tickets.head = head; new.tickets.head = head & ~TICKET_SLOWPATH_FLAG; old.tickets.tail = new.tickets.head + TICKET_LOCK_INC; new.tickets.tail = old.tickets.tail; /* try to clear slowpath flag when there are no contenders */ cmpxchg(&lock->head_tail, old.head_tail, new.head_tail); } } static __always_inline int arch_spin_value_unlocked(arch_spinlock_t lock) { return __tickets_equal(lock.tickets.head, lock.tickets.tail); } /* * Ticket locks are conceptually two parts, one indicating the current head of * the queue, and the other indicating the current tail. The lock is acquired * by atomically noting the tail and incrementing it by one (thus adding * ourself to the queue and noting our position), then waiting until the head * becomes equal to the the initial value of the tail. * * We use an xadd covering *both* parts of the lock, to increment the tail and * also load the position of the head, which takes care of memory ordering * issues and should be optimal for the uncontended case. Note the tail must be * in the high part, because a wide xadd increment of the low part would carry * up and contaminate the high part. */ static __always_inline void arch_spin_lock(arch_spinlock_t *lock) { register struct __raw_tickets inc = { .tail = TICKET_LOCK_INC }; inc = xadd(&lock->tickets, inc); if (likely(inc.head == inc.tail)) goto out; for (;;) { unsigned count = SPIN_THRESHOLD; do { inc.head = READ_ONCE(lock->tickets.head); if (__tickets_equal(inc.head, inc.tail)) goto clear_slowpath; cpu_relax(); } while (--count); __ticket_lock_spinning(lock, inc.tail); } clear_slowpath: __ticket_check_and_clear_slowpath(lock, inc.head); out: barrier(); /* make sure nothing creeps before the lock is taken */ } static __always_inline int arch_spin_trylock(arch_spinlock_t *lock) { arch_spinlock_t old, new; old.tickets = READ_ONCE(lock->tickets); if (!__tickets_equal(old.tickets.head, old.tickets.tail)) return 0; new.head_tail = old.head_tail + (TICKET_LOCK_INC << TICKET_SHIFT); new.head_tail &= ~TICKET_SLOWPATH_FLAG; /* cmpxchg is a full barrier, so nothing can move before it */ return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail; } static __always_inline void arch_spin_unlock(arch_spinlock_t *lock) { if (TICKET_SLOWPATH_FLAG && static_key_false(¶virt_ticketlocks_enabled)) { __ticket_t head; BUILD_BUG_ON(((__ticket_t)NR_CPUS) != NR_CPUS); head = xadd(&lock->tickets.head, TICKET_LOCK_INC); if (unlikely(head & TICKET_SLOWPATH_FLAG)) { head &= ~TICKET_SLOWPATH_FLAG; __ticket_unlock_kick(lock, (head + TICKET_LOCK_INC)); } } else __add(&lock->tickets.head, TICKET_LOCK_INC, UNLOCK_LOCK_PREFIX); } static inline int arch_spin_is_locked(arch_spinlock_t *lock) { struct __raw_tickets tmp = READ_ONCE(lock->tickets); return !__tickets_equal(tmp.tail, tmp.head); } static inline int arch_spin_is_contended(arch_spinlock_t *lock) { struct __raw_tickets tmp = READ_ONCE(lock->tickets); tmp.head &= ~TICKET_SLOWPATH_FLAG; return (__ticket_t)(tmp.tail - tmp.head) > TICKET_LOCK_INC; } #define arch_spin_is_contended arch_spin_is_contended static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock, unsigned long flags) { arch_spin_lock(lock); } static inline void arch_spin_unlock_wait(arch_spinlock_t *lock) { __ticket_t head = READ_ONCE(lock->tickets.head); for (;;) { struct __raw_tickets tmp = READ_ONCE(lock->tickets); /* * We need to check "unlocked" in a loop, tmp.head == head * can be false positive because of overflow. */ if (__tickets_equal(tmp.head, tmp.tail) || !__tickets_equal(tmp.head, head)) break; cpu_relax(); } } /* * Read-write spinlocks, allowing multiple readers * but only one writer. * * NOTE! it is quite common to have readers in interrupts * but no interrupt writers. For those circumstances we * can "mix" irq-safe locks - any writer needs to get a * irq-safe write-lock, but readers can get non-irqsafe * read-locks. * * On x86, we implement read-write locks using the generic qrwlock with * x86 specific optimization. */ #include <asm/qrwlock.h> #define arch_read_lock_flags(lock, flags) arch_read_lock(lock) #define arch_write_lock_flags(lock, flags) arch_write_lock(lock) #define arch_spin_relax(lock) cpu_relax() #define arch_read_relax(lock) cpu_relax() #define arch_write_relax(lock) cpu_relax() #endif /* _ASM_X86_SPINLOCK_H */