/* * Machine specific setup for xen * * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 */ #include <linux/module.h> #include <linux/sched.h> #include <linux/mm.h> #include <linux/pm.h> #include <linux/memblock.h> #include <linux/cpuidle.h> #include <linux/cpufreq.h> #include <asm/elf.h> #include <asm/vdso.h> #include <asm/e820.h> #include <asm/setup.h> #include <asm/acpi.h> #include <asm/numa.h> #include <asm/xen/hypervisor.h> #include <asm/xen/hypercall.h> #include <xen/xen.h> #include <xen/page.h> #include <xen/interface/callback.h> #include <xen/interface/memory.h> #include <xen/interface/physdev.h> #include <xen/features.h> #include "xen-ops.h" #include "vdso.h" #include "p2m.h" #include "mmu.h" /* Amount of extra memory space we add to the e820 ranges */ struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata; /* Number of pages released from the initial allocation. */ unsigned long xen_released_pages; /* * Buffer used to remap identity mapped pages. We only need the virtual space. * The physical page behind this address is remapped as needed to different * buffer pages. */ #define REMAP_SIZE (P2M_PER_PAGE - 3) static struct { unsigned long next_area_mfn; unsigned long target_pfn; unsigned long size; unsigned long mfns[REMAP_SIZE]; } xen_remap_buf __initdata __aligned(PAGE_SIZE); static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY; /* * The maximum amount of extra memory compared to the base size. The * main scaling factor is the size of struct page. At extreme ratios * of base:extra, all the base memory can be filled with page * structures for the extra memory, leaving no space for anything * else. * * 10x seems like a reasonable balance between scaling flexibility and * leaving a practically usable system. */ #define EXTRA_MEM_RATIO (10) static void __init xen_add_extra_mem(phys_addr_t start, phys_addr_t size) { int i; for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { /* Add new region. */ if (xen_extra_mem[i].size == 0) { xen_extra_mem[i].start = start; xen_extra_mem[i].size = size; break; } /* Append to existing region. */ if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) { xen_extra_mem[i].size += size; break; } } if (i == XEN_EXTRA_MEM_MAX_REGIONS) printk(KERN_WARNING "Warning: not enough extra memory regions\n"); memblock_reserve(start, size); } static void __init xen_del_extra_mem(phys_addr_t start, phys_addr_t size) { int i; phys_addr_t start_r, size_r; for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { start_r = xen_extra_mem[i].start; size_r = xen_extra_mem[i].size; /* Start of region. */ if (start_r == start) { BUG_ON(size > size_r); xen_extra_mem[i].start += size; xen_extra_mem[i].size -= size; break; } /* End of region. */ if (start_r + size_r == start + size) { BUG_ON(size > size_r); xen_extra_mem[i].size -= size; break; } /* Mid of region. */ if (start > start_r && start < start_r + size_r) { BUG_ON(start + size > start_r + size_r); xen_extra_mem[i].size = start - start_r; /* Calling memblock_reserve() again is okay. */ xen_add_extra_mem(start + size, start_r + size_r - (start + size)); break; } } memblock_free(start, size); } /* * Called during boot before the p2m list can take entries beyond the * hypervisor supplied p2m list. Entries in extra mem are to be regarded as * invalid. */ unsigned long __ref xen_chk_extra_mem(unsigned long pfn) { int i; phys_addr_t addr = PFN_PHYS(pfn); for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { if (addr >= xen_extra_mem[i].start && addr < xen_extra_mem[i].start + xen_extra_mem[i].size) return INVALID_P2M_ENTRY; } return IDENTITY_FRAME(pfn); } /* * Mark all pfns of extra mem as invalid in p2m list. */ void __init xen_inv_extra_mem(void) { unsigned long pfn, pfn_s, pfn_e; int i; for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { if (!xen_extra_mem[i].size) continue; pfn_s = PFN_DOWN(xen_extra_mem[i].start); pfn_e = PFN_UP(xen_extra_mem[i].start + xen_extra_mem[i].size); for (pfn = pfn_s; pfn < pfn_e; pfn++) set_phys_to_machine(pfn, INVALID_P2M_ENTRY); } } /* * Finds the next RAM pfn available in the E820 map after min_pfn. * This function updates min_pfn with the pfn found and returns * the size of that range or zero if not found. */ static unsigned long __init xen_find_pfn_range( const struct e820entry *list, size_t map_size, unsigned long *min_pfn) { const struct e820entry *entry; unsigned int i; unsigned long done = 0; for (i = 0, entry = list; i < map_size; i++, entry++) { unsigned long s_pfn; unsigned long e_pfn; if (entry->type != E820_RAM) continue; e_pfn = PFN_DOWN(entry->addr + entry->size); /* We only care about E820 after this */ if (e_pfn < *min_pfn) continue; s_pfn = PFN_UP(entry->addr); /* If min_pfn falls within the E820 entry, we want to start * at the min_pfn PFN. */ if (s_pfn <= *min_pfn) { done = e_pfn - *min_pfn; } else { done = e_pfn - s_pfn; *min_pfn = s_pfn; } break; } return done; } static int __init xen_free_mfn(unsigned long mfn) { struct xen_memory_reservation reservation = { .address_bits = 0, .extent_order = 0, .domid = DOMID_SELF }; set_xen_guest_handle(reservation.extent_start, &mfn); reservation.nr_extents = 1; return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation); } /* * This releases a chunk of memory and then does the identity map. It's used * as a fallback if the remapping fails. */ static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, unsigned long *released) { unsigned long pfn, end; int ret; WARN_ON(start_pfn > end_pfn); /* Release pages first. */ end = min(end_pfn, nr_pages); for (pfn = start_pfn; pfn < end; pfn++) { unsigned long mfn = pfn_to_mfn(pfn); /* Make sure pfn exists to start with */ if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn) continue; ret = xen_free_mfn(mfn); WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret); if (ret == 1) { (*released)++; if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY)) break; } else break; } set_phys_range_identity(start_pfn, end_pfn); } /* * Helper function to update the p2m and m2p tables and kernel mapping. */ static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn) { struct mmu_update update = { .ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE, .val = pfn }; /* Update p2m */ if (!set_phys_to_machine(pfn, mfn)) { WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n", pfn, mfn); BUG(); } /* Update m2p */ if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) { WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n", mfn, pfn); BUG(); } /* Update kernel mapping, but not for highmem. */ if (pfn >= PFN_UP(__pa(high_memory - 1))) return; if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT), mfn_pte(mfn, PAGE_KERNEL), 0)) { WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n", mfn, pfn); BUG(); } } /* * This function updates the p2m and m2p tables with an identity map from * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the * original allocation at remap_pfn. The information needed for remapping is * saved in the memory itself to avoid the need for allocating buffers. The * complete remap information is contained in a list of MFNs each containing * up to REMAP_SIZE MFNs and the start target PFN for doing the remap. * This enables us to preserve the original mfn sequence while doing the * remapping at a time when the memory management is capable of allocating * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and * its callers. */ static void __init xen_do_set_identity_and_remap_chunk( unsigned long start_pfn, unsigned long size, unsigned long remap_pfn) { unsigned long buf = (unsigned long)&xen_remap_buf; unsigned long mfn_save, mfn; unsigned long ident_pfn_iter, remap_pfn_iter; unsigned long ident_end_pfn = start_pfn + size; unsigned long left = size; unsigned int i, chunk; WARN_ON(size == 0); BUG_ON(xen_feature(XENFEAT_auto_translated_physmap)); mfn_save = virt_to_mfn(buf); for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn; ident_pfn_iter < ident_end_pfn; ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) { chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE; /* Map first pfn to xen_remap_buf */ mfn = pfn_to_mfn(ident_pfn_iter); set_pte_mfn(buf, mfn, PAGE_KERNEL); /* Save mapping information in page */ xen_remap_buf.next_area_mfn = xen_remap_mfn; xen_remap_buf.target_pfn = remap_pfn_iter; xen_remap_buf.size = chunk; for (i = 0; i < chunk; i++) xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i); /* Put remap buf into list. */ xen_remap_mfn = mfn; /* Set identity map */ set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk); left -= chunk; } /* Restore old xen_remap_buf mapping */ set_pte_mfn(buf, mfn_save, PAGE_KERNEL); } /* * This function takes a contiguous pfn range that needs to be identity mapped * and: * * 1) Finds a new range of pfns to use to remap based on E820 and remap_pfn. * 2) Calls the do_ function to actually do the mapping/remapping work. * * The goal is to not allocate additional memory but to remap the existing * pages. In the case of an error the underlying memory is simply released back * to Xen and not remapped. */ static unsigned long __init xen_set_identity_and_remap_chunk( const struct e820entry *list, size_t map_size, unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, unsigned long remap_pfn, unsigned long *released, unsigned long *remapped) { unsigned long pfn; unsigned long i = 0; unsigned long n = end_pfn - start_pfn; while (i < n) { unsigned long cur_pfn = start_pfn + i; unsigned long left = n - i; unsigned long size = left; unsigned long remap_range_size; /* Do not remap pages beyond the current allocation */ if (cur_pfn >= nr_pages) { /* Identity map remaining pages */ set_phys_range_identity(cur_pfn, cur_pfn + size); break; } if (cur_pfn + size > nr_pages) size = nr_pages - cur_pfn; remap_range_size = xen_find_pfn_range(list, map_size, &remap_pfn); if (!remap_range_size) { pr_warning("Unable to find available pfn range, not remapping identity pages\n"); xen_set_identity_and_release_chunk(cur_pfn, cur_pfn + left, nr_pages, released); break; } /* Adjust size to fit in current e820 RAM region */ if (size > remap_range_size) size = remap_range_size; xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn); /* Update variables to reflect new mappings. */ i += size; remap_pfn += size; *remapped += size; } /* * If the PFNs are currently mapped, the VA mapping also needs * to be updated to be 1:1. */ for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++) (void)HYPERVISOR_update_va_mapping( (unsigned long)__va(pfn << PAGE_SHIFT), mfn_pte(pfn, PAGE_KERNEL_IO), 0); return remap_pfn; } static void __init xen_set_identity_and_remap( const struct e820entry *list, size_t map_size, unsigned long nr_pages, unsigned long *released, unsigned long *remapped) { phys_addr_t start = 0; unsigned long last_pfn = nr_pages; const struct e820entry *entry; unsigned long num_released = 0; unsigned long num_remapped = 0; int i; /* * Combine non-RAM regions and gaps until a RAM region (or the * end of the map) is reached, then set the 1:1 map and * remap the memory in those non-RAM regions. * * The combined non-RAM regions are rounded to a whole number * of pages so any partial pages are accessible via the 1:1 * mapping. This is needed for some BIOSes that put (for * example) the DMI tables in a reserved region that begins on * a non-page boundary. */ for (i = 0, entry = list; i < map_size; i++, entry++) { phys_addr_t end = entry->addr + entry->size; if (entry->type == E820_RAM || i == map_size - 1) { unsigned long start_pfn = PFN_DOWN(start); unsigned long end_pfn = PFN_UP(end); if (entry->type == E820_RAM) end_pfn = PFN_UP(entry->addr); if (start_pfn < end_pfn) last_pfn = xen_set_identity_and_remap_chunk( list, map_size, start_pfn, end_pfn, nr_pages, last_pfn, &num_released, &num_remapped); start = end; } } *released = num_released; *remapped = num_remapped; pr_info("Released %ld page(s)\n", num_released); } /* * Remap the memory prepared in xen_do_set_identity_and_remap_chunk(). * The remap information (which mfn remap to which pfn) is contained in the * to be remapped memory itself in a linked list anchored at xen_remap_mfn. * This scheme allows to remap the different chunks in arbitrary order while * the resulting mapping will be independant from the order. */ void __init xen_remap_memory(void) { unsigned long buf = (unsigned long)&xen_remap_buf; unsigned long mfn_save, mfn, pfn; unsigned long remapped = 0; unsigned int i; unsigned long pfn_s = ~0UL; unsigned long len = 0; mfn_save = virt_to_mfn(buf); while (xen_remap_mfn != INVALID_P2M_ENTRY) { /* Map the remap information */ set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL); BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]); pfn = xen_remap_buf.target_pfn; for (i = 0; i < xen_remap_buf.size; i++) { mfn = xen_remap_buf.mfns[i]; xen_update_mem_tables(pfn, mfn); remapped++; pfn++; } if (pfn_s == ~0UL || pfn == pfn_s) { pfn_s = xen_remap_buf.target_pfn; len += xen_remap_buf.size; } else if (pfn_s + len == xen_remap_buf.target_pfn) { len += xen_remap_buf.size; } else { xen_del_extra_mem(PFN_PHYS(pfn_s), PFN_PHYS(len)); pfn_s = xen_remap_buf.target_pfn; len = xen_remap_buf.size; } mfn = xen_remap_mfn; xen_remap_mfn = xen_remap_buf.next_area_mfn; } if (pfn_s != ~0UL && len) xen_del_extra_mem(PFN_PHYS(pfn_s), PFN_PHYS(len)); set_pte_mfn(buf, mfn_save, PAGE_KERNEL); pr_info("Remapped %ld page(s)\n", remapped); } static unsigned long __init xen_get_max_pages(void) { unsigned long max_pages = MAX_DOMAIN_PAGES; domid_t domid = DOMID_SELF; int ret; /* * For the initial domain we use the maximum reservation as * the maximum page. * * For guest domains the current maximum reservation reflects * the current maximum rather than the static maximum. In this * case the e820 map provided to us will cover the static * maximum region. */ if (xen_initial_domain()) { ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid); if (ret > 0) max_pages = ret; } return min(max_pages, MAX_DOMAIN_PAGES); } static void __init xen_align_and_add_e820_region(phys_addr_t start, phys_addr_t size, int type) { phys_addr_t end = start + size; /* Align RAM regions to page boundaries. */ if (type == E820_RAM) { start = PAGE_ALIGN(start); end &= ~((phys_addr_t)PAGE_SIZE - 1); } e820_add_region(start, end - start, type); } static void __init xen_ignore_unusable(struct e820entry *list, size_t map_size) { struct e820entry *entry; unsigned int i; for (i = 0, entry = list; i < map_size; i++, entry++) { if (entry->type == E820_UNUSABLE) entry->type = E820_RAM; } } /** * machine_specific_memory_setup - Hook for machine specific memory setup. **/ char * __init xen_memory_setup(void) { static struct e820entry map[E820MAX] __initdata; unsigned long max_pfn = xen_start_info->nr_pages; phys_addr_t mem_end; int rc; struct xen_memory_map memmap; unsigned long max_pages; unsigned long extra_pages = 0; unsigned long remapped_pages; int i; int op; max_pfn = min(MAX_DOMAIN_PAGES, max_pfn); mem_end = PFN_PHYS(max_pfn); memmap.nr_entries = E820MAX; set_xen_guest_handle(memmap.buffer, map); op = xen_initial_domain() ? XENMEM_machine_memory_map : XENMEM_memory_map; rc = HYPERVISOR_memory_op(op, &memmap); if (rc == -ENOSYS) { BUG_ON(xen_initial_domain()); memmap.nr_entries = 1; map[0].addr = 0ULL; map[0].size = mem_end; /* 8MB slack (to balance backend allocations). */ map[0].size += 8ULL << 20; map[0].type = E820_RAM; rc = 0; } BUG_ON(rc); BUG_ON(memmap.nr_entries == 0); /* * Xen won't allow a 1:1 mapping to be created to UNUSABLE * regions, so if we're using the machine memory map leave the * region as RAM as it is in the pseudo-physical map. * * UNUSABLE regions in domUs are not handled and will need * a patch in the future. */ if (xen_initial_domain()) xen_ignore_unusable(map, memmap.nr_entries); /* Make sure the Xen-supplied memory map is well-ordered. */ sanitize_e820_map(map, memmap.nr_entries, &memmap.nr_entries); max_pages = xen_get_max_pages(); if (max_pages > max_pfn) extra_pages += max_pages - max_pfn; /* * Set identity map on non-RAM pages and prepare remapping the * underlying RAM. */ xen_set_identity_and_remap(map, memmap.nr_entries, max_pfn, &xen_released_pages, &remapped_pages); extra_pages += xen_released_pages; extra_pages += remapped_pages; /* * Clamp the amount of extra memory to a EXTRA_MEM_RATIO * factor the base size. On non-highmem systems, the base * size is the full initial memory allocation; on highmem it * is limited to the max size of lowmem, so that it doesn't * get completely filled. * * In principle there could be a problem in lowmem systems if * the initial memory is also very large with respect to * lowmem, but we won't try to deal with that here. */ extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)), extra_pages); i = 0; while (i < memmap.nr_entries) { phys_addr_t addr = map[i].addr; phys_addr_t size = map[i].size; u32 type = map[i].type; if (type == E820_RAM) { if (addr < mem_end) { size = min(size, mem_end - addr); } else if (extra_pages) { size = min(size, PFN_PHYS(extra_pages)); extra_pages -= PFN_DOWN(size); xen_add_extra_mem(addr, size); xen_max_p2m_pfn = PFN_DOWN(addr + size); } else type = E820_UNUSABLE; } xen_align_and_add_e820_region(addr, size, type); map[i].addr += size; map[i].size -= size; if (map[i].size == 0) i++; } /* * Set the rest as identity mapped, in case PCI BARs are * located here. * * PFNs above MAX_P2M_PFN are considered identity mapped as * well. */ set_phys_range_identity(map[i-1].addr / PAGE_SIZE, ~0ul); /* * In domU, the ISA region is normal, usable memory, but we * reserve ISA memory anyway because too many things poke * about in there. */ e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS, E820_RESERVED); /* * Reserve Xen bits: * - mfn_list * - xen_start_info * See comment above "struct start_info" in <xen/interface/xen.h> * We tried to make the the memblock_reserve more selective so * that it would be clear what region is reserved. Sadly we ran * in the problem wherein on a 64-bit hypervisor with a 32-bit * initial domain, the pt_base has the cr3 value which is not * neccessarily where the pagetable starts! As Jan put it: " * Actually, the adjustment turns out to be correct: The page * tables for a 32-on-64 dom0 get allocated in the order "first L1", * "first L2", "first L3", so the offset to the page table base is * indeed 2. When reading xen/include/public/xen.h's comment * very strictly, this is not a violation (since there nothing is said * that the first thing in the page table space is pointed to by * pt_base; I admit that this seems to be implied though, namely * do I think that it is implied that the page table space is the * range [pt_base, pt_base + nt_pt_frames), whereas that * range here indeed is [pt_base - 2, pt_base - 2 + nt_pt_frames), * which - without a priori knowledge - the kernel would have * difficulty to figure out)." - so lets just fall back to the * easy way and reserve the whole region. */ memblock_reserve(__pa(xen_start_info->mfn_list), xen_start_info->pt_base - xen_start_info->mfn_list); sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); return "Xen"; } /* * Machine specific memory setup for auto-translated guests. */ char * __init xen_auto_xlated_memory_setup(void) { static struct e820entry map[E820MAX] __initdata; struct xen_memory_map memmap; int i; int rc; memmap.nr_entries = E820MAX; set_xen_guest_handle(memmap.buffer, map); rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap); if (rc < 0) panic("No memory map (%d)\n", rc); sanitize_e820_map(map, ARRAY_SIZE(map), &memmap.nr_entries); for (i = 0; i < memmap.nr_entries; i++) e820_add_region(map[i].addr, map[i].size, map[i].type); memblock_reserve(__pa(xen_start_info->mfn_list), xen_start_info->pt_base - xen_start_info->mfn_list); return "Xen"; } /* * Set the bit indicating "nosegneg" library variants should be used. * We only need to bother in pure 32-bit mode; compat 32-bit processes * can have un-truncated segments, so wrapping around is allowed. */ static void __init fiddle_vdso(void) { #ifdef CONFIG_X86_32 /* * This could be called before selected_vdso32 is initialized, so * just fiddle with both possible images. vdso_image_32_syscall * can't be selected, since it only exists on 64-bit systems. */ u32 *mask; mask = vdso_image_32_int80.data + vdso_image_32_int80.sym_VDSO32_NOTE_MASK; *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT; mask = vdso_image_32_sysenter.data + vdso_image_32_sysenter.sym_VDSO32_NOTE_MASK; *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT; #endif } static int register_callback(unsigned type, const void *func) { struct callback_register callback = { .type = type, .address = XEN_CALLBACK(__KERNEL_CS, func), .flags = CALLBACKF_mask_events, }; return HYPERVISOR_callback_op(CALLBACKOP_register, &callback); } void xen_enable_sysenter(void) { int ret; unsigned sysenter_feature; #ifdef CONFIG_X86_32 sysenter_feature = X86_FEATURE_SEP; #else sysenter_feature = X86_FEATURE_SYSENTER32; #endif if (!boot_cpu_has(sysenter_feature)) return; ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target); if(ret != 0) setup_clear_cpu_cap(sysenter_feature); } void xen_enable_syscall(void) { #ifdef CONFIG_X86_64 int ret; ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target); if (ret != 0) { printk(KERN_ERR "Failed to set syscall callback: %d\n", ret); /* Pretty fatal; 64-bit userspace has no other mechanism for syscalls. */ } if (boot_cpu_has(X86_FEATURE_SYSCALL32)) { ret = register_callback(CALLBACKTYPE_syscall32, xen_syscall32_target); if (ret != 0) setup_clear_cpu_cap(X86_FEATURE_SYSCALL32); } #endif /* CONFIG_X86_64 */ } void __init xen_pvmmu_arch_setup(void) { HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments); HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables); HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_pae_extended_cr3); if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) || register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback)) BUG(); xen_enable_sysenter(); xen_enable_syscall(); } /* This function is not called for HVM domains */ void __init xen_arch_setup(void) { xen_panic_handler_init(); if (!xen_feature(XENFEAT_auto_translated_physmap)) xen_pvmmu_arch_setup(); #ifdef CONFIG_ACPI if (!(xen_start_info->flags & SIF_INITDOMAIN)) { printk(KERN_INFO "ACPI in unprivileged domain disabled\n"); disable_acpi(); } #endif memcpy(boot_command_line, xen_start_info->cmd_line, MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ? COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE); /* Set up idle, making sure it calls safe_halt() pvop */ disable_cpuidle(); disable_cpufreq(); WARN_ON(xen_set_default_idle()); fiddle_vdso(); #ifdef CONFIG_NUMA numa_off = 1; #endif }