/* * Copyright (C) 2013 Broadcom Corporation * Copyright 2013 Linaro Limited * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "clk-kona.h" #include <linux/delay.h> #include <linux/kernel.h> /* * "Policies" affect the frequencies of bus clocks provided by a * CCU. (I believe these polices are named "Deep Sleep", "Economy", * "Normal", and "Turbo".) A lower policy number has lower power * consumption, and policy 2 is the default. */ #define CCU_POLICY_COUNT 4 #define CCU_ACCESS_PASSWORD 0xA5A500 #define CLK_GATE_DELAY_LOOP 2000 /* Bitfield operations */ /* Produces a mask of set bits covering a range of a 32-bit value */ static inline u32 bitfield_mask(u32 shift, u32 width) { return ((1 << width) - 1) << shift; } /* Extract the value of a bitfield found within a given register value */ static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width) { return (reg_val & bitfield_mask(shift, width)) >> shift; } /* Replace the value of a bitfield found within a given register value */ static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val) { u32 mask = bitfield_mask(shift, width); return (reg_val & ~mask) | (val << shift); } /* Divider and scaling helpers */ /* Convert a divider into the scaled divisor value it represents. */ static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div) { return (u64)reg_div + ((u64)1 << div->u.s.frac_width); } /* * Build a scaled divider value as close as possible to the * given whole part (div_value) and fractional part (expressed * in billionths). */ u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths) { u64 combined; BUG_ON(!div_value); BUG_ON(billionths >= BILLION); combined = (u64)div_value * BILLION + billionths; combined <<= div->u.s.frac_width; return DIV_ROUND_CLOSEST_ULL(combined, BILLION); } /* The scaled minimum divisor representable by a divider */ static inline u64 scaled_div_min(struct bcm_clk_div *div) { if (divider_is_fixed(div)) return (u64)div->u.fixed; return scaled_div_value(div, 0); } /* The scaled maximum divisor representable by a divider */ u64 scaled_div_max(struct bcm_clk_div *div) { u32 reg_div; if (divider_is_fixed(div)) return (u64)div->u.fixed; reg_div = ((u32)1 << div->u.s.width) - 1; return scaled_div_value(div, reg_div); } /* * Convert a scaled divisor into its divider representation as * stored in a divider register field. */ static inline u32 divider(struct bcm_clk_div *div, u64 scaled_div) { BUG_ON(scaled_div < scaled_div_min(div)); BUG_ON(scaled_div > scaled_div_max(div)); return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width)); } /* Return a rate scaled for use when dividing by a scaled divisor. */ static inline u64 scale_rate(struct bcm_clk_div *div, u32 rate) { if (divider_is_fixed(div)) return (u64)rate; return (u64)rate << div->u.s.frac_width; } /* CCU access */ /* Read a 32-bit register value from a CCU's address space. */ static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset) { return readl(ccu->base + reg_offset); } /* Write a 32-bit register value into a CCU's address space. */ static inline void __ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val) { writel(reg_val, ccu->base + reg_offset); } static inline unsigned long ccu_lock(struct ccu_data *ccu) { unsigned long flags; spin_lock_irqsave(&ccu->lock, flags); return flags; } static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags) { spin_unlock_irqrestore(&ccu->lock, flags); } /* * Enable/disable write access to CCU protected registers. The * WR_ACCESS register for all CCUs is at offset 0. */ static inline void __ccu_write_enable(struct ccu_data *ccu) { if (ccu->write_enabled) { pr_err("%s: access already enabled for %s\n", __func__, ccu->name); return; } ccu->write_enabled = true; __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1); } static inline void __ccu_write_disable(struct ccu_data *ccu) { if (!ccu->write_enabled) { pr_err("%s: access wasn't enabled for %s\n", __func__, ccu->name); return; } __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD); ccu->write_enabled = false; } /* * Poll a register in a CCU's address space, returning when the * specified bit in that register's value is set (or clear). Delay * a microsecond after each read of the register. Returns true if * successful, or false if we gave up trying. * * Caller must ensure the CCU lock is held. */ static inline bool __ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want) { unsigned int tries; u32 bit_mask = 1 << bit; for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) { u32 val; bool bit_val; val = __ccu_read(ccu, reg_offset); bit_val = (val & bit_mask) != 0; if (bit_val == want) return true; udelay(1); } pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__, ccu->name, reg_offset, bit, want ? "set" : "clear"); return false; } /* Policy operations */ static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync) { struct bcm_policy_ctl *control = &ccu->policy.control; u32 offset; u32 go_bit; u32 mask; bool ret; /* If we don't need to control policy for this CCU, we're done. */ if (!policy_ctl_exists(control)) return true; offset = control->offset; go_bit = control->go_bit; /* Ensure we're not busy before we start */ ret = __ccu_wait_bit(ccu, offset, go_bit, false); if (!ret) { pr_err("%s: ccu %s policy engine wouldn't go idle\n", __func__, ccu->name); return false; } /* * If it's a synchronous request, we'll wait for the voltage * and frequency of the active load to stabilize before * returning. To do this we select the active load by * setting the ATL bit. * * An asynchronous request instead ramps the voltage in the * background, and when that process stabilizes, the target * load is copied to the active load and the CCU frequency * is switched. We do this by selecting the target load * (ATL bit clear) and setting the request auto-copy (AC bit * set). * * Note, we do NOT read-modify-write this register. */ mask = (u32)1 << go_bit; if (sync) mask |= 1 << control->atl_bit; else mask |= 1 << control->ac_bit; __ccu_write(ccu, offset, mask); /* Wait for indication that operation is complete. */ ret = __ccu_wait_bit(ccu, offset, go_bit, false); if (!ret) pr_err("%s: ccu %s policy engine never started\n", __func__, ccu->name); return ret; } static bool __ccu_policy_engine_stop(struct ccu_data *ccu) { struct bcm_lvm_en *enable = &ccu->policy.enable; u32 offset; u32 enable_bit; bool ret; /* If we don't need to control policy for this CCU, we're done. */ if (!policy_lvm_en_exists(enable)) return true; /* Ensure we're not busy before we start */ offset = enable->offset; enable_bit = enable->bit; ret = __ccu_wait_bit(ccu, offset, enable_bit, false); if (!ret) { pr_err("%s: ccu %s policy engine already stopped\n", __func__, ccu->name); return false; } /* Now set the bit to stop the engine (NO read-modify-write) */ __ccu_write(ccu, offset, (u32)1 << enable_bit); /* Wait for indication that it has stopped. */ ret = __ccu_wait_bit(ccu, offset, enable_bit, false); if (!ret) pr_err("%s: ccu %s policy engine never stopped\n", __func__, ccu->name); return ret; } /* * A CCU has four operating conditions ("policies"), and some clocks * can be disabled or enabled based on which policy is currently in * effect. Such clocks have a bit in a "policy mask" register for * each policy indicating whether the clock is enabled for that * policy or not. The bit position for a clock is the same for all * four registers, and the 32-bit registers are at consecutive * addresses. */ static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy) { u32 offset; u32 mask; int i; bool ret; if (!policy_exists(policy)) return true; /* * We need to stop the CCU policy engine to allow update * of our policy bits. */ if (!__ccu_policy_engine_stop(ccu)) { pr_err("%s: unable to stop CCU %s policy engine\n", __func__, ccu->name); return false; } /* * For now, if a clock defines its policy bit we just mark * it "enabled" for all four policies. */ offset = policy->offset; mask = (u32)1 << policy->bit; for (i = 0; i < CCU_POLICY_COUNT; i++) { u32 reg_val; reg_val = __ccu_read(ccu, offset); reg_val |= mask; __ccu_write(ccu, offset, reg_val); offset += sizeof(u32); } /* We're done updating; fire up the policy engine again. */ ret = __ccu_policy_engine_start(ccu, true); if (!ret) pr_err("%s: unable to restart CCU %s policy engine\n", __func__, ccu->name); return ret; } /* Gate operations */ /* Determine whether a clock is gated. CCU lock must be held. */ static bool __is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate) { u32 bit_mask; u32 reg_val; /* If there is no gate we can assume it's enabled. */ if (!gate_exists(gate)) return true; bit_mask = 1 << gate->status_bit; reg_val = __ccu_read(ccu, gate->offset); return (reg_val & bit_mask) != 0; } /* Determine whether a clock is gated. */ static bool is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate) { long flags; bool ret; /* Avoid taking the lock if we can */ if (!gate_exists(gate)) return true; flags = ccu_lock(ccu); ret = __is_clk_gate_enabled(ccu, gate); ccu_unlock(ccu, flags); return ret; } /* * Commit our desired gate state to the hardware. * Returns true if successful, false otherwise. */ static bool __gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate) { u32 reg_val; u32 mask; bool enabled = false; BUG_ON(!gate_exists(gate)); if (!gate_is_sw_controllable(gate)) return true; /* Nothing we can change */ reg_val = __ccu_read(ccu, gate->offset); /* For a hardware/software gate, set which is in control */ if (gate_is_hw_controllable(gate)) { mask = (u32)1 << gate->hw_sw_sel_bit; if (gate_is_sw_managed(gate)) reg_val |= mask; else reg_val &= ~mask; } /* * If software is in control, enable or disable the gate. * If hardware is, clear the enabled bit for good measure. * If a software controlled gate can't be disabled, we're * required to write a 0 into the enable bit (but the gate * will be enabled). */ mask = (u32)1 << gate->en_bit; if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) && !gate_is_no_disable(gate)) reg_val |= mask; else reg_val &= ~mask; __ccu_write(ccu, gate->offset, reg_val); /* For a hardware controlled gate, we're done */ if (!gate_is_sw_managed(gate)) return true; /* Otherwise wait for the gate to be in desired state */ return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled); } /* * Initialize a gate. Our desired state (hardware/software select, * and if software, its enable state) is committed to hardware * without the usual checks to see if it's already set up that way. * Returns true if successful, false otherwise. */ static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate) { if (!gate_exists(gate)) return true; return __gate_commit(ccu, gate); } /* * Set a gate to enabled or disabled state. Does nothing if the * gate is not currently under software control, or if it is already * in the requested state. Returns true if successful, false * otherwise. CCU lock must be held. */ static bool __clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable) { bool ret; if (!gate_exists(gate) || !gate_is_sw_managed(gate)) return true; /* Nothing to do */ if (!enable && gate_is_no_disable(gate)) { pr_warn("%s: invalid gate disable request (ignoring)\n", __func__); return true; } if (enable == gate_is_enabled(gate)) return true; /* No change */ gate_flip_enabled(gate); ret = __gate_commit(ccu, gate); if (!ret) gate_flip_enabled(gate); /* Revert the change */ return ret; } /* Enable or disable a gate. Returns 0 if successful, -EIO otherwise */ static int clk_gate(struct ccu_data *ccu, const char *name, struct bcm_clk_gate *gate, bool enable) { unsigned long flags; bool success; /* * Avoid taking the lock if we can. We quietly ignore * requests to change state that don't make sense. */ if (!gate_exists(gate) || !gate_is_sw_managed(gate)) return 0; if (!enable && gate_is_no_disable(gate)) return 0; flags = ccu_lock(ccu); __ccu_write_enable(ccu); success = __clk_gate(ccu, gate, enable); __ccu_write_disable(ccu); ccu_unlock(ccu, flags); if (success) return 0; pr_err("%s: failed to %s gate for %s\n", __func__, enable ? "enable" : "disable", name); return -EIO; } /* Hysteresis operations */ /* * If a clock gate requires a turn-off delay it will have * "hysteresis" register bits defined. The first, if set, enables * the delay; and if enabled, the second bit determines whether the * delay is "low" or "high" (1 means high). For now, if it's * defined for a clock, we set it. */ static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst) { u32 offset; u32 reg_val; u32 mask; if (!hyst_exists(hyst)) return true; offset = hyst->offset; mask = (u32)1 << hyst->en_bit; mask |= (u32)1 << hyst->val_bit; reg_val = __ccu_read(ccu, offset); reg_val |= mask; __ccu_write(ccu, offset, reg_val); return true; } /* Trigger operations */ /* * Caller must ensure CCU lock is held and access is enabled. * Returns true if successful, false otherwise. */ static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig) { /* Trigger the clock and wait for it to finish */ __ccu_write(ccu, trig->offset, 1 << trig->bit); return __ccu_wait_bit(ccu, trig->offset, trig->bit, false); } /* Divider operations */ /* Read a divider value and return the scaled divisor it represents. */ static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div) { unsigned long flags; u32 reg_val; u32 reg_div; if (divider_is_fixed(div)) return (u64)div->u.fixed; flags = ccu_lock(ccu); reg_val = __ccu_read(ccu, div->u.s.offset); ccu_unlock(ccu, flags); /* Extract the full divider field from the register value */ reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width); /* Return the scaled divisor value it represents */ return scaled_div_value(div, reg_div); } /* * Convert a divider's scaled divisor value into its recorded form * and commit it into the hardware divider register. * * Returns 0 on success. Returns -EINVAL for invalid arguments. * Returns -ENXIO if gating failed, and -EIO if a trigger failed. */ static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate, struct bcm_clk_div *div, struct bcm_clk_trig *trig) { bool enabled; u32 reg_div; u32 reg_val; int ret = 0; BUG_ON(divider_is_fixed(div)); /* * If we're just initializing the divider, and no initial * state was defined in the device tree, we just find out * what its current value is rather than updating it. */ if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) { reg_val = __ccu_read(ccu, div->u.s.offset); reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width); div->u.s.scaled_div = scaled_div_value(div, reg_div); return 0; } /* Convert the scaled divisor to the value we need to record */ reg_div = divider(div, div->u.s.scaled_div); /* Clock needs to be enabled before changing the rate */ enabled = __is_clk_gate_enabled(ccu, gate); if (!enabled && !__clk_gate(ccu, gate, true)) { ret = -ENXIO; goto out; } /* Replace the divider value and record the result */ reg_val = __ccu_read(ccu, div->u.s.offset); reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width, reg_div); __ccu_write(ccu, div->u.s.offset, reg_val); /* If the trigger fails we still want to disable the gate */ if (!__clk_trigger(ccu, trig)) ret = -EIO; /* Disable the clock again if it was disabled to begin with */ if (!enabled && !__clk_gate(ccu, gate, false)) ret = ret ? ret : -ENXIO; /* return first error */ out: return ret; } /* * Initialize a divider by committing our desired state to hardware * without the usual checks to see if it's already set up that way. * Returns true if successful, false otherwise. */ static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate, struct bcm_clk_div *div, struct bcm_clk_trig *trig) { if (!divider_exists(div) || divider_is_fixed(div)) return true; return !__div_commit(ccu, gate, div, trig); } static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate, struct bcm_clk_div *div, struct bcm_clk_trig *trig, u64 scaled_div) { unsigned long flags; u64 previous; int ret; BUG_ON(divider_is_fixed(div)); previous = div->u.s.scaled_div; if (previous == scaled_div) return 0; /* No change */ div->u.s.scaled_div = scaled_div; flags = ccu_lock(ccu); __ccu_write_enable(ccu); ret = __div_commit(ccu, gate, div, trig); __ccu_write_disable(ccu); ccu_unlock(ccu, flags); if (ret) div->u.s.scaled_div = previous; /* Revert the change */ return ret; } /* Common clock rate helpers */ /* * Implement the common clock framework recalc_rate method, taking * into account a divider and an optional pre-divider. The * pre-divider register pointer may be NULL. */ static unsigned long clk_recalc_rate(struct ccu_data *ccu, struct bcm_clk_div *div, struct bcm_clk_div *pre_div, unsigned long parent_rate) { u64 scaled_parent_rate; u64 scaled_div; u64 result; if (!divider_exists(div)) return parent_rate; if (parent_rate > (unsigned long)LONG_MAX) return 0; /* actually this would be a caller bug */ /* * If there is a pre-divider, divide the scaled parent rate * by the pre-divider value first. In this case--to improve * accuracy--scale the parent rate by *both* the pre-divider * value and the divider before actually computing the * result of the pre-divider. * * If there's only one divider, just scale the parent rate. */ if (pre_div && divider_exists(pre_div)) { u64 scaled_rate; scaled_rate = scale_rate(pre_div, parent_rate); scaled_rate = scale_rate(div, scaled_rate); scaled_div = divider_read_scaled(ccu, pre_div); scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate, scaled_div); } else { scaled_parent_rate = scale_rate(div, parent_rate); } /* * Get the scaled divisor value, and divide the scaled * parent rate by that to determine this clock's resulting * rate. */ scaled_div = divider_read_scaled(ccu, div); result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div); return (unsigned long)result; } /* * Compute the output rate produced when a given parent rate is fed * into two dividers. The pre-divider can be NULL, and even if it's * non-null it may be nonexistent. It's also OK for the divider to * be nonexistent, and in that case the pre-divider is also ignored. * * If scaled_div is non-null, it is used to return the scaled divisor * value used by the (downstream) divider to produce that rate. */ static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div, struct bcm_clk_div *pre_div, unsigned long rate, unsigned long parent_rate, u64 *scaled_div) { u64 scaled_parent_rate; u64 min_scaled_div; u64 max_scaled_div; u64 best_scaled_div; u64 result; BUG_ON(!divider_exists(div)); BUG_ON(!rate); BUG_ON(parent_rate > (u64)LONG_MAX); /* * If there is a pre-divider, divide the scaled parent rate * by the pre-divider value first. In this case--to improve * accuracy--scale the parent rate by *both* the pre-divider * value and the divider before actually computing the * result of the pre-divider. * * If there's only one divider, just scale the parent rate. * * For simplicity we treat the pre-divider as fixed (for now). */ if (divider_exists(pre_div)) { u64 scaled_rate; u64 scaled_pre_div; scaled_rate = scale_rate(pre_div, parent_rate); scaled_rate = scale_rate(div, scaled_rate); scaled_pre_div = divider_read_scaled(ccu, pre_div); scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate, scaled_pre_div); } else { scaled_parent_rate = scale_rate(div, parent_rate); } /* * Compute the best possible divider and ensure it is in * range. A fixed divider can't be changed, so just report * the best we can do. */ if (!divider_is_fixed(div)) { best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, rate); min_scaled_div = scaled_div_min(div); max_scaled_div = scaled_div_max(div); if (best_scaled_div > max_scaled_div) best_scaled_div = max_scaled_div; else if (best_scaled_div < min_scaled_div) best_scaled_div = min_scaled_div; } else { best_scaled_div = divider_read_scaled(ccu, div); } /* OK, figure out the resulting rate */ result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div); if (scaled_div) *scaled_div = best_scaled_div; return (long)result; } /* Common clock parent helpers */ /* * For a given parent selector (register field) value, find the * index into a selector's parent_sel array that contains it. * Returns the index, or BAD_CLK_INDEX if it's not found. */ static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel) { u8 i; BUG_ON(sel->parent_count > (u32)U8_MAX); for (i = 0; i < sel->parent_count; i++) if (sel->parent_sel[i] == parent_sel) return i; return BAD_CLK_INDEX; } /* * Fetch the current value of the selector, and translate that into * its corresponding index in the parent array we registered with * the clock framework. * * Returns parent array index that corresponds with the value found, * or BAD_CLK_INDEX if the found value is out of range. */ static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel) { unsigned long flags; u32 reg_val; u32 parent_sel; u8 index; /* If there's no selector, there's only one parent */ if (!selector_exists(sel)) return 0; /* Get the value in the selector register */ flags = ccu_lock(ccu); reg_val = __ccu_read(ccu, sel->offset); ccu_unlock(ccu, flags); parent_sel = bitfield_extract(reg_val, sel->shift, sel->width); /* Look up that selector's parent array index and return it */ index = parent_index(sel, parent_sel); if (index == BAD_CLK_INDEX) pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n", __func__, parent_sel, ccu->name, sel->offset); return index; } /* * Commit our desired selector value to the hardware. * * Returns 0 on success. Returns -EINVAL for invalid arguments. * Returns -ENXIO if gating failed, and -EIO if a trigger failed. */ static int __sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate, struct bcm_clk_sel *sel, struct bcm_clk_trig *trig) { u32 parent_sel; u32 reg_val; bool enabled; int ret = 0; BUG_ON(!selector_exists(sel)); /* * If we're just initializing the selector, and no initial * state was defined in the device tree, we just find out * what its current value is rather than updating it. */ if (sel->clk_index == BAD_CLK_INDEX) { u8 index; reg_val = __ccu_read(ccu, sel->offset); parent_sel = bitfield_extract(reg_val, sel->shift, sel->width); index = parent_index(sel, parent_sel); if (index == BAD_CLK_INDEX) return -EINVAL; sel->clk_index = index; return 0; } BUG_ON((u32)sel->clk_index >= sel->parent_count); parent_sel = sel->parent_sel[sel->clk_index]; /* Clock needs to be enabled before changing the parent */ enabled = __is_clk_gate_enabled(ccu, gate); if (!enabled && !__clk_gate(ccu, gate, true)) return -ENXIO; /* Replace the selector value and record the result */ reg_val = __ccu_read(ccu, sel->offset); reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel); __ccu_write(ccu, sel->offset, reg_val); /* If the trigger fails we still want to disable the gate */ if (!__clk_trigger(ccu, trig)) ret = -EIO; /* Disable the clock again if it was disabled to begin with */ if (!enabled && !__clk_gate(ccu, gate, false)) ret = ret ? ret : -ENXIO; /* return first error */ return ret; } /* * Initialize a selector by committing our desired state to hardware * without the usual checks to see if it's already set up that way. * Returns true if successful, false otherwise. */ static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate, struct bcm_clk_sel *sel, struct bcm_clk_trig *trig) { if (!selector_exists(sel)) return true; return !__sel_commit(ccu, gate, sel, trig); } /* * Write a new value into a selector register to switch to a * different parent clock. Returns 0 on success, or an error code * (from __sel_commit()) otherwise. */ static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate, struct bcm_clk_sel *sel, struct bcm_clk_trig *trig, u8 index) { unsigned long flags; u8 previous; int ret; previous = sel->clk_index; if (previous == index) return 0; /* No change */ sel->clk_index = index; flags = ccu_lock(ccu); __ccu_write_enable(ccu); ret = __sel_commit(ccu, gate, sel, trig); __ccu_write_disable(ccu); ccu_unlock(ccu, flags); if (ret) sel->clk_index = previous; /* Revert the change */ return ret; } /* Clock operations */ static int kona_peri_clk_enable(struct clk_hw *hw) { struct kona_clk *bcm_clk = to_kona_clk(hw); struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true); } static void kona_peri_clk_disable(struct clk_hw *hw) { struct kona_clk *bcm_clk = to_kona_clk(hw); struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; (void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false); } static int kona_peri_clk_is_enabled(struct clk_hw *hw) { struct kona_clk *bcm_clk = to_kona_clk(hw); struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate; return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0; } static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct kona_clk *bcm_clk = to_kona_clk(hw); struct peri_clk_data *data = bcm_clk->u.peri; return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div, parent_rate); } static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct kona_clk *bcm_clk = to_kona_clk(hw); struct bcm_clk_div *div = &bcm_clk->u.peri->div; if (!divider_exists(div)) return __clk_get_rate(hw->clk); /* Quietly avoid a zero rate */ return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div, rate ? rate : 1, *parent_rate, NULL); } static long kona_peri_clk_determine_rate(struct clk_hw *hw, unsigned long rate, unsigned long min_rate, unsigned long max_rate, unsigned long *best_parent_rate, struct clk_hw **best_parent) { struct kona_clk *bcm_clk = to_kona_clk(hw); struct clk *clk = hw->clk; struct clk *current_parent; unsigned long parent_rate; unsigned long best_delta; unsigned long best_rate; u32 parent_count; u32 which; /* * If there is no other parent to choose, use the current one. * Note: We don't honor (or use) CLK_SET_RATE_NO_REPARENT. */ WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT); parent_count = (u32)bcm_clk->init_data.num_parents; if (parent_count < 2) return kona_peri_clk_round_rate(hw, rate, best_parent_rate); /* Unless we can do better, stick with current parent */ current_parent = clk_get_parent(clk); parent_rate = __clk_get_rate(current_parent); best_rate = kona_peri_clk_round_rate(hw, rate, &parent_rate); best_delta = abs(best_rate - rate); /* Check whether any other parent clock can produce a better result */ for (which = 0; which < parent_count; which++) { struct clk *parent = clk_get_parent_by_index(clk, which); unsigned long delta; unsigned long other_rate; BUG_ON(!parent); if (parent == current_parent) continue; /* We don't support CLK_SET_RATE_PARENT */ parent_rate = __clk_get_rate(parent); other_rate = kona_peri_clk_round_rate(hw, rate, &parent_rate); delta = abs(other_rate - rate); if (delta < best_delta) { best_delta = delta; best_rate = other_rate; *best_parent = __clk_get_hw(parent); *best_parent_rate = parent_rate; } } return best_rate; } static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index) { struct kona_clk *bcm_clk = to_kona_clk(hw); struct peri_clk_data *data = bcm_clk->u.peri; struct bcm_clk_sel *sel = &data->sel; struct bcm_clk_trig *trig; int ret; BUG_ON(index >= sel->parent_count); /* If there's only one parent we don't require a selector */ if (!selector_exists(sel)) return 0; /* * The regular trigger is used by default, but if there's a * pre-trigger we want to use that instead. */ trig = trigger_exists(&data->pre_trig) ? &data->pre_trig : &data->trig; ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index); if (ret == -ENXIO) { pr_err("%s: gating failure for %s\n", __func__, bcm_clk->init_data.name); ret = -EIO; /* Don't proliferate weird errors */ } else if (ret == -EIO) { pr_err("%s: %strigger failed for %s\n", __func__, trig == &data->pre_trig ? "pre-" : "", bcm_clk->init_data.name); } return ret; } static u8 kona_peri_clk_get_parent(struct clk_hw *hw) { struct kona_clk *bcm_clk = to_kona_clk(hw); struct peri_clk_data *data = bcm_clk->u.peri; u8 index; index = selector_read_index(bcm_clk->ccu, &data->sel); /* Not all callers would handle an out-of-range value gracefully */ return index == BAD_CLK_INDEX ? 0 : index; } static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct kona_clk *bcm_clk = to_kona_clk(hw); struct peri_clk_data *data = bcm_clk->u.peri; struct bcm_clk_div *div = &data->div; u64 scaled_div = 0; int ret; if (parent_rate > (unsigned long)LONG_MAX) return -EINVAL; if (rate == __clk_get_rate(hw->clk)) return 0; if (!divider_exists(div)) return rate == parent_rate ? 0 : -EINVAL; /* * A fixed divider can't be changed. (Nor can a fixed * pre-divider be, but for now we never actually try to * change that.) Tolerate a request for a no-op change. */ if (divider_is_fixed(&data->div)) return rate == parent_rate ? 0 : -EINVAL; /* * Get the scaled divisor value needed to achieve a clock * rate as close as possible to what was requested, given * the parent clock rate supplied. */ (void)round_rate(bcm_clk->ccu, div, &data->pre_div, rate ? rate : 1, parent_rate, &scaled_div); /* * We aren't updating any pre-divider at this point, so * we'll use the regular trigger. */ ret = divider_write(bcm_clk->ccu, &data->gate, &data->div, &data->trig, scaled_div); if (ret == -ENXIO) { pr_err("%s: gating failure for %s\n", __func__, bcm_clk->init_data.name); ret = -EIO; /* Don't proliferate weird errors */ } else if (ret == -EIO) { pr_err("%s: trigger failed for %s\n", __func__, bcm_clk->init_data.name); } return ret; } struct clk_ops kona_peri_clk_ops = { .enable = kona_peri_clk_enable, .disable = kona_peri_clk_disable, .is_enabled = kona_peri_clk_is_enabled, .recalc_rate = kona_peri_clk_recalc_rate, .determine_rate = kona_peri_clk_determine_rate, .set_parent = kona_peri_clk_set_parent, .get_parent = kona_peri_clk_get_parent, .set_rate = kona_peri_clk_set_rate, }; /* Put a peripheral clock into its initial state */ static bool __peri_clk_init(struct kona_clk *bcm_clk) { struct ccu_data *ccu = bcm_clk->ccu; struct peri_clk_data *peri = bcm_clk->u.peri; const char *name = bcm_clk->init_data.name; struct bcm_clk_trig *trig; BUG_ON(bcm_clk->type != bcm_clk_peri); if (!policy_init(ccu, &peri->policy)) { pr_err("%s: error initializing policy for %s\n", __func__, name); return false; } if (!gate_init(ccu, &peri->gate)) { pr_err("%s: error initializing gate for %s\n", __func__, name); return false; } if (!hyst_init(ccu, &peri->hyst)) { pr_err("%s: error initializing hyst for %s\n", __func__, name); return false; } if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) { pr_err("%s: error initializing divider for %s\n", __func__, name); return false; } /* * For the pre-divider and selector, the pre-trigger is used * if it's present, otherwise we just use the regular trigger. */ trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig : &peri->trig; if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) { pr_err("%s: error initializing pre-divider for %s\n", __func__, name); return false; } if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) { pr_err("%s: error initializing selector for %s\n", __func__, name); return false; } return true; } static bool __kona_clk_init(struct kona_clk *bcm_clk) { switch (bcm_clk->type) { case bcm_clk_peri: return __peri_clk_init(bcm_clk); default: BUG(); } return -EINVAL; } /* Set a CCU and all its clocks into their desired initial state */ bool __init kona_ccu_init(struct ccu_data *ccu) { unsigned long flags; unsigned int which; struct clk **clks = ccu->clk_data.clks; bool success = true; flags = ccu_lock(ccu); __ccu_write_enable(ccu); for (which = 0; which < ccu->clk_data.clk_num; which++) { struct kona_clk *bcm_clk; if (!clks[which]) continue; bcm_clk = to_kona_clk(__clk_get_hw(clks[which])); success &= __kona_clk_init(bcm_clk); } __ccu_write_disable(ccu); ccu_unlock(ccu, flags); return success; }