/* * linux/arch/arm/plat-pxa/gpio.c * * Generic PXA GPIO handling * * Author: Nicolas Pitre * Created: Jun 15, 2001 * Copyright: MontaVista Software Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/module.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/gpio.h> #include <linux/gpio-pxa.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/irqdomain.h> #include <linux/irqchip/chained_irq.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/syscore_ops.h> #include <linux/slab.h> /* * We handle the GPIOs by banks, each bank covers up to 32 GPIOs with * one set of registers. The register offsets are organized below: * * GPLR GPDR GPSR GPCR GRER GFER GEDR * BANK 0 - 0x0000 0x000C 0x0018 0x0024 0x0030 0x003C 0x0048 * BANK 1 - 0x0004 0x0010 0x001C 0x0028 0x0034 0x0040 0x004C * BANK 2 - 0x0008 0x0014 0x0020 0x002C 0x0038 0x0044 0x0050 * * BANK 3 - 0x0100 0x010C 0x0118 0x0124 0x0130 0x013C 0x0148 * BANK 4 - 0x0104 0x0110 0x011C 0x0128 0x0134 0x0140 0x014C * BANK 5 - 0x0108 0x0114 0x0120 0x012C 0x0138 0x0144 0x0150 * * BANK 6 - 0x0200 0x020C 0x0218 0x0224 0x0230 0x023C 0x0248 * * NOTE: * BANK 3 is only available on PXA27x and later processors. * BANK 4 and 5 are only available on PXA935, PXA1928 * BANK 6 is only available on PXA1928 */ #define GPLR_OFFSET 0x00 #define GPDR_OFFSET 0x0C #define GPSR_OFFSET 0x18 #define GPCR_OFFSET 0x24 #define GRER_OFFSET 0x30 #define GFER_OFFSET 0x3C #define GEDR_OFFSET 0x48 #define GAFR_OFFSET 0x54 #define ED_MASK_OFFSET 0x9C /* GPIO edge detection for AP side */ #define BANK_OFF(n) (((n) / 3) << 8) + (((n) % 3) << 2) int pxa_last_gpio; static int irq_base; #ifdef CONFIG_OF static struct irq_domain *domain; static struct device_node *pxa_gpio_of_node; #endif struct pxa_gpio_chip { struct gpio_chip chip; void __iomem *regbase; char label[10]; unsigned long irq_mask; unsigned long irq_edge_rise; unsigned long irq_edge_fall; int (*set_wake)(unsigned int gpio, unsigned int on); #ifdef CONFIG_PM unsigned long saved_gplr; unsigned long saved_gpdr; unsigned long saved_grer; unsigned long saved_gfer; #endif }; enum pxa_gpio_type { PXA25X_GPIO = 0, PXA26X_GPIO, PXA27X_GPIO, PXA3XX_GPIO, PXA93X_GPIO, MMP_GPIO = 0x10, MMP2_GPIO, PXA1928_GPIO, }; struct pxa_gpio_id { enum pxa_gpio_type type; int gpio_nums; }; static DEFINE_SPINLOCK(gpio_lock); static struct pxa_gpio_chip *pxa_gpio_chips; static enum pxa_gpio_type gpio_type; static void __iomem *gpio_reg_base; static struct pxa_gpio_id pxa25x_id = { .type = PXA25X_GPIO, .gpio_nums = 85, }; static struct pxa_gpio_id pxa26x_id = { .type = PXA26X_GPIO, .gpio_nums = 90, }; static struct pxa_gpio_id pxa27x_id = { .type = PXA27X_GPIO, .gpio_nums = 121, }; static struct pxa_gpio_id pxa3xx_id = { .type = PXA3XX_GPIO, .gpio_nums = 128, }; static struct pxa_gpio_id pxa93x_id = { .type = PXA93X_GPIO, .gpio_nums = 192, }; static struct pxa_gpio_id mmp_id = { .type = MMP_GPIO, .gpio_nums = 128, }; static struct pxa_gpio_id mmp2_id = { .type = MMP2_GPIO, .gpio_nums = 192, }; static struct pxa_gpio_id pxa1928_id = { .type = PXA1928_GPIO, .gpio_nums = 224, }; #define for_each_gpio_chip(i, c) \ for (i = 0, c = &pxa_gpio_chips[0]; i <= pxa_last_gpio; i += 32, c++) static inline void __iomem *gpio_chip_base(struct gpio_chip *c) { return container_of(c, struct pxa_gpio_chip, chip)->regbase; } static inline struct pxa_gpio_chip *gpio_to_pxachip(unsigned gpio) { return &pxa_gpio_chips[gpio_to_bank(gpio)]; } static inline int gpio_is_pxa_type(int type) { return (type & MMP_GPIO) == 0; } static inline int gpio_is_mmp_type(int type) { return (type & MMP_GPIO) != 0; } /* GPIO86/87/88/89 on PXA26x have their direction bits in PXA_GPDR(2 inverted, * as well as their Alternate Function value being '1' for GPIO in GAFRx. */ static inline int __gpio_is_inverted(int gpio) { if ((gpio_type == PXA26X_GPIO) && (gpio > 85)) return 1; return 0; } /* * On PXA25x and PXA27x, GAFRx and GPDRx together decide the alternate * function of a GPIO, and GPDRx cannot be altered once configured. It * is attributed as "occupied" here (I know this terminology isn't * accurate, you are welcome to propose a better one :-) */ static inline int __gpio_is_occupied(unsigned gpio) { struct pxa_gpio_chip *pxachip; void __iomem *base; unsigned long gafr = 0, gpdr = 0; int ret, af = 0, dir = 0; pxachip = gpio_to_pxachip(gpio); base = gpio_chip_base(&pxachip->chip); gpdr = readl_relaxed(base + GPDR_OFFSET); switch (gpio_type) { case PXA25X_GPIO: case PXA26X_GPIO: case PXA27X_GPIO: gafr = readl_relaxed(base + GAFR_OFFSET); af = (gafr >> ((gpio & 0xf) * 2)) & 0x3; dir = gpdr & GPIO_bit(gpio); if (__gpio_is_inverted(gpio)) ret = (af != 1) || (dir == 0); else ret = (af != 0) || (dir != 0); break; default: ret = gpdr & GPIO_bit(gpio); break; } return ret; } static int pxa_gpio_to_irq(struct gpio_chip *chip, unsigned offset) { return chip->base + offset + irq_base; } int pxa_irq_to_gpio(int irq) { return irq - irq_base; } static int pxa_gpio_direction_input(struct gpio_chip *chip, unsigned offset) { void __iomem *base = gpio_chip_base(chip); uint32_t value, mask = 1 << offset; unsigned long flags; spin_lock_irqsave(&gpio_lock, flags); value = readl_relaxed(base + GPDR_OFFSET); if (__gpio_is_inverted(chip->base + offset)) value |= mask; else value &= ~mask; writel_relaxed(value, base + GPDR_OFFSET); spin_unlock_irqrestore(&gpio_lock, flags); return 0; } static int pxa_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value) { void __iomem *base = gpio_chip_base(chip); uint32_t tmp, mask = 1 << offset; unsigned long flags; writel_relaxed(mask, base + (value ? GPSR_OFFSET : GPCR_OFFSET)); spin_lock_irqsave(&gpio_lock, flags); tmp = readl_relaxed(base + GPDR_OFFSET); if (__gpio_is_inverted(chip->base + offset)) tmp &= ~mask; else tmp |= mask; writel_relaxed(tmp, base + GPDR_OFFSET); spin_unlock_irqrestore(&gpio_lock, flags); return 0; } static int pxa_gpio_get(struct gpio_chip *chip, unsigned offset) { u32 gplr = readl_relaxed(gpio_chip_base(chip) + GPLR_OFFSET); return !!(gplr & (1 << offset)); } static void pxa_gpio_set(struct gpio_chip *chip, unsigned offset, int value) { writel_relaxed(1 << offset, gpio_chip_base(chip) + (value ? GPSR_OFFSET : GPCR_OFFSET)); } #ifdef CONFIG_OF_GPIO static int pxa_gpio_of_xlate(struct gpio_chip *gc, const struct of_phandle_args *gpiospec, u32 *flags) { if (gpiospec->args[0] > pxa_last_gpio) return -EINVAL; if (gc != &pxa_gpio_chips[gpiospec->args[0] / 32].chip) return -EINVAL; if (flags) *flags = gpiospec->args[1]; return gpiospec->args[0] % 32; } #endif static int pxa_init_gpio_chip(int gpio_end, int (*set_wake)(unsigned int, unsigned int)) { int i, gpio, nbanks = gpio_to_bank(gpio_end) + 1; struct pxa_gpio_chip *chips; chips = kzalloc(nbanks * sizeof(struct pxa_gpio_chip), GFP_KERNEL); if (chips == NULL) { pr_err("%s: failed to allocate GPIO chips\n", __func__); return -ENOMEM; } for (i = 0, gpio = 0; i < nbanks; i++, gpio += 32) { struct gpio_chip *c = &chips[i].chip; sprintf(chips[i].label, "gpio-%d", i); chips[i].regbase = gpio_reg_base + BANK_OFF(i); chips[i].set_wake = set_wake; c->base = gpio; c->label = chips[i].label; c->direction_input = pxa_gpio_direction_input; c->direction_output = pxa_gpio_direction_output; c->get = pxa_gpio_get; c->set = pxa_gpio_set; c->to_irq = pxa_gpio_to_irq; #ifdef CONFIG_OF_GPIO c->of_node = pxa_gpio_of_node; c->of_xlate = pxa_gpio_of_xlate; c->of_gpio_n_cells = 2; #endif /* number of GPIOs on last bank may be less than 32 */ c->ngpio = (gpio + 31 > gpio_end) ? (gpio_end - gpio + 1) : 32; gpiochip_add(c); } pxa_gpio_chips = chips; return 0; } /* Update only those GRERx and GFERx edge detection register bits if those * bits are set in c->irq_mask */ static inline void update_edge_detect(struct pxa_gpio_chip *c) { uint32_t grer, gfer; grer = readl_relaxed(c->regbase + GRER_OFFSET) & ~c->irq_mask; gfer = readl_relaxed(c->regbase + GFER_OFFSET) & ~c->irq_mask; grer |= c->irq_edge_rise & c->irq_mask; gfer |= c->irq_edge_fall & c->irq_mask; writel_relaxed(grer, c->regbase + GRER_OFFSET); writel_relaxed(gfer, c->regbase + GFER_OFFSET); } static int pxa_gpio_irq_type(struct irq_data *d, unsigned int type) { struct pxa_gpio_chip *c; int gpio = pxa_irq_to_gpio(d->irq); unsigned long gpdr, mask = GPIO_bit(gpio); c = gpio_to_pxachip(gpio); if (type == IRQ_TYPE_PROBE) { /* Don't mess with enabled GPIOs using preconfigured edges or * GPIOs set to alternate function or to output during probe */ if ((c->irq_edge_rise | c->irq_edge_fall) & GPIO_bit(gpio)) return 0; if (__gpio_is_occupied(gpio)) return 0; type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING; } gpdr = readl_relaxed(c->regbase + GPDR_OFFSET); if (__gpio_is_inverted(gpio)) writel_relaxed(gpdr | mask, c->regbase + GPDR_OFFSET); else writel_relaxed(gpdr & ~mask, c->regbase + GPDR_OFFSET); if (type & IRQ_TYPE_EDGE_RISING) c->irq_edge_rise |= mask; else c->irq_edge_rise &= ~mask; if (type & IRQ_TYPE_EDGE_FALLING) c->irq_edge_fall |= mask; else c->irq_edge_fall &= ~mask; update_edge_detect(c); pr_debug("%s: IRQ%d (GPIO%d) - edge%s%s\n", __func__, d->irq, gpio, ((type & IRQ_TYPE_EDGE_RISING) ? " rising" : ""), ((type & IRQ_TYPE_EDGE_FALLING) ? " falling" : "")); return 0; } static void pxa_gpio_demux_handler(unsigned int irq, struct irq_desc *desc) { struct pxa_gpio_chip *c; int loop, gpio, gpio_base, n; unsigned long gedr; struct irq_chip *chip = irq_desc_get_chip(desc); chained_irq_enter(chip, desc); do { loop = 0; for_each_gpio_chip(gpio, c) { gpio_base = c->chip.base; gedr = readl_relaxed(c->regbase + GEDR_OFFSET); gedr = gedr & c->irq_mask; writel_relaxed(gedr, c->regbase + GEDR_OFFSET); for_each_set_bit(n, &gedr, BITS_PER_LONG) { loop = 1; generic_handle_irq(gpio_to_irq(gpio_base + n)); } } } while (loop); chained_irq_exit(chip, desc); } static void pxa_ack_muxed_gpio(struct irq_data *d) { int gpio = pxa_irq_to_gpio(d->irq); struct pxa_gpio_chip *c = gpio_to_pxachip(gpio); writel_relaxed(GPIO_bit(gpio), c->regbase + GEDR_OFFSET); } static void pxa_mask_muxed_gpio(struct irq_data *d) { int gpio = pxa_irq_to_gpio(d->irq); struct pxa_gpio_chip *c = gpio_to_pxachip(gpio); uint32_t grer, gfer; c->irq_mask &= ~GPIO_bit(gpio); grer = readl_relaxed(c->regbase + GRER_OFFSET) & ~GPIO_bit(gpio); gfer = readl_relaxed(c->regbase + GFER_OFFSET) & ~GPIO_bit(gpio); writel_relaxed(grer, c->regbase + GRER_OFFSET); writel_relaxed(gfer, c->regbase + GFER_OFFSET); } static int pxa_gpio_set_wake(struct irq_data *d, unsigned int on) { int gpio = pxa_irq_to_gpio(d->irq); struct pxa_gpio_chip *c = gpio_to_pxachip(gpio); if (c->set_wake) return c->set_wake(gpio, on); else return 0; } static void pxa_unmask_muxed_gpio(struct irq_data *d) { int gpio = pxa_irq_to_gpio(d->irq); struct pxa_gpio_chip *c = gpio_to_pxachip(gpio); c->irq_mask |= GPIO_bit(gpio); update_edge_detect(c); } static struct irq_chip pxa_muxed_gpio_chip = { .name = "GPIO", .irq_ack = pxa_ack_muxed_gpio, .irq_mask = pxa_mask_muxed_gpio, .irq_unmask = pxa_unmask_muxed_gpio, .irq_set_type = pxa_gpio_irq_type, .irq_set_wake = pxa_gpio_set_wake, }; static int pxa_gpio_nums(struct platform_device *pdev) { const struct platform_device_id *id = platform_get_device_id(pdev); struct pxa_gpio_id *pxa_id = (struct pxa_gpio_id *)id->driver_data; int count = 0; switch (pxa_id->type) { case PXA25X_GPIO: case PXA26X_GPIO: case PXA27X_GPIO: case PXA3XX_GPIO: case PXA93X_GPIO: case MMP_GPIO: case MMP2_GPIO: case PXA1928_GPIO: gpio_type = pxa_id->type; count = pxa_id->gpio_nums - 1; break; default: count = -EINVAL; break; } return count; } #ifdef CONFIG_OF static const struct of_device_id pxa_gpio_dt_ids[] = { { .compatible = "intel,pxa25x-gpio", .data = &pxa25x_id, }, { .compatible = "intel,pxa26x-gpio", .data = &pxa26x_id, }, { .compatible = "intel,pxa27x-gpio", .data = &pxa27x_id, }, { .compatible = "intel,pxa3xx-gpio", .data = &pxa3xx_id, }, { .compatible = "marvell,pxa93x-gpio", .data = &pxa93x_id, }, { .compatible = "marvell,mmp-gpio", .data = &mmp_id, }, { .compatible = "marvell,mmp2-gpio", .data = &mmp2_id, }, { .compatible = "marvell,pxa1928-gpio", .data = &pxa1928_id, }, {} }; static int pxa_irq_domain_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hw) { irq_set_chip_and_handler(irq, &pxa_muxed_gpio_chip, handle_edge_irq); set_irq_flags(irq, IRQF_VALID | IRQF_PROBE); return 0; } const struct irq_domain_ops pxa_irq_domain_ops = { .map = pxa_irq_domain_map, .xlate = irq_domain_xlate_twocell, }; static int pxa_gpio_probe_dt(struct platform_device *pdev) { int ret = 0, nr_gpios; struct device_node *np = pdev->dev.of_node; const struct of_device_id *of_id = of_match_device(pxa_gpio_dt_ids, &pdev->dev); const struct pxa_gpio_id *gpio_id; if (!of_id || !of_id->data) { dev_err(&pdev->dev, "Failed to find gpio controller\n"); return -EFAULT; } gpio_id = of_id->data; gpio_type = gpio_id->type; nr_gpios = gpio_id->gpio_nums; pxa_last_gpio = nr_gpios - 1; irq_base = irq_alloc_descs(-1, 0, nr_gpios, 0); if (irq_base < 0) { dev_err(&pdev->dev, "Failed to allocate IRQ numbers\n"); ret = irq_base; goto err; } domain = irq_domain_add_legacy(np, nr_gpios, irq_base, 0, &pxa_irq_domain_ops, NULL); pxa_gpio_of_node = np; return 0; err: iounmap(gpio_reg_base); return ret; } #else #define pxa_gpio_probe_dt(pdev) (-1) #endif static int pxa_gpio_probe(struct platform_device *pdev) { struct pxa_gpio_chip *c; struct resource *res; struct clk *clk; struct pxa_gpio_platform_data *info; int gpio, irq, ret, use_of = 0; int irq0 = 0, irq1 = 0, irq_mux, gpio_offset = 0; info = dev_get_platdata(&pdev->dev); if (info) { irq_base = info->irq_base; if (irq_base <= 0) return -EINVAL; pxa_last_gpio = pxa_gpio_nums(pdev); } else { irq_base = 0; use_of = 1; ret = pxa_gpio_probe_dt(pdev); if (ret < 0) return -EINVAL; } if (!pxa_last_gpio) return -EINVAL; irq0 = platform_get_irq_byname(pdev, "gpio0"); irq1 = platform_get_irq_byname(pdev, "gpio1"); irq_mux = platform_get_irq_byname(pdev, "gpio_mux"); if ((irq0 > 0 && irq1 <= 0) || (irq0 <= 0 && irq1 > 0) || (irq_mux <= 0)) return -EINVAL; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -EINVAL; gpio_reg_base = ioremap(res->start, resource_size(res)); if (!gpio_reg_base) return -EINVAL; if (irq0 > 0) gpio_offset = 2; clk = clk_get(&pdev->dev, NULL); if (IS_ERR(clk)) { dev_err(&pdev->dev, "Error %ld to get gpio clock\n", PTR_ERR(clk)); iounmap(gpio_reg_base); return PTR_ERR(clk); } ret = clk_prepare_enable(clk); if (ret) { clk_put(clk); iounmap(gpio_reg_base); return ret; } /* Initialize GPIO chips */ pxa_init_gpio_chip(pxa_last_gpio, info ? info->gpio_set_wake : NULL); /* clear all GPIO edge detects */ for_each_gpio_chip(gpio, c) { writel_relaxed(0, c->regbase + GFER_OFFSET); writel_relaxed(0, c->regbase + GRER_OFFSET); writel_relaxed(~0, c->regbase + GEDR_OFFSET); /* unmask GPIO edge detect for AP side */ if (gpio_is_mmp_type(gpio_type)) writel_relaxed(~0, c->regbase + ED_MASK_OFFSET); } if (!use_of) { if (irq0 > 0) { irq = gpio_to_irq(0); irq_set_chip_and_handler(irq, &pxa_muxed_gpio_chip, handle_edge_irq); set_irq_flags(irq, IRQF_VALID | IRQF_PROBE); } if (irq1 > 0) { irq = gpio_to_irq(1); irq_set_chip_and_handler(irq, &pxa_muxed_gpio_chip, handle_edge_irq); set_irq_flags(irq, IRQF_VALID | IRQF_PROBE); } for (irq = gpio_to_irq(gpio_offset); irq <= gpio_to_irq(pxa_last_gpio); irq++) { irq_set_chip_and_handler(irq, &pxa_muxed_gpio_chip, handle_edge_irq); set_irq_flags(irq, IRQF_VALID | IRQF_PROBE); } } if (irq0 > 0) irq_set_chained_handler(irq0, pxa_gpio_demux_handler); if (irq1 > 0) irq_set_chained_handler(irq1, pxa_gpio_demux_handler); irq_set_chained_handler(irq_mux, pxa_gpio_demux_handler); return 0; } static const struct platform_device_id gpio_id_table[] = { { "pxa25x-gpio", (unsigned long)&pxa25x_id }, { "pxa26x-gpio", (unsigned long)&pxa26x_id }, { "pxa27x-gpio", (unsigned long)&pxa27x_id }, { "pxa3xx-gpio", (unsigned long)&pxa3xx_id }, { "pxa93x-gpio", (unsigned long)&pxa93x_id }, { "mmp-gpio", (unsigned long)&mmp_id }, { "mmp2-gpio", (unsigned long)&mmp2_id }, { "pxa1928-gpio", (unsigned long)&pxa1928_id }, { }, }; static struct platform_driver pxa_gpio_driver = { .probe = pxa_gpio_probe, .driver = { .name = "pxa-gpio", .of_match_table = of_match_ptr(pxa_gpio_dt_ids), }, .id_table = gpio_id_table, }; static int __init pxa_gpio_init(void) { return platform_driver_register(&pxa_gpio_driver); } postcore_initcall(pxa_gpio_init); #ifdef CONFIG_PM static int pxa_gpio_suspend(void) { struct pxa_gpio_chip *c; int gpio; for_each_gpio_chip(gpio, c) { c->saved_gplr = readl_relaxed(c->regbase + GPLR_OFFSET); c->saved_gpdr = readl_relaxed(c->regbase + GPDR_OFFSET); c->saved_grer = readl_relaxed(c->regbase + GRER_OFFSET); c->saved_gfer = readl_relaxed(c->regbase + GFER_OFFSET); /* Clear GPIO transition detect bits */ writel_relaxed(0xffffffff, c->regbase + GEDR_OFFSET); } return 0; } static void pxa_gpio_resume(void) { struct pxa_gpio_chip *c; int gpio; for_each_gpio_chip(gpio, c) { /* restore level with set/clear */ writel_relaxed(c->saved_gplr, c->regbase + GPSR_OFFSET); writel_relaxed(~c->saved_gplr, c->regbase + GPCR_OFFSET); writel_relaxed(c->saved_grer, c->regbase + GRER_OFFSET); writel_relaxed(c->saved_gfer, c->regbase + GFER_OFFSET); writel_relaxed(c->saved_gpdr, c->regbase + GPDR_OFFSET); } } #else #define pxa_gpio_suspend NULL #define pxa_gpio_resume NULL #endif struct syscore_ops pxa_gpio_syscore_ops = { .suspend = pxa_gpio_suspend, .resume = pxa_gpio_resume, }; static int __init pxa_gpio_sysinit(void) { register_syscore_ops(&pxa_gpio_syscore_ops); return 0; } postcore_initcall(pxa_gpio_sysinit);