/* * Copyright (C) 2013 Broadcom Corporation * Copyright 2013 Linaro Limited * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #ifndef _CLK_KONA_H #define _CLK_KONA_H #include <linux/kernel.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/device.h> #include <linux/of.h> #include <linux/clk-provider.h> #define BILLION 1000000000 /* The common clock framework uses u8 to represent a parent index */ #define PARENT_COUNT_MAX ((u32)U8_MAX) #define BAD_CLK_INDEX U8_MAX /* Can't ever be valid */ #define BAD_CLK_NAME ((const char *)-1) #define BAD_SCALED_DIV_VALUE U64_MAX /* * Utility macros for object flag management. If possible, flags * should be defined such that 0 is the desired default value. */ #define FLAG(type, flag) BCM_CLK_ ## type ## _FLAGS_ ## flag #define FLAG_SET(obj, type, flag) ((obj)->flags |= FLAG(type, flag)) #define FLAG_CLEAR(obj, type, flag) ((obj)->flags &= ~(FLAG(type, flag))) #define FLAG_FLIP(obj, type, flag) ((obj)->flags ^= FLAG(type, flag)) #define FLAG_TEST(obj, type, flag) (!!((obj)->flags & FLAG(type, flag))) /* CCU field state tests */ #define ccu_policy_exists(ccu_policy) ((ccu_policy)->enable.offset != 0) /* Clock field state tests */ #define policy_exists(policy) ((policy)->offset != 0) #define gate_exists(gate) FLAG_TEST(gate, GATE, EXISTS) #define gate_is_enabled(gate) FLAG_TEST(gate, GATE, ENABLED) #define gate_is_hw_controllable(gate) FLAG_TEST(gate, GATE, HW) #define gate_is_sw_controllable(gate) FLAG_TEST(gate, GATE, SW) #define gate_is_sw_managed(gate) FLAG_TEST(gate, GATE, SW_MANAGED) #define gate_is_no_disable(gate) FLAG_TEST(gate, GATE, NO_DISABLE) #define gate_flip_enabled(gate) FLAG_FLIP(gate, GATE, ENABLED) #define hyst_exists(hyst) ((hyst)->offset != 0) #define divider_exists(div) FLAG_TEST(div, DIV, EXISTS) #define divider_is_fixed(div) FLAG_TEST(div, DIV, FIXED) #define divider_has_fraction(div) (!divider_is_fixed(div) && \ (div)->u.s.frac_width > 0) #define selector_exists(sel) ((sel)->width != 0) #define trigger_exists(trig) FLAG_TEST(trig, TRIG, EXISTS) #define policy_lvm_en_exists(enable) ((enable)->offset != 0) #define policy_ctl_exists(control) ((control)->offset != 0) /* Clock type, used to tell common block what it's part of */ enum bcm_clk_type { bcm_clk_none, /* undefined clock type */ bcm_clk_bus, bcm_clk_core, bcm_clk_peri }; /* * CCU policy control for clocks. Clocks can be enabled or disabled * based on the CCU policy in effect. One bit in each policy mask * register (one per CCU policy) represents whether the clock is * enabled when that policy is effect or not. The CCU policy engine * must be stopped to update these bits, and must be restarted again * afterward. */ struct bcm_clk_policy { u32 offset; /* first policy mask register offset */ u32 bit; /* bit used in all mask registers */ }; /* Policy initialization macro */ #define POLICY(_offset, _bit) \ { \ .offset = (_offset), \ .bit = (_bit), \ } /* * Gating control and status is managed by a 32-bit gate register. * * There are several types of gating available: * - (no gate) * A clock with no gate is assumed to be always enabled. * - hardware-only gating (auto-gating) * Enabling or disabling clocks with this type of gate is * managed automatically by the hardware. Such clocks can be * considered by the software to be enabled. The current status * of auto-gated clocks can be read from the gate status bit. * - software-only gating * Auto-gating is not available for this type of clock. * Instead, software manages whether it's enabled by setting or * clearing the enable bit. The current gate status of a gate * under software control can be read from the gate status bit. * To ensure a change to the gating status is complete, the * status bit can be polled to verify that the gate has entered * the desired state. * - selectable hardware or software gating * Gating for this type of clock can be configured to be either * under software or hardware control. Which type is in use is * determined by the hw_sw_sel bit of the gate register. */ struct bcm_clk_gate { u32 offset; /* gate register offset */ u32 status_bit; /* 0: gate is disabled; 0: gatge is enabled */ u32 en_bit; /* 0: disable; 1: enable */ u32 hw_sw_sel_bit; /* 0: hardware gating; 1: software gating */ u32 flags; /* BCM_CLK_GATE_FLAGS_* below */ }; /* * Gate flags: * HW means this gate can be auto-gated * SW means the state of this gate can be software controlled * NO_DISABLE means this gate is (only) enabled if under software control * SW_MANAGED means the status of this gate is under software control * ENABLED means this software-managed gate is *supposed* to be enabled */ #define BCM_CLK_GATE_FLAGS_EXISTS ((u32)1 << 0) /* Gate is valid */ #define BCM_CLK_GATE_FLAGS_HW ((u32)1 << 1) /* Can auto-gate */ #define BCM_CLK_GATE_FLAGS_SW ((u32)1 << 2) /* Software control */ #define BCM_CLK_GATE_FLAGS_NO_DISABLE ((u32)1 << 3) /* HW or enabled */ #define BCM_CLK_GATE_FLAGS_SW_MANAGED ((u32)1 << 4) /* SW now in control */ #define BCM_CLK_GATE_FLAGS_ENABLED ((u32)1 << 5) /* If SW_MANAGED */ /* * Gate initialization macros. * * Any gate initially under software control will be enabled. */ /* A hardware/software gate initially under software control */ #define HW_SW_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \ { \ .offset = (_offset), \ .status_bit = (_status_bit), \ .en_bit = (_en_bit), \ .hw_sw_sel_bit = (_hw_sw_sel_bit), \ .flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \ FLAG(GATE, SW_MANAGED)|FLAG(GATE, ENABLED)| \ FLAG(GATE, EXISTS), \ } /* A hardware/software gate initially under hardware control */ #define HW_SW_GATE_AUTO(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \ { \ .offset = (_offset), \ .status_bit = (_status_bit), \ .en_bit = (_en_bit), \ .hw_sw_sel_bit = (_hw_sw_sel_bit), \ .flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \ FLAG(GATE, EXISTS), \ } /* A hardware-or-enabled gate (enabled if not under hardware control) */ #define HW_ENABLE_GATE(_offset, _status_bit, _en_bit, _hw_sw_sel_bit) \ { \ .offset = (_offset), \ .status_bit = (_status_bit), \ .en_bit = (_en_bit), \ .hw_sw_sel_bit = (_hw_sw_sel_bit), \ .flags = FLAG(GATE, HW)|FLAG(GATE, SW)| \ FLAG(GATE, NO_DISABLE)|FLAG(GATE, EXISTS), \ } /* A software-only gate */ #define SW_ONLY_GATE(_offset, _status_bit, _en_bit) \ { \ .offset = (_offset), \ .status_bit = (_status_bit), \ .en_bit = (_en_bit), \ .flags = FLAG(GATE, SW)|FLAG(GATE, SW_MANAGED)| \ FLAG(GATE, ENABLED)|FLAG(GATE, EXISTS), \ } /* A hardware-only gate */ #define HW_ONLY_GATE(_offset, _status_bit) \ { \ .offset = (_offset), \ .status_bit = (_status_bit), \ .flags = FLAG(GATE, HW)|FLAG(GATE, EXISTS), \ } /* Gate hysteresis for clocks */ struct bcm_clk_hyst { u32 offset; /* hyst register offset (normally CLKGATE) */ u32 en_bit; /* bit used to enable hysteresis */ u32 val_bit; /* if enabled: 0 = low delay; 1 = high delay */ }; /* Hysteresis initialization macro */ #define HYST(_offset, _en_bit, _val_bit) \ { \ .offset = (_offset), \ .en_bit = (_en_bit), \ .val_bit = (_val_bit), \ } /* * Each clock can have zero, one, or two dividers which change the * output rate of the clock. Each divider can be either fixed or * variable. If there are two dividers, they are the "pre-divider" * and the "regular" or "downstream" divider. If there is only one, * there is no pre-divider. * * A fixed divider is any non-zero (positive) value, and it * indicates how the input rate is affected by the divider. * * The value of a variable divider is maintained in a sub-field of a * 32-bit divider register. The position of the field in the * register is defined by its offset and width. The value recorded * in this field is always 1 less than the value it represents. * * In addition, a variable divider can indicate that some subset * of its bits represent a "fractional" part of the divider. Such * bits comprise the low-order portion of the divider field, and can * be viewed as representing the portion of the divider that lies to * the right of the decimal point. Most variable dividers have zero * fractional bits. Variable dividers with non-zero fraction width * still record a value 1 less than the value they represent; the * added 1 does *not* affect the low-order bit in this case, it * affects the bits above the fractional part only. (Often in this * code a divider field value is distinguished from the value it * represents by referring to the latter as a "divisor".) * * In order to avoid dealing with fractions, divider arithmetic is * performed using "scaled" values. A scaled value is one that's * been left-shifted by the fractional width of a divider. Dividing * a scaled value by a scaled divisor produces the desired quotient * without loss of precision and without any other special handling * for fractions. * * The recorded value of a variable divider can be modified. To * modify either divider (or both), a clock must be enabled (i.e., * using its gate). In addition, a trigger register (described * below) must be used to commit the change, and polled to verify * the change is complete. */ struct bcm_clk_div { union { struct { /* variable divider */ u32 offset; /* divider register offset */ u32 shift; /* field shift */ u32 width; /* field width */ u32 frac_width; /* field fraction width */ u64 scaled_div; /* scaled divider value */ } s; u32 fixed; /* non-zero fixed divider value */ } u; u32 flags; /* BCM_CLK_DIV_FLAGS_* below */ }; /* * Divider flags: * EXISTS means this divider exists * FIXED means it is a fixed-rate divider */ #define BCM_CLK_DIV_FLAGS_EXISTS ((u32)1 << 0) /* Divider is valid */ #define BCM_CLK_DIV_FLAGS_FIXED ((u32)1 << 1) /* Fixed-value */ /* Divider initialization macros */ /* A fixed (non-zero) divider */ #define FIXED_DIVIDER(_value) \ { \ .u.fixed = (_value), \ .flags = FLAG(DIV, EXISTS)|FLAG(DIV, FIXED), \ } /* A divider with an integral divisor */ #define DIVIDER(_offset, _shift, _width) \ { \ .u.s.offset = (_offset), \ .u.s.shift = (_shift), \ .u.s.width = (_width), \ .u.s.scaled_div = BAD_SCALED_DIV_VALUE, \ .flags = FLAG(DIV, EXISTS), \ } /* A divider whose divisor has an integer and fractional part */ #define FRAC_DIVIDER(_offset, _shift, _width, _frac_width) \ { \ .u.s.offset = (_offset), \ .u.s.shift = (_shift), \ .u.s.width = (_width), \ .u.s.frac_width = (_frac_width), \ .u.s.scaled_div = BAD_SCALED_DIV_VALUE, \ .flags = FLAG(DIV, EXISTS), \ } /* * Clocks may have multiple "parent" clocks. If there is more than * one, a selector must be specified to define which of the parent * clocks is currently in use. The selected clock is indicated in a * sub-field of a 32-bit selector register. The range of * representable selector values typically exceeds the number of * available parent clocks. Occasionally the reset value of a * selector field is explicitly set to a (specific) value that does * not correspond to a defined input clock. * * We register all known parent clocks with the common clock code * using a packed array (i.e., no empty slots) of (parent) clock * names, and refer to them later using indexes into that array. * We maintain an array of selector values indexed by common clock * index values in order to map between these common clock indexes * and the selector values used by the hardware. * * Like dividers, a selector can be modified, but to do so a clock * must be enabled, and a trigger must be used to commit the change. */ struct bcm_clk_sel { u32 offset; /* selector register offset */ u32 shift; /* field shift */ u32 width; /* field width */ u32 parent_count; /* number of entries in parent_sel[] */ u32 *parent_sel; /* array of parent selector values */ u8 clk_index; /* current selected index in parent_sel[] */ }; /* Selector initialization macro */ #define SELECTOR(_offset, _shift, _width) \ { \ .offset = (_offset), \ .shift = (_shift), \ .width = (_width), \ .clk_index = BAD_CLK_INDEX, \ } /* * Making changes to a variable divider or a selector for a clock * requires the use of a trigger. A trigger is defined by a single * bit within a register. To signal a change, a 1 is written into * that bit. To determine when the change has been completed, that * trigger bit is polled; the read value will be 1 while the change * is in progress, and 0 when it is complete. * * Occasionally a clock will have more than one trigger. In this * case, the "pre-trigger" will be used when changing a clock's * selector and/or its pre-divider. */ struct bcm_clk_trig { u32 offset; /* trigger register offset */ u32 bit; /* trigger bit */ u32 flags; /* BCM_CLK_TRIG_FLAGS_* below */ }; /* * Trigger flags: * EXISTS means this trigger exists */ #define BCM_CLK_TRIG_FLAGS_EXISTS ((u32)1 << 0) /* Trigger is valid */ /* Trigger initialization macro */ #define TRIGGER(_offset, _bit) \ { \ .offset = (_offset), \ .bit = (_bit), \ .flags = FLAG(TRIG, EXISTS), \ } struct peri_clk_data { struct bcm_clk_policy policy; struct bcm_clk_gate gate; struct bcm_clk_hyst hyst; struct bcm_clk_trig pre_trig; struct bcm_clk_div pre_div; struct bcm_clk_trig trig; struct bcm_clk_div div; struct bcm_clk_sel sel; const char *clocks[]; /* must be last; use CLOCKS() to declare */ }; #define CLOCKS(...) { __VA_ARGS__, NULL, } #define NO_CLOCKS { NULL, } /* Must use of no parent clocks */ struct kona_clk { struct clk_hw hw; struct clk_init_data init_data; /* includes name of this clock */ struct ccu_data *ccu; /* ccu this clock is associated with */ enum bcm_clk_type type; union { void *data; struct peri_clk_data *peri; } u; }; #define to_kona_clk(_hw) \ container_of(_hw, struct kona_clk, hw) /* Initialization macro for an entry in a CCU's kona_clks[] array. */ #define KONA_CLK(_ccu_name, _clk_name, _type) \ { \ .init_data = { \ .name = #_clk_name, \ .ops = &kona_ ## _type ## _clk_ops, \ }, \ .ccu = &_ccu_name ## _ccu_data, \ .type = bcm_clk_ ## _type, \ .u.data = &_clk_name ## _data, \ } #define LAST_KONA_CLK { .type = bcm_clk_none } /* * CCU policy control. To enable software update of the policy * tables the CCU policy engine must be stopped by setting the * software update enable bit (LVM_EN). After an update the engine * is restarted using the GO bit and either the GO_ATL or GO_AC bit. */ struct bcm_lvm_en { u32 offset; /* LVM_EN register offset */ u32 bit; /* POLICY_CONFIG_EN bit in register */ }; /* Policy enable initialization macro */ #define CCU_LVM_EN(_offset, _bit) \ { \ .offset = (_offset), \ .bit = (_bit), \ } struct bcm_policy_ctl { u32 offset; /* POLICY_CTL register offset */ u32 go_bit; u32 atl_bit; /* GO, GO_ATL, and GO_AC bits */ u32 ac_bit; }; /* Policy control initialization macro */ #define CCU_POLICY_CTL(_offset, _go_bit, _ac_bit, _atl_bit) \ { \ .offset = (_offset), \ .go_bit = (_go_bit), \ .ac_bit = (_ac_bit), \ .atl_bit = (_atl_bit), \ } struct ccu_policy { struct bcm_lvm_en enable; struct bcm_policy_ctl control; }; /* * Each CCU defines a mapped area of memory containing registers * used to manage clocks implemented by the CCU. Access to memory * within the CCU's space is serialized by a spinlock. Before any * (other) address can be written, a special access "password" value * must be written to its WR_ACCESS register (located at the base * address of the range). We keep track of the name of each CCU as * it is set up, and maintain them in a list. */ struct ccu_data { void __iomem *base; /* base of mapped address space */ spinlock_t lock; /* serialization lock */ bool write_enabled; /* write access is currently enabled */ struct ccu_policy policy; struct list_head links; /* for ccu_list */ struct device_node *node; struct clk_onecell_data clk_data; const char *name; u32 range; /* byte range of address space */ struct kona_clk kona_clks[]; /* must be last */ }; /* Initialization for common fields in a Kona ccu_data structure */ #define KONA_CCU_COMMON(_prefix, _name, _ccuname) \ .name = #_name "_ccu", \ .lock = __SPIN_LOCK_UNLOCKED(_name ## _ccu_data.lock), \ .links = LIST_HEAD_INIT(_name ## _ccu_data.links), \ .clk_data = { \ .clk_num = _prefix ## _ ## _ccuname ## _CCU_CLOCK_COUNT, \ } /* Exported globals */ extern struct clk_ops kona_peri_clk_ops; /* Externally visible functions */ extern u64 scaled_div_max(struct bcm_clk_div *div); extern u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths); extern struct clk *kona_clk_setup(struct kona_clk *bcm_clk); extern void __init kona_dt_ccu_setup(struct ccu_data *ccu, struct device_node *node); extern bool __init kona_ccu_init(struct ccu_data *ccu); #endif /* _CLK_KONA_H */