/* * edac_mc kernel module * (C) 2005, 2006 Linux Networx (http://lnxi.com) * This file may be distributed under the terms of the * GNU General Public License. * * Written by Thayne Harbaugh * Based on work by Dan Hollis <goemon at anime dot net> and others. * http://www.anime.net/~goemon/linux-ecc/ * * Modified by Dave Peterson and Doug Thompson * */ #include <linux/module.h> #include <linux/proc_fs.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/smp.h> #include <linux/init.h> #include <linux/sysctl.h> #include <linux/highmem.h> #include <linux/timer.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/spinlock.h> #include <linux/list.h> #include <linux/ctype.h> #include <linux/edac.h> #include <linux/bitops.h> #include <asm/uaccess.h> #include <asm/page.h> #include <asm/edac.h> #include "edac_core.h" #include "edac_module.h" #include <ras/ras_event.h> /* lock to memory controller's control array */ static DEFINE_MUTEX(mem_ctls_mutex); static LIST_HEAD(mc_devices); /* * Used to lock EDAC MC to just one module, avoiding two drivers e. g. * apei/ghes and i7core_edac to be used at the same time. */ static void const *edac_mc_owner; static struct bus_type mc_bus[EDAC_MAX_MCS]; unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf, unsigned len) { struct mem_ctl_info *mci = dimm->mci; int i, n, count = 0; char *p = buf; for (i = 0; i < mci->n_layers; i++) { n = snprintf(p, len, "%s %d ", edac_layer_name[mci->layers[i].type], dimm->location[i]); p += n; len -= n; count += n; if (!len) break; } return count; } #ifdef CONFIG_EDAC_DEBUG static void edac_mc_dump_channel(struct rank_info *chan) { edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); edac_dbg(4, " channel = %p\n", chan); edac_dbg(4, " channel->csrow = %p\n", chan->csrow); edac_dbg(4, " channel->dimm = %p\n", chan->dimm); } static void edac_mc_dump_dimm(struct dimm_info *dimm, int number) { char location[80]; edac_dimm_info_location(dimm, location, sizeof(location)); edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", dimm->mci->csbased ? "rank" : "dimm", number, location, dimm->csrow, dimm->cschannel); edac_dbg(4, " dimm = %p\n", dimm); edac_dbg(4, " dimm->label = '%s'\n", dimm->label); edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); edac_dbg(4, " dimm->grain = %d\n", dimm->grain); edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); } static void edac_mc_dump_csrow(struct csrow_info *csrow) { edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); edac_dbg(4, " csrow = %p\n", csrow); edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); edac_dbg(4, " csrow->channels = %p\n", csrow->channels); edac_dbg(4, " csrow->mci = %p\n", csrow->mci); } static void edac_mc_dump_mci(struct mem_ctl_info *mci) { edac_dbg(3, "\tmci = %p\n", mci); edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", mci->nr_csrows, mci->csrows); edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", mci->tot_dimms, mci->dimms); edac_dbg(3, "\tdev = %p\n", mci->pdev); edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", mci->mod_name, mci->ctl_name); edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); } #endif /* CONFIG_EDAC_DEBUG */ const char * const edac_mem_types[] = { [MEM_EMPTY] = "Empty csrow", [MEM_RESERVED] = "Reserved csrow type", [MEM_UNKNOWN] = "Unknown csrow type", [MEM_FPM] = "Fast page mode RAM", [MEM_EDO] = "Extended data out RAM", [MEM_BEDO] = "Burst Extended data out RAM", [MEM_SDR] = "Single data rate SDRAM", [MEM_RDR] = "Registered single data rate SDRAM", [MEM_DDR] = "Double data rate SDRAM", [MEM_RDDR] = "Registered Double data rate SDRAM", [MEM_RMBS] = "Rambus DRAM", [MEM_DDR2] = "Unbuffered DDR2 RAM", [MEM_FB_DDR2] = "Fully buffered DDR2", [MEM_RDDR2] = "Registered DDR2 RAM", [MEM_XDR] = "Rambus XDR", [MEM_DDR3] = "Unbuffered DDR3 RAM", [MEM_RDDR3] = "Registered DDR3 RAM", [MEM_LRDDR3] = "Load-Reduced DDR3 RAM", [MEM_DDR4] = "Unbuffered DDR4 RAM", [MEM_RDDR4] = "Registered DDR4 RAM", }; EXPORT_SYMBOL_GPL(edac_mem_types); /** * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation * @p: pointer to a pointer with the memory offset to be used. At * return, this will be incremented to point to the next offset * @size: Size of the data structure to be reserved * @n_elems: Number of elements that should be reserved * * If 'size' is a constant, the compiler will optimize this whole function * down to either a no-op or the addition of a constant to the value of '*p'. * * The 'p' pointer is absolutely needed to keep the proper advancing * further in memory to the proper offsets when allocating the struct along * with its embedded structs, as edac_device_alloc_ctl_info() does it * above, for example. * * At return, the pointer 'p' will be incremented to be used on a next call * to this function. */ void *edac_align_ptr(void **p, unsigned size, int n_elems) { unsigned align, r; void *ptr = *p; *p += size * n_elems; /* * 'p' can possibly be an unaligned item X such that sizeof(X) is * 'size'. Adjust 'p' so that its alignment is at least as * stringent as what the compiler would provide for X and return * the aligned result. * Here we assume that the alignment of a "long long" is the most * stringent alignment that the compiler will ever provide by default. * As far as I know, this is a reasonable assumption. */ if (size > sizeof(long)) align = sizeof(long long); else if (size > sizeof(int)) align = sizeof(long); else if (size > sizeof(short)) align = sizeof(int); else if (size > sizeof(char)) align = sizeof(short); else return (char *)ptr; r = (unsigned long)p % align; if (r == 0) return (char *)ptr; *p += align - r; return (void *)(((unsigned long)ptr) + align - r); } static void _edac_mc_free(struct mem_ctl_info *mci) { int i, chn, row; struct csrow_info *csr; const unsigned int tot_dimms = mci->tot_dimms; const unsigned int tot_channels = mci->num_cschannel; const unsigned int tot_csrows = mci->nr_csrows; if (mci->dimms) { for (i = 0; i < tot_dimms; i++) kfree(mci->dimms[i]); kfree(mci->dimms); } if (mci->csrows) { for (row = 0; row < tot_csrows; row++) { csr = mci->csrows[row]; if (csr) { if (csr->channels) { for (chn = 0; chn < tot_channels; chn++) kfree(csr->channels[chn]); kfree(csr->channels); } kfree(csr); } } kfree(mci->csrows); } kfree(mci); } /** * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure * @mc_num: Memory controller number * @n_layers: Number of MC hierarchy layers * layers: Describes each layer as seen by the Memory Controller * @size_pvt: size of private storage needed * * * Everything is kmalloc'ed as one big chunk - more efficient. * Only can be used if all structures have the same lifetime - otherwise * you have to allocate and initialize your own structures. * * Use edac_mc_free() to free mc structures allocated by this function. * * NOTE: drivers handle multi-rank memories in different ways: in some * drivers, one multi-rank memory stick is mapped as one entry, while, in * others, a single multi-rank memory stick would be mapped into several * entries. Currently, this function will allocate multiple struct dimm_info * on such scenarios, as grouping the multiple ranks require drivers change. * * Returns: * On failure: NULL * On success: struct mem_ctl_info pointer */ struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, unsigned n_layers, struct edac_mc_layer *layers, unsigned sz_pvt) { struct mem_ctl_info *mci; struct edac_mc_layer *layer; struct csrow_info *csr; struct rank_info *chan; struct dimm_info *dimm; u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; unsigned pos[EDAC_MAX_LAYERS]; unsigned size, tot_dimms = 1, count = 1; unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0; void *pvt, *p, *ptr = NULL; int i, j, row, chn, n, len, off; bool per_rank = false; BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0); /* * Calculate the total amount of dimms and csrows/cschannels while * in the old API emulation mode */ for (i = 0; i < n_layers; i++) { tot_dimms *= layers[i].size; if (layers[i].is_virt_csrow) tot_csrows *= layers[i].size; else tot_channels *= layers[i].size; if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT) per_rank = true; } /* Figure out the offsets of the various items from the start of an mc * structure. We want the alignment of each item to be at least as * stringent as what the compiler would provide if we could simply * hardcode everything into a single struct. */ mci = edac_align_ptr(&ptr, sizeof(*mci), 1); layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); for (i = 0; i < n_layers; i++) { count *= layers[i].size; edac_dbg(4, "errcount layer %d size %d\n", i, count); ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count); tot_errcount += 2 * count; } edac_dbg(4, "allocating %d error counters\n", tot_errcount); pvt = edac_align_ptr(&ptr, sz_pvt, 1); size = ((unsigned long)pvt) + sz_pvt; edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", size, tot_dimms, per_rank ? "ranks" : "dimms", tot_csrows * tot_channels); mci = kzalloc(size, GFP_KERNEL); if (mci == NULL) return NULL; /* Adjust pointers so they point within the memory we just allocated * rather than an imaginary chunk of memory located at address 0. */ layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); for (i = 0; i < n_layers; i++) { mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i])); mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i])); } pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; /* setup index and various internal pointers */ mci->mc_idx = mc_num; mci->tot_dimms = tot_dimms; mci->pvt_info = pvt; mci->n_layers = n_layers; mci->layers = layer; memcpy(mci->layers, layers, sizeof(*layer) * n_layers); mci->nr_csrows = tot_csrows; mci->num_cschannel = tot_channels; mci->csbased = per_rank; /* * Alocate and fill the csrow/channels structs */ mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); if (!mci->csrows) goto error; for (row = 0; row < tot_csrows; row++) { csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); if (!csr) goto error; mci->csrows[row] = csr; csr->csrow_idx = row; csr->mci = mci; csr->nr_channels = tot_channels; csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), GFP_KERNEL); if (!csr->channels) goto error; for (chn = 0; chn < tot_channels; chn++) { chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); if (!chan) goto error; csr->channels[chn] = chan; chan->chan_idx = chn; chan->csrow = csr; } } /* * Allocate and fill the dimm structs */ mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); if (!mci->dimms) goto error; memset(&pos, 0, sizeof(pos)); row = 0; chn = 0; for (i = 0; i < tot_dimms; i++) { chan = mci->csrows[row]->channels[chn]; off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]); if (off < 0 || off >= tot_dimms) { edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n"); goto error; } dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); if (!dimm) goto error; mci->dimms[off] = dimm; dimm->mci = mci; /* * Copy DIMM location and initialize it. */ len = sizeof(dimm->label); p = dimm->label; n = snprintf(p, len, "mc#%u", mc_num); p += n; len -= n; for (j = 0; j < n_layers; j++) { n = snprintf(p, len, "%s#%u", edac_layer_name[layers[j].type], pos[j]); p += n; len -= n; dimm->location[j] = pos[j]; if (len <= 0) break; } /* Link it to the csrows old API data */ chan->dimm = dimm; dimm->csrow = row; dimm->cschannel = chn; /* Increment csrow location */ if (layers[0].is_virt_csrow) { chn++; if (chn == tot_channels) { chn = 0; row++; } } else { row++; if (row == tot_csrows) { row = 0; chn++; } } /* Increment dimm location */ for (j = n_layers - 1; j >= 0; j--) { pos[j]++; if (pos[j] < layers[j].size) break; pos[j] = 0; } } mci->op_state = OP_ALLOC; return mci; error: _edac_mc_free(mci); return NULL; } EXPORT_SYMBOL_GPL(edac_mc_alloc); /** * edac_mc_free * 'Free' a previously allocated 'mci' structure * @mci: pointer to a struct mem_ctl_info structure */ void edac_mc_free(struct mem_ctl_info *mci) { edac_dbg(1, "\n"); /* If we're not yet registered with sysfs free only what was allocated * in edac_mc_alloc(). */ if (!device_is_registered(&mci->dev)) { _edac_mc_free(mci); return; } /* the mci instance is freed here, when the sysfs object is dropped */ edac_unregister_sysfs(mci); } EXPORT_SYMBOL_GPL(edac_mc_free); /** * find_mci_by_dev * * scan list of controllers looking for the one that manages * the 'dev' device * @dev: pointer to a struct device related with the MCI */ struct mem_ctl_info *find_mci_by_dev(struct device *dev) { struct mem_ctl_info *mci; struct list_head *item; edac_dbg(3, "\n"); list_for_each(item, &mc_devices) { mci = list_entry(item, struct mem_ctl_info, link); if (mci->pdev == dev) return mci; } return NULL; } EXPORT_SYMBOL_GPL(find_mci_by_dev); /* * handler for EDAC to check if NMI type handler has asserted interrupt */ static int edac_mc_assert_error_check_and_clear(void) { int old_state; if (edac_op_state == EDAC_OPSTATE_POLL) return 1; old_state = edac_err_assert; edac_err_assert = 0; return old_state; } /* * edac_mc_workq_function * performs the operation scheduled by a workq request */ static void edac_mc_workq_function(struct work_struct *work_req) { struct delayed_work *d_work = to_delayed_work(work_req); struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); mutex_lock(&mem_ctls_mutex); /* if this control struct has movd to offline state, we are done */ if (mci->op_state == OP_OFFLINE) { mutex_unlock(&mem_ctls_mutex); return; } /* Only poll controllers that are running polled and have a check */ if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL)) mci->edac_check(mci); mutex_unlock(&mem_ctls_mutex); /* Reschedule */ queue_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); } /* * edac_mc_workq_setup * initialize a workq item for this mci * passing in the new delay period in msec * * locking model: * * called with the mem_ctls_mutex held */ static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec, bool init) { edac_dbg(0, "\n"); /* if this instance is not in the POLL state, then simply return */ if (mci->op_state != OP_RUNNING_POLL) return; if (init) INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec)); } /* * edac_mc_workq_teardown * stop the workq processing on this mci * * locking model: * * called WITHOUT lock held */ static void edac_mc_workq_teardown(struct mem_ctl_info *mci) { int status; if (mci->op_state != OP_RUNNING_POLL) return; status = cancel_delayed_work(&mci->work); if (status == 0) { edac_dbg(0, "not canceled, flush the queue\n"); /* workq instance might be running, wait for it */ flush_workqueue(edac_workqueue); } } /* * edac_mc_reset_delay_period(unsigned long value) * * user space has updated our poll period value, need to * reset our workq delays */ void edac_mc_reset_delay_period(unsigned long value) { struct mem_ctl_info *mci; struct list_head *item; mutex_lock(&mem_ctls_mutex); list_for_each(item, &mc_devices) { mci = list_entry(item, struct mem_ctl_info, link); edac_mc_workq_setup(mci, value, false); } mutex_unlock(&mem_ctls_mutex); } /* Return 0 on success, 1 on failure. * Before calling this function, caller must * assign a unique value to mci->mc_idx. * * locking model: * * called with the mem_ctls_mutex lock held */ static int add_mc_to_global_list(struct mem_ctl_info *mci) { struct list_head *item, *insert_before; struct mem_ctl_info *p; insert_before = &mc_devices; p = find_mci_by_dev(mci->pdev); if (unlikely(p != NULL)) goto fail0; list_for_each(item, &mc_devices) { p = list_entry(item, struct mem_ctl_info, link); if (p->mc_idx >= mci->mc_idx) { if (unlikely(p->mc_idx == mci->mc_idx)) goto fail1; insert_before = item; break; } } list_add_tail_rcu(&mci->link, insert_before); atomic_inc(&edac_handlers); return 0; fail0: edac_printk(KERN_WARNING, EDAC_MC, "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); return 1; fail1: edac_printk(KERN_WARNING, EDAC_MC, "bug in low-level driver: attempt to assign\n" " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); return 1; } static int del_mc_from_global_list(struct mem_ctl_info *mci) { int handlers = atomic_dec_return(&edac_handlers); list_del_rcu(&mci->link); /* these are for safe removal of devices from global list while * NMI handlers may be traversing list */ synchronize_rcu(); INIT_LIST_HEAD(&mci->link); return handlers; } /** * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'. * * If found, return a pointer to the structure. * Else return NULL. * * Caller must hold mem_ctls_mutex. */ struct mem_ctl_info *edac_mc_find(int idx) { struct list_head *item; struct mem_ctl_info *mci; list_for_each(item, &mc_devices) { mci = list_entry(item, struct mem_ctl_info, link); if (mci->mc_idx >= idx) { if (mci->mc_idx == idx) return mci; break; } } return NULL; } EXPORT_SYMBOL(edac_mc_find); /** * edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci * global list and create sysfs entries associated with mci structure * @mci: pointer to the mci structure to be added to the list * @groups: optional attribute groups for the driver-specific sysfs entries * * Return: * 0 Success * !0 Failure */ /* FIXME - should a warning be printed if no error detection? correction? */ int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, const struct attribute_group **groups) { int ret = -EINVAL; edac_dbg(0, "\n"); if (mci->mc_idx >= EDAC_MAX_MCS) { pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx); return -ENODEV; } #ifdef CONFIG_EDAC_DEBUG if (edac_debug_level >= 3) edac_mc_dump_mci(mci); if (edac_debug_level >= 4) { int i; for (i = 0; i < mci->nr_csrows; i++) { struct csrow_info *csrow = mci->csrows[i]; u32 nr_pages = 0; int j; for (j = 0; j < csrow->nr_channels; j++) nr_pages += csrow->channels[j]->dimm->nr_pages; if (!nr_pages) continue; edac_mc_dump_csrow(csrow); for (j = 0; j < csrow->nr_channels; j++) if (csrow->channels[j]->dimm->nr_pages) edac_mc_dump_channel(csrow->channels[j]); } for (i = 0; i < mci->tot_dimms; i++) if (mci->dimms[i]->nr_pages) edac_mc_dump_dimm(mci->dimms[i], i); } #endif mutex_lock(&mem_ctls_mutex); if (edac_mc_owner && edac_mc_owner != mci->mod_name) { ret = -EPERM; goto fail0; } if (add_mc_to_global_list(mci)) goto fail0; /* set load time so that error rate can be tracked */ mci->start_time = jiffies; mci->bus = &mc_bus[mci->mc_idx]; if (edac_create_sysfs_mci_device(mci, groups)) { edac_mc_printk(mci, KERN_WARNING, "failed to create sysfs device\n"); goto fail1; } /* If there IS a check routine, then we are running POLLED */ if (mci->edac_check != NULL) { /* This instance is NOW RUNNING */ mci->op_state = OP_RUNNING_POLL; edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true); } else { mci->op_state = OP_RUNNING_INTERRUPT; } /* Report action taken */ edac_mc_printk(mci, KERN_INFO, "Giving out device to module %s controller %s: DEV %s (%s)\n", mci->mod_name, mci->ctl_name, mci->dev_name, edac_op_state_to_string(mci->op_state)); edac_mc_owner = mci->mod_name; mutex_unlock(&mem_ctls_mutex); return 0; fail1: del_mc_from_global_list(mci); fail0: mutex_unlock(&mem_ctls_mutex); return ret; } EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); /** * edac_mc_del_mc: Remove sysfs entries for specified mci structure and * remove mci structure from global list * @pdev: Pointer to 'struct device' representing mci structure to remove. * * Return pointer to removed mci structure, or NULL if device not found. */ struct mem_ctl_info *edac_mc_del_mc(struct device *dev) { struct mem_ctl_info *mci; edac_dbg(0, "\n"); mutex_lock(&mem_ctls_mutex); /* find the requested mci struct in the global list */ mci = find_mci_by_dev(dev); if (mci == NULL) { mutex_unlock(&mem_ctls_mutex); return NULL; } if (!del_mc_from_global_list(mci)) edac_mc_owner = NULL; mutex_unlock(&mem_ctls_mutex); /* flush workq processes */ edac_mc_workq_teardown(mci); /* marking MCI offline */ mci->op_state = OP_OFFLINE; /* remove from sysfs */ edac_remove_sysfs_mci_device(mci); edac_printk(KERN_INFO, EDAC_MC, "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, mci->mod_name, mci->ctl_name, edac_dev_name(mci)); return mci; } EXPORT_SYMBOL_GPL(edac_mc_del_mc); static void edac_mc_scrub_block(unsigned long page, unsigned long offset, u32 size) { struct page *pg; void *virt_addr; unsigned long flags = 0; edac_dbg(3, "\n"); /* ECC error page was not in our memory. Ignore it. */ if (!pfn_valid(page)) return; /* Find the actual page structure then map it and fix */ pg = pfn_to_page(page); if (PageHighMem(pg)) local_irq_save(flags); virt_addr = kmap_atomic(pg); /* Perform architecture specific atomic scrub operation */ atomic_scrub(virt_addr + offset, size); /* Unmap and complete */ kunmap_atomic(virt_addr); if (PageHighMem(pg)) local_irq_restore(flags); } /* FIXME - should return -1 */ int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) { struct csrow_info **csrows = mci->csrows; int row, i, j, n; edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); row = -1; for (i = 0; i < mci->nr_csrows; i++) { struct csrow_info *csrow = csrows[i]; n = 0; for (j = 0; j < csrow->nr_channels; j++) { struct dimm_info *dimm = csrow->channels[j]->dimm; n += dimm->nr_pages; } if (n == 0) continue; edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", mci->mc_idx, csrow->first_page, page, csrow->last_page, csrow->page_mask); if ((page >= csrow->first_page) && (page <= csrow->last_page) && ((page & csrow->page_mask) == (csrow->first_page & csrow->page_mask))) { row = i; break; } } if (row == -1) edac_mc_printk(mci, KERN_ERR, "could not look up page error address %lx\n", (unsigned long)page); return row; } EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); const char *edac_layer_name[] = { [EDAC_MC_LAYER_BRANCH] = "branch", [EDAC_MC_LAYER_CHANNEL] = "channel", [EDAC_MC_LAYER_SLOT] = "slot", [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", [EDAC_MC_LAYER_ALL_MEM] = "memory", }; EXPORT_SYMBOL_GPL(edac_layer_name); static void edac_inc_ce_error(struct mem_ctl_info *mci, bool enable_per_layer_report, const int pos[EDAC_MAX_LAYERS], const u16 count) { int i, index = 0; mci->ce_mc += count; if (!enable_per_layer_report) { mci->ce_noinfo_count += count; return; } for (i = 0; i < mci->n_layers; i++) { if (pos[i] < 0) break; index += pos[i]; mci->ce_per_layer[i][index] += count; if (i < mci->n_layers - 1) index *= mci->layers[i + 1].size; } } static void edac_inc_ue_error(struct mem_ctl_info *mci, bool enable_per_layer_report, const int pos[EDAC_MAX_LAYERS], const u16 count) { int i, index = 0; mci->ue_mc += count; if (!enable_per_layer_report) { mci->ce_noinfo_count += count; return; } for (i = 0; i < mci->n_layers; i++) { if (pos[i] < 0) break; index += pos[i]; mci->ue_per_layer[i][index] += count; if (i < mci->n_layers - 1) index *= mci->layers[i + 1].size; } } static void edac_ce_error(struct mem_ctl_info *mci, const u16 error_count, const int pos[EDAC_MAX_LAYERS], const char *msg, const char *location, const char *label, const char *detail, const char *other_detail, const bool enable_per_layer_report, const unsigned long page_frame_number, const unsigned long offset_in_page, long grain) { unsigned long remapped_page; char *msg_aux = ""; if (*msg) msg_aux = " "; if (edac_mc_get_log_ce()) { if (other_detail && *other_detail) edac_mc_printk(mci, KERN_WARNING, "%d CE %s%son %s (%s %s - %s)\n", error_count, msg, msg_aux, label, location, detail, other_detail); else edac_mc_printk(mci, KERN_WARNING, "%d CE %s%son %s (%s %s)\n", error_count, msg, msg_aux, label, location, detail); } edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count); if (mci->scrub_mode == SCRUB_SW_SRC) { /* * Some memory controllers (called MCs below) can remap * memory so that it is still available at a different * address when PCI devices map into memory. * MC's that can't do this, lose the memory where PCI * devices are mapped. This mapping is MC-dependent * and so we call back into the MC driver for it to * map the MC page to a physical (CPU) page which can * then be mapped to a virtual page - which can then * be scrubbed. */ remapped_page = mci->ctl_page_to_phys ? mci->ctl_page_to_phys(mci, page_frame_number) : page_frame_number; edac_mc_scrub_block(remapped_page, offset_in_page, grain); } } static void edac_ue_error(struct mem_ctl_info *mci, const u16 error_count, const int pos[EDAC_MAX_LAYERS], const char *msg, const char *location, const char *label, const char *detail, const char *other_detail, const bool enable_per_layer_report) { char *msg_aux = ""; if (*msg) msg_aux = " "; if (edac_mc_get_log_ue()) { if (other_detail && *other_detail) edac_mc_printk(mci, KERN_WARNING, "%d UE %s%son %s (%s %s - %s)\n", error_count, msg, msg_aux, label, location, detail, other_detail); else edac_mc_printk(mci, KERN_WARNING, "%d UE %s%son %s (%s %s)\n", error_count, msg, msg_aux, label, location, detail); } if (edac_mc_get_panic_on_ue()) { if (other_detail && *other_detail) panic("UE %s%son %s (%s%s - %s)\n", msg, msg_aux, label, location, detail, other_detail); else panic("UE %s%son %s (%s%s)\n", msg, msg_aux, label, location, detail); } edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count); } /** * edac_raw_mc_handle_error - reports a memory event to userspace without doing * anything to discover the error location * * @type: severity of the error (CE/UE/Fatal) * @mci: a struct mem_ctl_info pointer * @e: error description * * This raw function is used internally by edac_mc_handle_error(). It should * only be called directly when the hardware error come directly from BIOS, * like in the case of APEI GHES driver. */ void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type, struct mem_ctl_info *mci, struct edac_raw_error_desc *e) { char detail[80]; int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; /* Memory type dependent details about the error */ if (type == HW_EVENT_ERR_CORRECTED) { snprintf(detail, sizeof(detail), "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx", e->page_frame_number, e->offset_in_page, e->grain, e->syndrome); edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label, detail, e->other_detail, e->enable_per_layer_report, e->page_frame_number, e->offset_in_page, e->grain); } else { snprintf(detail, sizeof(detail), "page:0x%lx offset:0x%lx grain:%ld", e->page_frame_number, e->offset_in_page, e->grain); edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label, detail, e->other_detail, e->enable_per_layer_report); } } EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); /** * edac_mc_handle_error - reports a memory event to userspace * * @type: severity of the error (CE/UE/Fatal) * @mci: a struct mem_ctl_info pointer * @error_count: Number of errors of the same type * @page_frame_number: mem page where the error occurred * @offset_in_page: offset of the error inside the page * @syndrome: ECC syndrome * @top_layer: Memory layer[0] position * @mid_layer: Memory layer[1] position * @low_layer: Memory layer[2] position * @msg: Message meaningful to the end users that * explains the event * @other_detail: Technical details about the event that * may help hardware manufacturers and * EDAC developers to analyse the event */ void edac_mc_handle_error(const enum hw_event_mc_err_type type, struct mem_ctl_info *mci, const u16 error_count, const unsigned long page_frame_number, const unsigned long offset_in_page, const unsigned long syndrome, const int top_layer, const int mid_layer, const int low_layer, const char *msg, const char *other_detail) { char *p; int row = -1, chan = -1; int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; int i, n_labels = 0; u8 grain_bits; struct edac_raw_error_desc *e = &mci->error_desc; edac_dbg(3, "MC%d\n", mci->mc_idx); /* Fills the error report buffer */ memset(e, 0, sizeof (*e)); e->error_count = error_count; e->top_layer = top_layer; e->mid_layer = mid_layer; e->low_layer = low_layer; e->page_frame_number = page_frame_number; e->offset_in_page = offset_in_page; e->syndrome = syndrome; e->msg = msg; e->other_detail = other_detail; /* * Check if the event report is consistent and if the memory * location is known. If it is known, enable_per_layer_report will be * true, the DIMM(s) label info will be filled and the per-layer * error counters will be incremented. */ for (i = 0; i < mci->n_layers; i++) { if (pos[i] >= (int)mci->layers[i].size) { edac_mc_printk(mci, KERN_ERR, "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", edac_layer_name[mci->layers[i].type], pos[i], mci->layers[i].size); /* * Instead of just returning it, let's use what's * known about the error. The increment routines and * the DIMM filter logic will do the right thing by * pointing the likely damaged DIMMs. */ pos[i] = -1; } if (pos[i] >= 0) e->enable_per_layer_report = true; } /* * Get the dimm label/grain that applies to the match criteria. * As the error algorithm may not be able to point to just one memory * stick, the logic here will get all possible labels that could * pottentially be affected by the error. * On FB-DIMM memory controllers, for uncorrected errors, it is common * to have only the MC channel and the MC dimm (also called "branch") * but the channel is not known, as the memory is arranged in pairs, * where each memory belongs to a separate channel within the same * branch. */ p = e->label; *p = '\0'; for (i = 0; i < mci->tot_dimms; i++) { struct dimm_info *dimm = mci->dimms[i]; if (top_layer >= 0 && top_layer != dimm->location[0]) continue; if (mid_layer >= 0 && mid_layer != dimm->location[1]) continue; if (low_layer >= 0 && low_layer != dimm->location[2]) continue; /* get the max grain, over the error match range */ if (dimm->grain > e->grain) e->grain = dimm->grain; /* * If the error is memory-controller wide, there's no need to * seek for the affected DIMMs because the whole * channel/memory controller/... may be affected. * Also, don't show errors for empty DIMM slots. */ if (e->enable_per_layer_report && dimm->nr_pages) { if (n_labels >= EDAC_MAX_LABELS) { e->enable_per_layer_report = false; break; } n_labels++; if (p != e->label) { strcpy(p, OTHER_LABEL); p += strlen(OTHER_LABEL); } strcpy(p, dimm->label); p += strlen(p); *p = '\0'; /* * get csrow/channel of the DIMM, in order to allow * incrementing the compat API counters */ edac_dbg(4, "%s csrows map: (%d,%d)\n", mci->csbased ? "rank" : "dimm", dimm->csrow, dimm->cschannel); if (row == -1) row = dimm->csrow; else if (row >= 0 && row != dimm->csrow) row = -2; if (chan == -1) chan = dimm->cschannel; else if (chan >= 0 && chan != dimm->cschannel) chan = -2; } } if (!e->enable_per_layer_report) { strcpy(e->label, "any memory"); } else { edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); if (p == e->label) strcpy(e->label, "unknown memory"); if (type == HW_EVENT_ERR_CORRECTED) { if (row >= 0) { mci->csrows[row]->ce_count += error_count; if (chan >= 0) mci->csrows[row]->channels[chan]->ce_count += error_count; } } else if (row >= 0) mci->csrows[row]->ue_count += error_count; } /* Fill the RAM location data */ p = e->location; for (i = 0; i < mci->n_layers; i++) { if (pos[i] < 0) continue; p += sprintf(p, "%s:%d ", edac_layer_name[mci->layers[i].type], pos[i]); } if (p > e->location) *(p - 1) = '\0'; /* Report the error via the trace interface */ grain_bits = fls_long(e->grain) + 1; trace_mc_event(type, e->msg, e->label, e->error_count, mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer, PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page, grain_bits, e->syndrome, e->other_detail); edac_raw_mc_handle_error(type, mci, e); } EXPORT_SYMBOL_GPL(edac_mc_handle_error);