/* * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/device.h> #include <linux/interrupt.h> #include <linux/types.h> #include <crypto/aes.h> #include <crypto/algapi.h> #include <crypto/des.h> #include "cipher.h" static LIST_HEAD(ablkcipher_algs); static void qce_ablkcipher_done(void *data) { struct crypto_async_request *async_req = data; struct ablkcipher_request *req = ablkcipher_request_cast(async_req); struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req); struct qce_alg_template *tmpl = to_cipher_tmpl(async_req->tfm); struct qce_device *qce = tmpl->qce; enum dma_data_direction dir_src, dir_dst; u32 status; int error; bool diff_dst; diff_dst = (req->src != req->dst) ? true : false; dir_src = diff_dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL; dir_dst = diff_dst ? DMA_FROM_DEVICE : DMA_BIDIRECTIONAL; error = qce_dma_terminate_all(&qce->dma); if (error) dev_dbg(qce->dev, "ablkcipher dma termination error (%d)\n", error); if (diff_dst) qce_unmapsg(qce->dev, rctx->src_sg, rctx->src_nents, dir_src, rctx->dst_chained); qce_unmapsg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst, rctx->dst_chained); sg_free_table(&rctx->dst_tbl); error = qce_check_status(qce, &status); if (error < 0) dev_dbg(qce->dev, "ablkcipher operation error (%x)\n", status); qce->async_req_done(tmpl->qce, error); } static int qce_ablkcipher_async_req_handle(struct crypto_async_request *async_req) { struct ablkcipher_request *req = ablkcipher_request_cast(async_req); struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req); struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req); struct qce_alg_template *tmpl = to_cipher_tmpl(async_req->tfm); struct qce_device *qce = tmpl->qce; enum dma_data_direction dir_src, dir_dst; struct scatterlist *sg; bool diff_dst; gfp_t gfp; int ret; rctx->iv = req->info; rctx->ivsize = crypto_ablkcipher_ivsize(ablkcipher); rctx->cryptlen = req->nbytes; diff_dst = (req->src != req->dst) ? true : false; dir_src = diff_dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL; dir_dst = diff_dst ? DMA_FROM_DEVICE : DMA_BIDIRECTIONAL; rctx->src_nents = qce_countsg(req->src, req->nbytes, &rctx->src_chained); if (diff_dst) { rctx->dst_nents = qce_countsg(req->dst, req->nbytes, &rctx->dst_chained); } else { rctx->dst_nents = rctx->src_nents; rctx->dst_chained = rctx->src_chained; } rctx->dst_nents += 1; gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; ret = sg_alloc_table(&rctx->dst_tbl, rctx->dst_nents, gfp); if (ret) return ret; sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ); sg = qce_sgtable_add(&rctx->dst_tbl, req->dst); if (IS_ERR(sg)) { ret = PTR_ERR(sg); goto error_free; } sg = qce_sgtable_add(&rctx->dst_tbl, &rctx->result_sg); if (IS_ERR(sg)) { ret = PTR_ERR(sg); goto error_free; } sg_mark_end(sg); rctx->dst_sg = rctx->dst_tbl.sgl; ret = qce_mapsg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst, rctx->dst_chained); if (ret < 0) goto error_free; if (diff_dst) { ret = qce_mapsg(qce->dev, req->src, rctx->src_nents, dir_src, rctx->src_chained); if (ret < 0) goto error_unmap_dst; rctx->src_sg = req->src; } else { rctx->src_sg = rctx->dst_sg; } ret = qce_dma_prep_sgs(&qce->dma, rctx->src_sg, rctx->src_nents, rctx->dst_sg, rctx->dst_nents, qce_ablkcipher_done, async_req); if (ret) goto error_unmap_src; qce_dma_issue_pending(&qce->dma); ret = qce_start(async_req, tmpl->crypto_alg_type, req->nbytes, 0); if (ret) goto error_terminate; return 0; error_terminate: qce_dma_terminate_all(&qce->dma); error_unmap_src: if (diff_dst) qce_unmapsg(qce->dev, req->src, rctx->src_nents, dir_src, rctx->src_chained); error_unmap_dst: qce_unmapsg(qce->dev, rctx->dst_sg, rctx->dst_nents, dir_dst, rctx->dst_chained); error_free: sg_free_table(&rctx->dst_tbl); return ret; } static int qce_ablkcipher_setkey(struct crypto_ablkcipher *ablk, const u8 *key, unsigned int keylen) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(ablk); struct qce_cipher_ctx *ctx = crypto_tfm_ctx(tfm); unsigned long flags = to_cipher_tmpl(tfm)->alg_flags; int ret; if (!key || !keylen) return -EINVAL; if (IS_AES(flags)) { switch (keylen) { case AES_KEYSIZE_128: case AES_KEYSIZE_256: break; default: goto fallback; } } else if (IS_DES(flags)) { u32 tmp[DES_EXPKEY_WORDS]; ret = des_ekey(tmp, key); if (!ret && crypto_ablkcipher_get_flags(ablk) & CRYPTO_TFM_REQ_WEAK_KEY) goto weakkey; } ctx->enc_keylen = keylen; memcpy(ctx->enc_key, key, keylen); return 0; fallback: ret = crypto_ablkcipher_setkey(ctx->fallback, key, keylen); if (!ret) ctx->enc_keylen = keylen; return ret; weakkey: crypto_ablkcipher_set_flags(ablk, CRYPTO_TFM_RES_WEAK_KEY); return -EINVAL; } static int qce_ablkcipher_crypt(struct ablkcipher_request *req, int encrypt) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req)); struct qce_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req); struct qce_alg_template *tmpl = to_cipher_tmpl(tfm); int ret; rctx->flags = tmpl->alg_flags; rctx->flags |= encrypt ? QCE_ENCRYPT : QCE_DECRYPT; if (IS_AES(rctx->flags) && ctx->enc_keylen != AES_KEYSIZE_128 && ctx->enc_keylen != AES_KEYSIZE_256) { ablkcipher_request_set_tfm(req, ctx->fallback); ret = encrypt ? crypto_ablkcipher_encrypt(req) : crypto_ablkcipher_decrypt(req); ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm)); return ret; } return tmpl->qce->async_req_enqueue(tmpl->qce, &req->base); } static int qce_ablkcipher_encrypt(struct ablkcipher_request *req) { return qce_ablkcipher_crypt(req, 1); } static int qce_ablkcipher_decrypt(struct ablkcipher_request *req) { return qce_ablkcipher_crypt(req, 0); } static int qce_ablkcipher_init(struct crypto_tfm *tfm) { struct qce_cipher_ctx *ctx = crypto_tfm_ctx(tfm); memset(ctx, 0, sizeof(*ctx)); tfm->crt_ablkcipher.reqsize = sizeof(struct qce_cipher_reqctx); ctx->fallback = crypto_alloc_ablkcipher(crypto_tfm_alg_name(tfm), CRYPTO_ALG_TYPE_ABLKCIPHER, CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->fallback)) return PTR_ERR(ctx->fallback); return 0; } static void qce_ablkcipher_exit(struct crypto_tfm *tfm) { struct qce_cipher_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_ablkcipher(ctx->fallback); } struct qce_ablkcipher_def { unsigned long flags; const char *name; const char *drv_name; unsigned int blocksize; unsigned int ivsize; unsigned int min_keysize; unsigned int max_keysize; }; static const struct qce_ablkcipher_def ablkcipher_def[] = { { .flags = QCE_ALG_AES | QCE_MODE_ECB, .name = "ecb(aes)", .drv_name = "ecb-aes-qce", .blocksize = AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, }, { .flags = QCE_ALG_AES | QCE_MODE_CBC, .name = "cbc(aes)", .drv_name = "cbc-aes-qce", .blocksize = AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, }, { .flags = QCE_ALG_AES | QCE_MODE_CTR, .name = "ctr(aes)", .drv_name = "ctr-aes-qce", .blocksize = AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, }, { .flags = QCE_ALG_AES | QCE_MODE_XTS, .name = "xts(aes)", .drv_name = "xts-aes-qce", .blocksize = AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, }, { .flags = QCE_ALG_DES | QCE_MODE_ECB, .name = "ecb(des)", .drv_name = "ecb-des-qce", .blocksize = DES_BLOCK_SIZE, .ivsize = 0, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, }, { .flags = QCE_ALG_DES | QCE_MODE_CBC, .name = "cbc(des)", .drv_name = "cbc-des-qce", .blocksize = DES_BLOCK_SIZE, .ivsize = DES_BLOCK_SIZE, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, }, { .flags = QCE_ALG_3DES | QCE_MODE_ECB, .name = "ecb(des3_ede)", .drv_name = "ecb-3des-qce", .blocksize = DES3_EDE_BLOCK_SIZE, .ivsize = 0, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, }, { .flags = QCE_ALG_3DES | QCE_MODE_CBC, .name = "cbc(des3_ede)", .drv_name = "cbc-3des-qce", .blocksize = DES3_EDE_BLOCK_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, }, }; static int qce_ablkcipher_register_one(const struct qce_ablkcipher_def *def, struct qce_device *qce) { struct qce_alg_template *tmpl; struct crypto_alg *alg; int ret; tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL); if (!tmpl) return -ENOMEM; alg = &tmpl->alg.crypto; snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name); snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", def->drv_name); alg->cra_blocksize = def->blocksize; alg->cra_ablkcipher.ivsize = def->ivsize; alg->cra_ablkcipher.min_keysize = def->min_keysize; alg->cra_ablkcipher.max_keysize = def->max_keysize; alg->cra_ablkcipher.setkey = qce_ablkcipher_setkey; alg->cra_ablkcipher.encrypt = qce_ablkcipher_encrypt; alg->cra_ablkcipher.decrypt = qce_ablkcipher_decrypt; alg->cra_priority = 300; alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK; alg->cra_ctxsize = sizeof(struct qce_cipher_ctx); alg->cra_alignmask = 0; alg->cra_type = &crypto_ablkcipher_type; alg->cra_module = THIS_MODULE; alg->cra_init = qce_ablkcipher_init; alg->cra_exit = qce_ablkcipher_exit; INIT_LIST_HEAD(&alg->cra_list); INIT_LIST_HEAD(&tmpl->entry); tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_ABLKCIPHER; tmpl->alg_flags = def->flags; tmpl->qce = qce; ret = crypto_register_alg(alg); if (ret) { kfree(tmpl); dev_err(qce->dev, "%s registration failed\n", alg->cra_name); return ret; } list_add_tail(&tmpl->entry, &ablkcipher_algs); dev_dbg(qce->dev, "%s is registered\n", alg->cra_name); return 0; } static void qce_ablkcipher_unregister(struct qce_device *qce) { struct qce_alg_template *tmpl, *n; list_for_each_entry_safe(tmpl, n, &ablkcipher_algs, entry) { crypto_unregister_alg(&tmpl->alg.crypto); list_del(&tmpl->entry); kfree(tmpl); } } static int qce_ablkcipher_register(struct qce_device *qce) { int ret, i; for (i = 0; i < ARRAY_SIZE(ablkcipher_def); i++) { ret = qce_ablkcipher_register_one(&ablkcipher_def[i], qce); if (ret) goto err; } return 0; err: qce_ablkcipher_unregister(qce); return ret; } const struct qce_algo_ops ablkcipher_ops = { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .register_algs = qce_ablkcipher_register, .unregister_algs = qce_ablkcipher_unregister, .async_req_handle = qce_ablkcipher_async_req_handle, };