/* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*- */ /* * * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/device.h> #include <linux/acpi.h> #include <drm/drmP.h> #include <drm/i915_drm.h> #include "i915_drv.h" #include "i915_trace.h" #include "intel_drv.h" #include <linux/console.h> #include <linux/module.h> #include <linux/pm_runtime.h> #include <drm/drm_crtc_helper.h> static struct drm_driver driver; #define GEN_DEFAULT_PIPEOFFSETS \ .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \ PIPE_C_OFFSET, PIPE_EDP_OFFSET }, \ .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \ TRANSCODER_C_OFFSET, TRANSCODER_EDP_OFFSET }, \ .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET } #define GEN_CHV_PIPEOFFSETS \ .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \ CHV_PIPE_C_OFFSET }, \ .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \ CHV_TRANSCODER_C_OFFSET, }, \ .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET, \ CHV_PALETTE_C_OFFSET } #define CURSOR_OFFSETS \ .cursor_offsets = { CURSOR_A_OFFSET, CURSOR_B_OFFSET, CHV_CURSOR_C_OFFSET } #define IVB_CURSOR_OFFSETS \ .cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET } static const struct intel_device_info intel_i830_info = { .gen = 2, .is_mobile = 1, .cursor_needs_physical = 1, .num_pipes = 2, .has_overlay = 1, .overlay_needs_physical = 1, .ring_mask = RENDER_RING, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_845g_info = { .gen = 2, .num_pipes = 1, .has_overlay = 1, .overlay_needs_physical = 1, .ring_mask = RENDER_RING, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_i85x_info = { .gen = 2, .is_i85x = 1, .is_mobile = 1, .num_pipes = 2, .cursor_needs_physical = 1, .has_overlay = 1, .overlay_needs_physical = 1, .has_fbc = 1, .ring_mask = RENDER_RING, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_i865g_info = { .gen = 2, .num_pipes = 1, .has_overlay = 1, .overlay_needs_physical = 1, .ring_mask = RENDER_RING, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_i915g_info = { .gen = 3, .is_i915g = 1, .cursor_needs_physical = 1, .num_pipes = 2, .has_overlay = 1, .overlay_needs_physical = 1, .ring_mask = RENDER_RING, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_i915gm_info = { .gen = 3, .is_mobile = 1, .num_pipes = 2, .cursor_needs_physical = 1, .has_overlay = 1, .overlay_needs_physical = 1, .supports_tv = 1, .has_fbc = 1, .ring_mask = RENDER_RING, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_i945g_info = { .gen = 3, .has_hotplug = 1, .cursor_needs_physical = 1, .num_pipes = 2, .has_overlay = 1, .overlay_needs_physical = 1, .ring_mask = RENDER_RING, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_i945gm_info = { .gen = 3, .is_i945gm = 1, .is_mobile = 1, .num_pipes = 2, .has_hotplug = 1, .cursor_needs_physical = 1, .has_overlay = 1, .overlay_needs_physical = 1, .supports_tv = 1, .has_fbc = 1, .ring_mask = RENDER_RING, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_i965g_info = { .gen = 4, .is_broadwater = 1, .num_pipes = 2, .has_hotplug = 1, .has_overlay = 1, .ring_mask = RENDER_RING, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_i965gm_info = { .gen = 4, .is_crestline = 1, .num_pipes = 2, .is_mobile = 1, .has_fbc = 1, .has_hotplug = 1, .has_overlay = 1, .supports_tv = 1, .ring_mask = RENDER_RING, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_g33_info = { .gen = 3, .is_g33 = 1, .num_pipes = 2, .need_gfx_hws = 1, .has_hotplug = 1, .has_overlay = 1, .ring_mask = RENDER_RING, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_g45_info = { .gen = 4, .is_g4x = 1, .need_gfx_hws = 1, .num_pipes = 2, .has_pipe_cxsr = 1, .has_hotplug = 1, .ring_mask = RENDER_RING | BSD_RING, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_gm45_info = { .gen = 4, .is_g4x = 1, .num_pipes = 2, .is_mobile = 1, .need_gfx_hws = 1, .has_fbc = 1, .has_pipe_cxsr = 1, .has_hotplug = 1, .supports_tv = 1, .ring_mask = RENDER_RING | BSD_RING, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_pineview_info = { .gen = 3, .is_g33 = 1, .is_pineview = 1, .is_mobile = 1, .num_pipes = 2, .need_gfx_hws = 1, .has_hotplug = 1, .has_overlay = 1, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_ironlake_d_info = { .gen = 5, .num_pipes = 2, .need_gfx_hws = 1, .has_hotplug = 1, .ring_mask = RENDER_RING | BSD_RING, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_ironlake_m_info = { .gen = 5, .is_mobile = 1, .num_pipes = 2, .need_gfx_hws = 1, .has_hotplug = 1, .has_fbc = 1, .ring_mask = RENDER_RING | BSD_RING, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_sandybridge_d_info = { .gen = 6, .num_pipes = 2, .need_gfx_hws = 1, .has_hotplug = 1, .has_fbc = 1, .ring_mask = RENDER_RING | BSD_RING | BLT_RING, .has_llc = 1, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_sandybridge_m_info = { .gen = 6, .is_mobile = 1, .num_pipes = 2, .need_gfx_hws = 1, .has_hotplug = 1, .has_fbc = 1, .ring_mask = RENDER_RING | BSD_RING | BLT_RING, .has_llc = 1, GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; #define GEN7_FEATURES \ .gen = 7, .num_pipes = 3, \ .need_gfx_hws = 1, .has_hotplug = 1, \ .has_fbc = 1, \ .ring_mask = RENDER_RING | BSD_RING | BLT_RING, \ .has_llc = 1 static const struct intel_device_info intel_ivybridge_d_info = { GEN7_FEATURES, .is_ivybridge = 1, GEN_DEFAULT_PIPEOFFSETS, IVB_CURSOR_OFFSETS, }; static const struct intel_device_info intel_ivybridge_m_info = { GEN7_FEATURES, .is_ivybridge = 1, .is_mobile = 1, GEN_DEFAULT_PIPEOFFSETS, IVB_CURSOR_OFFSETS, }; static const struct intel_device_info intel_ivybridge_q_info = { GEN7_FEATURES, .is_ivybridge = 1, .num_pipes = 0, /* legal, last one wins */ GEN_DEFAULT_PIPEOFFSETS, IVB_CURSOR_OFFSETS, }; static const struct intel_device_info intel_valleyview_m_info = { GEN7_FEATURES, .is_mobile = 1, .num_pipes = 2, .is_valleyview = 1, .display_mmio_offset = VLV_DISPLAY_BASE, .has_fbc = 0, /* legal, last one wins */ .has_llc = 0, /* legal, last one wins */ GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_valleyview_d_info = { GEN7_FEATURES, .num_pipes = 2, .is_valleyview = 1, .display_mmio_offset = VLV_DISPLAY_BASE, .has_fbc = 0, /* legal, last one wins */ .has_llc = 0, /* legal, last one wins */ GEN_DEFAULT_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_haswell_d_info = { GEN7_FEATURES, .is_haswell = 1, .has_ddi = 1, .has_fpga_dbg = 1, .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, GEN_DEFAULT_PIPEOFFSETS, IVB_CURSOR_OFFSETS, }; static const struct intel_device_info intel_haswell_m_info = { GEN7_FEATURES, .is_haswell = 1, .is_mobile = 1, .has_ddi = 1, .has_fpga_dbg = 1, .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, GEN_DEFAULT_PIPEOFFSETS, IVB_CURSOR_OFFSETS, }; static const struct intel_device_info intel_broadwell_d_info = { .gen = 8, .num_pipes = 3, .need_gfx_hws = 1, .has_hotplug = 1, .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, .has_llc = 1, .has_ddi = 1, .has_fpga_dbg = 1, .has_fbc = 1, GEN_DEFAULT_PIPEOFFSETS, IVB_CURSOR_OFFSETS, }; static const struct intel_device_info intel_broadwell_m_info = { .gen = 8, .is_mobile = 1, .num_pipes = 3, .need_gfx_hws = 1, .has_hotplug = 1, .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, .has_llc = 1, .has_ddi = 1, .has_fpga_dbg = 1, .has_fbc = 1, GEN_DEFAULT_PIPEOFFSETS, IVB_CURSOR_OFFSETS, }; static const struct intel_device_info intel_broadwell_gt3d_info = { .gen = 8, .num_pipes = 3, .need_gfx_hws = 1, .has_hotplug = 1, .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING, .has_llc = 1, .has_ddi = 1, .has_fpga_dbg = 1, .has_fbc = 1, GEN_DEFAULT_PIPEOFFSETS, IVB_CURSOR_OFFSETS, }; static const struct intel_device_info intel_broadwell_gt3m_info = { .gen = 8, .is_mobile = 1, .num_pipes = 3, .need_gfx_hws = 1, .has_hotplug = 1, .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING, .has_llc = 1, .has_ddi = 1, .has_fpga_dbg = 1, .has_fbc = 1, GEN_DEFAULT_PIPEOFFSETS, IVB_CURSOR_OFFSETS, }; static const struct intel_device_info intel_cherryview_info = { .gen = 8, .num_pipes = 3, .need_gfx_hws = 1, .has_hotplug = 1, .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, .is_valleyview = 1, .display_mmio_offset = VLV_DISPLAY_BASE, GEN_CHV_PIPEOFFSETS, CURSOR_OFFSETS, }; static const struct intel_device_info intel_skylake_info = { .is_preliminary = 1, .is_skylake = 1, .gen = 9, .num_pipes = 3, .need_gfx_hws = 1, .has_hotplug = 1, .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, .has_llc = 1, .has_ddi = 1, .has_fbc = 1, GEN_DEFAULT_PIPEOFFSETS, IVB_CURSOR_OFFSETS, }; static const struct intel_device_info intel_skylake_gt3_info = { .is_preliminary = 1, .is_skylake = 1, .gen = 9, .num_pipes = 3, .need_gfx_hws = 1, .has_hotplug = 1, .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING, .has_llc = 1, .has_ddi = 1, .has_fbc = 1, GEN_DEFAULT_PIPEOFFSETS, IVB_CURSOR_OFFSETS, }; /* * Make sure any device matches here are from most specific to most * general. For example, since the Quanta match is based on the subsystem * and subvendor IDs, we need it to come before the more general IVB * PCI ID matches, otherwise we'll use the wrong info struct above. */ #define INTEL_PCI_IDS \ INTEL_I830_IDS(&intel_i830_info), \ INTEL_I845G_IDS(&intel_845g_info), \ INTEL_I85X_IDS(&intel_i85x_info), \ INTEL_I865G_IDS(&intel_i865g_info), \ INTEL_I915G_IDS(&intel_i915g_info), \ INTEL_I915GM_IDS(&intel_i915gm_info), \ INTEL_I945G_IDS(&intel_i945g_info), \ INTEL_I945GM_IDS(&intel_i945gm_info), \ INTEL_I965G_IDS(&intel_i965g_info), \ INTEL_G33_IDS(&intel_g33_info), \ INTEL_I965GM_IDS(&intel_i965gm_info), \ INTEL_GM45_IDS(&intel_gm45_info), \ INTEL_G45_IDS(&intel_g45_info), \ INTEL_PINEVIEW_IDS(&intel_pineview_info), \ INTEL_IRONLAKE_D_IDS(&intel_ironlake_d_info), \ INTEL_IRONLAKE_M_IDS(&intel_ironlake_m_info), \ INTEL_SNB_D_IDS(&intel_sandybridge_d_info), \ INTEL_SNB_M_IDS(&intel_sandybridge_m_info), \ INTEL_IVB_Q_IDS(&intel_ivybridge_q_info), /* must be first IVB */ \ INTEL_IVB_M_IDS(&intel_ivybridge_m_info), \ INTEL_IVB_D_IDS(&intel_ivybridge_d_info), \ INTEL_HSW_D_IDS(&intel_haswell_d_info), \ INTEL_HSW_M_IDS(&intel_haswell_m_info), \ INTEL_VLV_M_IDS(&intel_valleyview_m_info), \ INTEL_VLV_D_IDS(&intel_valleyview_d_info), \ INTEL_BDW_GT12M_IDS(&intel_broadwell_m_info), \ INTEL_BDW_GT12D_IDS(&intel_broadwell_d_info), \ INTEL_BDW_GT3M_IDS(&intel_broadwell_gt3m_info), \ INTEL_BDW_GT3D_IDS(&intel_broadwell_gt3d_info), \ INTEL_CHV_IDS(&intel_cherryview_info), \ INTEL_SKL_GT1_IDS(&intel_skylake_info), \ INTEL_SKL_GT2_IDS(&intel_skylake_info), \ INTEL_SKL_GT3_IDS(&intel_skylake_gt3_info) \ static const struct pci_device_id pciidlist[] = { /* aka */ INTEL_PCI_IDS, {0, 0, 0} }; #if defined(CONFIG_DRM_I915_KMS) MODULE_DEVICE_TABLE(pci, pciidlist); #endif void intel_detect_pch(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct pci_dev *pch = NULL; /* In all current cases, num_pipes is equivalent to the PCH_NOP setting * (which really amounts to a PCH but no South Display). */ if (INTEL_INFO(dev)->num_pipes == 0) { dev_priv->pch_type = PCH_NOP; return; } /* * The reason to probe ISA bridge instead of Dev31:Fun0 is to * make graphics device passthrough work easy for VMM, that only * need to expose ISA bridge to let driver know the real hardware * underneath. This is a requirement from virtualization team. * * In some virtualized environments (e.g. XEN), there is irrelevant * ISA bridge in the system. To work reliably, we should scan trhough * all the ISA bridge devices and check for the first match, instead * of only checking the first one. */ while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) { if (pch->vendor == PCI_VENDOR_ID_INTEL) { unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK; dev_priv->pch_id = id; if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) { dev_priv->pch_type = PCH_IBX; DRM_DEBUG_KMS("Found Ibex Peak PCH\n"); WARN_ON(!IS_GEN5(dev)); } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) { dev_priv->pch_type = PCH_CPT; DRM_DEBUG_KMS("Found CougarPoint PCH\n"); WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev))); } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) { /* PantherPoint is CPT compatible */ dev_priv->pch_type = PCH_CPT; DRM_DEBUG_KMS("Found PantherPoint PCH\n"); WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev))); } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) { dev_priv->pch_type = PCH_LPT; DRM_DEBUG_KMS("Found LynxPoint PCH\n"); WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev)); WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev)); } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) { dev_priv->pch_type = PCH_LPT; DRM_DEBUG_KMS("Found LynxPoint LP PCH\n"); WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev)); WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev)); } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) { dev_priv->pch_type = PCH_SPT; DRM_DEBUG_KMS("Found SunrisePoint PCH\n"); WARN_ON(!IS_SKYLAKE(dev)); } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) { dev_priv->pch_type = PCH_SPT; DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n"); WARN_ON(!IS_SKYLAKE(dev)); } else continue; break; } } if (!pch) DRM_DEBUG_KMS("No PCH found.\n"); pci_dev_put(pch); } bool i915_semaphore_is_enabled(struct drm_device *dev) { if (INTEL_INFO(dev)->gen < 6) return false; if (i915.semaphores >= 0) return i915.semaphores; /* TODO: make semaphores and Execlists play nicely together */ if (i915.enable_execlists) return false; /* Until we get further testing... */ if (IS_GEN8(dev)) return false; #ifdef CONFIG_INTEL_IOMMU /* Enable semaphores on SNB when IO remapping is off */ if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) return false; #endif return true; } void intel_hpd_cancel_work(struct drm_i915_private *dev_priv) { spin_lock_irq(&dev_priv->irq_lock); dev_priv->long_hpd_port_mask = 0; dev_priv->short_hpd_port_mask = 0; dev_priv->hpd_event_bits = 0; spin_unlock_irq(&dev_priv->irq_lock); cancel_work_sync(&dev_priv->dig_port_work); cancel_work_sync(&dev_priv->hotplug_work); cancel_delayed_work_sync(&dev_priv->hotplug_reenable_work); } static void intel_suspend_encoders(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; struct drm_encoder *encoder; drm_modeset_lock_all(dev); list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { struct intel_encoder *intel_encoder = to_intel_encoder(encoder); if (intel_encoder->suspend) intel_encoder->suspend(intel_encoder); } drm_modeset_unlock_all(dev); } static int intel_suspend_complete(struct drm_i915_private *dev_priv); static int vlv_resume_prepare(struct drm_i915_private *dev_priv, bool rpm_resume); static int i915_drm_suspend(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; pci_power_t opregion_target_state; int error; /* ignore lid events during suspend */ mutex_lock(&dev_priv->modeset_restore_lock); dev_priv->modeset_restore = MODESET_SUSPENDED; mutex_unlock(&dev_priv->modeset_restore_lock); /* We do a lot of poking in a lot of registers, make sure they work * properly. */ intel_display_set_init_power(dev_priv, true); drm_kms_helper_poll_disable(dev); pci_save_state(dev->pdev); error = i915_gem_suspend(dev); if (error) { dev_err(&dev->pdev->dev, "GEM idle failed, resume might fail\n"); return error; } intel_suspend_gt_powersave(dev); /* * Disable CRTCs directly since we want to preserve sw state * for _thaw. Also, power gate the CRTC power wells. */ drm_modeset_lock_all(dev); for_each_crtc(dev, crtc) intel_crtc_control(crtc, false); drm_modeset_unlock_all(dev); intel_dp_mst_suspend(dev); intel_runtime_pm_disable_interrupts(dev_priv); intel_hpd_cancel_work(dev_priv); intel_suspend_encoders(dev_priv); intel_suspend_hw(dev); i915_gem_suspend_gtt_mappings(dev); i915_save_state(dev); opregion_target_state = PCI_D3cold; #if IS_ENABLED(CONFIG_ACPI_SLEEP) if (acpi_target_system_state() < ACPI_STATE_S3) opregion_target_state = PCI_D1; #endif intel_opregion_notify_adapter(dev, opregion_target_state); intel_uncore_forcewake_reset(dev, false); intel_opregion_fini(dev); intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true); dev_priv->suspend_count++; intel_display_set_init_power(dev_priv, false); return 0; } static int i915_drm_suspend_late(struct drm_device *drm_dev, bool hibernation) { struct drm_i915_private *dev_priv = drm_dev->dev_private; int ret; ret = intel_suspend_complete(dev_priv); if (ret) { DRM_ERROR("Suspend complete failed: %d\n", ret); return ret; } pci_disable_device(drm_dev->pdev); /* * During hibernation on some GEN4 platforms the BIOS may try to access * the device even though it's already in D3 and hang the machine. So * leave the device in D0 on those platforms and hope the BIOS will * power down the device properly. Platforms where this was seen: * Lenovo Thinkpad X301, X61s */ if (!(hibernation && drm_dev->pdev->subsystem_vendor == PCI_VENDOR_ID_LENOVO && INTEL_INFO(dev_priv)->gen == 4)) pci_set_power_state(drm_dev->pdev, PCI_D3hot); return 0; } int i915_suspend_legacy(struct drm_device *dev, pm_message_t state) { int error; if (!dev || !dev->dev_private) { DRM_ERROR("dev: %p\n", dev); DRM_ERROR("DRM not initialized, aborting suspend.\n"); return -ENODEV; } if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND && state.event != PM_EVENT_FREEZE)) return -EINVAL; if (dev->switch_power_state == DRM_SWITCH_POWER_OFF) return 0; error = i915_drm_suspend(dev); if (error) return error; return i915_drm_suspend_late(dev, false); } static int i915_drm_resume(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; mutex_lock(&dev->struct_mutex); i915_gem_restore_gtt_mappings(dev); mutex_unlock(&dev->struct_mutex); i915_restore_state(dev); intel_opregion_setup(dev); intel_init_pch_refclk(dev); drm_mode_config_reset(dev); /* * Interrupts have to be enabled before any batches are run. If not the * GPU will hang. i915_gem_init_hw() will initiate batches to * update/restore the context. * * Modeset enabling in intel_modeset_init_hw() also needs working * interrupts. */ intel_runtime_pm_enable_interrupts(dev_priv); mutex_lock(&dev->struct_mutex); if (i915_gem_init_hw(dev)) { DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n"); atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter); } mutex_unlock(&dev->struct_mutex); intel_modeset_init_hw(dev); spin_lock_irq(&dev_priv->irq_lock); if (dev_priv->display.hpd_irq_setup) dev_priv->display.hpd_irq_setup(dev); spin_unlock_irq(&dev_priv->irq_lock); drm_modeset_lock_all(dev); intel_modeset_setup_hw_state(dev, true); drm_modeset_unlock_all(dev); intel_dp_mst_resume(dev); /* * ... but also need to make sure that hotplug processing * doesn't cause havoc. Like in the driver load code we don't * bother with the tiny race here where we might loose hotplug * notifications. * */ intel_hpd_init(dev_priv); /* Config may have changed between suspend and resume */ drm_helper_hpd_irq_event(dev); intel_opregion_init(dev); intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false); mutex_lock(&dev_priv->modeset_restore_lock); dev_priv->modeset_restore = MODESET_DONE; mutex_unlock(&dev_priv->modeset_restore_lock); intel_opregion_notify_adapter(dev, PCI_D0); drm_kms_helper_poll_enable(dev); return 0; } static int i915_drm_resume_early(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int ret = 0; /* * We have a resume ordering issue with the snd-hda driver also * requiring our device to be power up. Due to the lack of a * parent/child relationship we currently solve this with an early * resume hook. * * FIXME: This should be solved with a special hdmi sink device or * similar so that power domains can be employed. */ if (pci_enable_device(dev->pdev)) return -EIO; pci_set_master(dev->pdev); if (IS_VALLEYVIEW(dev_priv)) ret = vlv_resume_prepare(dev_priv, false); if (ret) DRM_ERROR("Resume prepare failed: %d,Continuing resume\n", ret); intel_uncore_early_sanitize(dev, true); if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) hsw_disable_pc8(dev_priv); intel_uncore_sanitize(dev); intel_power_domains_init_hw(dev_priv); return ret; } int i915_resume_legacy(struct drm_device *dev) { int ret; if (dev->switch_power_state == DRM_SWITCH_POWER_OFF) return 0; ret = i915_drm_resume_early(dev); if (ret) return ret; return i915_drm_resume(dev); } /** * i915_reset - reset chip after a hang * @dev: drm device to reset * * Reset the chip. Useful if a hang is detected. Returns zero on successful * reset or otherwise an error code. * * Procedure is fairly simple: * - reset the chip using the reset reg * - re-init context state * - re-init hardware status page * - re-init ring buffer * - re-init interrupt state * - re-init display */ int i915_reset(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; bool simulated; int ret; if (!i915.reset) return 0; intel_reset_gt_powersave(dev); mutex_lock(&dev->struct_mutex); i915_gem_reset(dev); simulated = dev_priv->gpu_error.stop_rings != 0; ret = intel_gpu_reset(dev); /* Also reset the gpu hangman. */ if (simulated) { DRM_INFO("Simulated gpu hang, resetting stop_rings\n"); dev_priv->gpu_error.stop_rings = 0; if (ret == -ENODEV) { DRM_INFO("Reset not implemented, but ignoring " "error for simulated gpu hangs\n"); ret = 0; } } if (i915_stop_ring_allow_warn(dev_priv)) pr_notice("drm/i915: Resetting chip after gpu hang\n"); if (ret) { DRM_ERROR("Failed to reset chip: %i\n", ret); mutex_unlock(&dev->struct_mutex); return ret; } intel_overlay_reset(dev_priv); /* Ok, now get things going again... */ /* * Everything depends on having the GTT running, so we need to start * there. Fortunately we don't need to do this unless we reset the * chip at a PCI level. * * Next we need to restore the context, but we don't use those * yet either... * * Ring buffer needs to be re-initialized in the KMS case, or if X * was running at the time of the reset (i.e. we weren't VT * switched away). */ /* Used to prevent gem_check_wedged returning -EAGAIN during gpu reset */ dev_priv->gpu_error.reload_in_reset = true; ret = i915_gem_init_hw(dev); dev_priv->gpu_error.reload_in_reset = false; mutex_unlock(&dev->struct_mutex); if (ret) { DRM_ERROR("Failed hw init on reset %d\n", ret); return ret; } /* * rps/rc6 re-init is necessary to restore state lost after the * reset and the re-install of gt irqs. Skip for ironlake per * previous concerns that it doesn't respond well to some forms * of re-init after reset. */ if (INTEL_INFO(dev)->gen > 5) intel_enable_gt_powersave(dev); return 0; } static int i915_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct intel_device_info *intel_info = (struct intel_device_info *) ent->driver_data; if (IS_PRELIMINARY_HW(intel_info) && !i915.preliminary_hw_support) { DRM_INFO("This hardware requires preliminary hardware support.\n" "See CONFIG_DRM_I915_PRELIMINARY_HW_SUPPORT, and/or modparam preliminary_hw_support\n"); return -ENODEV; } /* Only bind to function 0 of the device. Early generations * used function 1 as a placeholder for multi-head. This causes * us confusion instead, especially on the systems where both * functions have the same PCI-ID! */ if (PCI_FUNC(pdev->devfn)) return -ENODEV; driver.driver_features &= ~(DRIVER_USE_AGP); return drm_get_pci_dev(pdev, ent, &driver); } static void i915_pci_remove(struct pci_dev *pdev) { struct drm_device *dev = pci_get_drvdata(pdev); drm_put_dev(dev); } static int i915_pm_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct drm_device *drm_dev = pci_get_drvdata(pdev); if (!drm_dev || !drm_dev->dev_private) { dev_err(dev, "DRM not initialized, aborting suspend.\n"); return -ENODEV; } if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF) return 0; return i915_drm_suspend(drm_dev); } static int i915_pm_suspend_late(struct device *dev) { struct drm_device *drm_dev = dev_to_i915(dev)->dev; /* * We have a suspedn ordering issue with the snd-hda driver also * requiring our device to be power up. Due to the lack of a * parent/child relationship we currently solve this with an late * suspend hook. * * FIXME: This should be solved with a special hdmi sink device or * similar so that power domains can be employed. */ if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF) return 0; return i915_drm_suspend_late(drm_dev, false); } static int i915_pm_poweroff_late(struct device *dev) { struct drm_device *drm_dev = dev_to_i915(dev)->dev; if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF) return 0; return i915_drm_suspend_late(drm_dev, true); } static int i915_pm_resume_early(struct device *dev) { struct drm_device *drm_dev = dev_to_i915(dev)->dev; if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF) return 0; return i915_drm_resume_early(drm_dev); } static int i915_pm_resume(struct device *dev) { struct drm_device *drm_dev = dev_to_i915(dev)->dev; if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF) return 0; return i915_drm_resume(drm_dev); } static int hsw_suspend_complete(struct drm_i915_private *dev_priv) { hsw_enable_pc8(dev_priv); return 0; } /* * Save all Gunit registers that may be lost after a D3 and a subsequent * S0i[R123] transition. The list of registers needing a save/restore is * defined in the VLV2_S0IXRegs document. This documents marks all Gunit * registers in the following way: * - Driver: saved/restored by the driver * - Punit : saved/restored by the Punit firmware * - No, w/o marking: no need to save/restore, since the register is R/O or * used internally by the HW in a way that doesn't depend * keeping the content across a suspend/resume. * - Debug : used for debugging * * We save/restore all registers marked with 'Driver', with the following * exceptions: * - Registers out of use, including also registers marked with 'Debug'. * These have no effect on the driver's operation, so we don't save/restore * them to reduce the overhead. * - Registers that are fully setup by an initialization function called from * the resume path. For example many clock gating and RPS/RC6 registers. * - Registers that provide the right functionality with their reset defaults. * * TODO: Except for registers that based on the above 3 criteria can be safely * ignored, we save/restore all others, practically treating the HW context as * a black-box for the driver. Further investigation is needed to reduce the * saved/restored registers even further, by following the same 3 criteria. */ static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv) { struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state; int i; /* GAM 0x4000-0x4770 */ s->wr_watermark = I915_READ(GEN7_WR_WATERMARK); s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL); s->arb_mode = I915_READ(ARB_MODE); s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0); s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1); for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++) s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS_BASE + i * 4); s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT); s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT); s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7); s->ecochk = I915_READ(GAM_ECOCHK); s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7); s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7); s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR); /* MBC 0x9024-0x91D0, 0x8500 */ s->g3dctl = I915_READ(VLV_G3DCTL); s->gsckgctl = I915_READ(VLV_GSCKGCTL); s->mbctl = I915_READ(GEN6_MBCTL); /* GCP 0x9400-0x9424, 0x8100-0x810C */ s->ucgctl1 = I915_READ(GEN6_UCGCTL1); s->ucgctl3 = I915_READ(GEN6_UCGCTL3); s->rcgctl1 = I915_READ(GEN6_RCGCTL1); s->rcgctl2 = I915_READ(GEN6_RCGCTL2); s->rstctl = I915_READ(GEN6_RSTCTL); s->misccpctl = I915_READ(GEN7_MISCCPCTL); /* GPM 0xA000-0xAA84, 0x8000-0x80FC */ s->gfxpause = I915_READ(GEN6_GFXPAUSE); s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC); s->rpdeuc = I915_READ(GEN6_RPDEUC); s->ecobus = I915_READ(ECOBUS); s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL); s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT); s->rp_deucsw = I915_READ(GEN6_RPDEUCSW); s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR); s->rcedata = I915_READ(VLV_RCEDATA); s->spare2gh = I915_READ(VLV_SPAREG2H); /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */ s->gt_imr = I915_READ(GTIMR); s->gt_ier = I915_READ(GTIER); s->pm_imr = I915_READ(GEN6_PMIMR); s->pm_ier = I915_READ(GEN6_PMIER); for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++) s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH_BASE + i * 4); /* GT SA CZ domain, 0x100000-0x138124 */ s->tilectl = I915_READ(TILECTL); s->gt_fifoctl = I915_READ(GTFIFOCTL); s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL); s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG); s->pmwgicz = I915_READ(VLV_PMWGICZ); /* Gunit-Display CZ domain, 0x182028-0x1821CF */ s->gu_ctl0 = I915_READ(VLV_GU_CTL0); s->gu_ctl1 = I915_READ(VLV_GU_CTL1); s->pcbr = I915_READ(VLV_PCBR); s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2); /* * Not saving any of: * DFT, 0x9800-0x9EC0 * SARB, 0xB000-0xB1FC * GAC, 0x5208-0x524C, 0x14000-0x14C000 * PCI CFG */ } static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv) { struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state; u32 val; int i; /* GAM 0x4000-0x4770 */ I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark); I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl); I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16)); I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0); I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1); for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++) I915_WRITE(GEN7_LRA_LIMITS_BASE + i * 4, s->lra_limits[i]); I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count); I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count); I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp); I915_WRITE(GAM_ECOCHK, s->ecochk); I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp); I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp); I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr); /* MBC 0x9024-0x91D0, 0x8500 */ I915_WRITE(VLV_G3DCTL, s->g3dctl); I915_WRITE(VLV_GSCKGCTL, s->gsckgctl); I915_WRITE(GEN6_MBCTL, s->mbctl); /* GCP 0x9400-0x9424, 0x8100-0x810C */ I915_WRITE(GEN6_UCGCTL1, s->ucgctl1); I915_WRITE(GEN6_UCGCTL3, s->ucgctl3); I915_WRITE(GEN6_RCGCTL1, s->rcgctl1); I915_WRITE(GEN6_RCGCTL2, s->rcgctl2); I915_WRITE(GEN6_RSTCTL, s->rstctl); I915_WRITE(GEN7_MISCCPCTL, s->misccpctl); /* GPM 0xA000-0xAA84, 0x8000-0x80FC */ I915_WRITE(GEN6_GFXPAUSE, s->gfxpause); I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc); I915_WRITE(GEN6_RPDEUC, s->rpdeuc); I915_WRITE(ECOBUS, s->ecobus); I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl); I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout); I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw); I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr); I915_WRITE(VLV_RCEDATA, s->rcedata); I915_WRITE(VLV_SPAREG2H, s->spare2gh); /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */ I915_WRITE(GTIMR, s->gt_imr); I915_WRITE(GTIER, s->gt_ier); I915_WRITE(GEN6_PMIMR, s->pm_imr); I915_WRITE(GEN6_PMIER, s->pm_ier); for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++) I915_WRITE(GEN7_GT_SCRATCH_BASE + i * 4, s->gt_scratch[i]); /* GT SA CZ domain, 0x100000-0x138124 */ I915_WRITE(TILECTL, s->tilectl); I915_WRITE(GTFIFOCTL, s->gt_fifoctl); /* * Preserve the GT allow wake and GFX force clock bit, they are not * be restored, as they are used to control the s0ix suspend/resume * sequence by the caller. */ val = I915_READ(VLV_GTLC_WAKE_CTRL); val &= VLV_GTLC_ALLOWWAKEREQ; val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ; I915_WRITE(VLV_GTLC_WAKE_CTRL, val); val = I915_READ(VLV_GTLC_SURVIVABILITY_REG); val &= VLV_GFX_CLK_FORCE_ON_BIT; val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT; I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val); I915_WRITE(VLV_PMWGICZ, s->pmwgicz); /* Gunit-Display CZ domain, 0x182028-0x1821CF */ I915_WRITE(VLV_GU_CTL0, s->gu_ctl0); I915_WRITE(VLV_GU_CTL1, s->gu_ctl1); I915_WRITE(VLV_PCBR, s->pcbr); I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2); } int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on) { u32 val; int err; #define COND (I915_READ(VLV_GTLC_SURVIVABILITY_REG) & VLV_GFX_CLK_STATUS_BIT) val = I915_READ(VLV_GTLC_SURVIVABILITY_REG); val &= ~VLV_GFX_CLK_FORCE_ON_BIT; if (force_on) val |= VLV_GFX_CLK_FORCE_ON_BIT; I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val); if (!force_on) return 0; err = wait_for(COND, 20); if (err) DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n", I915_READ(VLV_GTLC_SURVIVABILITY_REG)); return err; #undef COND } static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow) { u32 val; int err = 0; val = I915_READ(VLV_GTLC_WAKE_CTRL); val &= ~VLV_GTLC_ALLOWWAKEREQ; if (allow) val |= VLV_GTLC_ALLOWWAKEREQ; I915_WRITE(VLV_GTLC_WAKE_CTRL, val); POSTING_READ(VLV_GTLC_WAKE_CTRL); #define COND (!!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEACK) == \ allow) err = wait_for(COND, 1); if (err) DRM_ERROR("timeout disabling GT waking\n"); return err; #undef COND } static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv, bool wait_for_on) { u32 mask; u32 val; int err; mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK; val = wait_for_on ? mask : 0; #define COND ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val) if (COND) return 0; DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n", wait_for_on ? "on" : "off", I915_READ(VLV_GTLC_PW_STATUS)); /* * RC6 transitioning can be delayed up to 2 msec (see * valleyview_enable_rps), use 3 msec for safety. */ err = wait_for(COND, 3); if (err) DRM_ERROR("timeout waiting for GT wells to go %s\n", wait_for_on ? "on" : "off"); return err; #undef COND } static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv) { if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR)) return; DRM_ERROR("GT register access while GT waking disabled\n"); I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR); } static int vlv_suspend_complete(struct drm_i915_private *dev_priv) { u32 mask; int err; /* * Bspec defines the following GT well on flags as debug only, so * don't treat them as hard failures. */ (void)vlv_wait_for_gt_wells(dev_priv, false); mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS; WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask); vlv_check_no_gt_access(dev_priv); err = vlv_force_gfx_clock(dev_priv, true); if (err) goto err1; err = vlv_allow_gt_wake(dev_priv, false); if (err) goto err2; if (!IS_CHERRYVIEW(dev_priv->dev)) vlv_save_gunit_s0ix_state(dev_priv); err = vlv_force_gfx_clock(dev_priv, false); if (err) goto err2; return 0; err2: /* For safety always re-enable waking and disable gfx clock forcing */ vlv_allow_gt_wake(dev_priv, true); err1: vlv_force_gfx_clock(dev_priv, false); return err; } static int vlv_resume_prepare(struct drm_i915_private *dev_priv, bool rpm_resume) { struct drm_device *dev = dev_priv->dev; int err; int ret; /* * If any of the steps fail just try to continue, that's the best we * can do at this point. Return the first error code (which will also * leave RPM permanently disabled). */ ret = vlv_force_gfx_clock(dev_priv, true); if (!IS_CHERRYVIEW(dev_priv->dev)) vlv_restore_gunit_s0ix_state(dev_priv); err = vlv_allow_gt_wake(dev_priv, true); if (!ret) ret = err; err = vlv_force_gfx_clock(dev_priv, false); if (!ret) ret = err; vlv_check_no_gt_access(dev_priv); if (rpm_resume) { intel_init_clock_gating(dev); i915_gem_restore_fences(dev); } return ret; } static int intel_runtime_suspend(struct device *device) { struct pci_dev *pdev = to_pci_dev(device); struct drm_device *dev = pci_get_drvdata(pdev); struct drm_i915_private *dev_priv = dev->dev_private; int ret; if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6(dev)))) return -ENODEV; if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev))) return -ENODEV; DRM_DEBUG_KMS("Suspending device\n"); /* * We could deadlock here in case another thread holding struct_mutex * calls RPM suspend concurrently, since the RPM suspend will wait * first for this RPM suspend to finish. In this case the concurrent * RPM resume will be followed by its RPM suspend counterpart. Still * for consistency return -EAGAIN, which will reschedule this suspend. */ if (!mutex_trylock(&dev->struct_mutex)) { DRM_DEBUG_KMS("device lock contention, deffering suspend\n"); /* * Bump the expiration timestamp, otherwise the suspend won't * be rescheduled. */ pm_runtime_mark_last_busy(device); return -EAGAIN; } /* * We are safe here against re-faults, since the fault handler takes * an RPM reference. */ i915_gem_release_all_mmaps(dev_priv); mutex_unlock(&dev->struct_mutex); intel_suspend_gt_powersave(dev); intel_runtime_pm_disable_interrupts(dev_priv); ret = intel_suspend_complete(dev_priv); if (ret) { DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret); intel_runtime_pm_enable_interrupts(dev_priv); return ret; } cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); intel_uncore_forcewake_reset(dev, false); dev_priv->pm.suspended = true; /* * FIXME: We really should find a document that references the arguments * used below! */ if (IS_HASWELL(dev)) { /* * current versions of firmware which depend on this opregion * notification have repurposed the D1 definition to mean * "runtime suspended" vs. what you would normally expect (D3) * to distinguish it from notifications that might be sent via * the suspend path. */ intel_opregion_notify_adapter(dev, PCI_D1); } else { /* * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop * being detected, and the call we do at intel_runtime_resume() * won't be able to restore them. Since PCI_D3hot matches the * actual specification and appears to be working, use it. Let's * assume the other non-Haswell platforms will stay the same as * Broadwell. */ intel_opregion_notify_adapter(dev, PCI_D3hot); } assert_forcewakes_inactive(dev_priv); DRM_DEBUG_KMS("Device suspended\n"); return 0; } static int intel_runtime_resume(struct device *device) { struct pci_dev *pdev = to_pci_dev(device); struct drm_device *dev = pci_get_drvdata(pdev); struct drm_i915_private *dev_priv = dev->dev_private; int ret = 0; if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev))) return -ENODEV; DRM_DEBUG_KMS("Resuming device\n"); intel_opregion_notify_adapter(dev, PCI_D0); dev_priv->pm.suspended = false; if (IS_GEN6(dev_priv)) intel_init_pch_refclk(dev); else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) hsw_disable_pc8(dev_priv); else if (IS_VALLEYVIEW(dev_priv)) ret = vlv_resume_prepare(dev_priv, true); /* * No point of rolling back things in case of an error, as the best * we can do is to hope that things will still work (and disable RPM). */ i915_gem_init_swizzling(dev); gen6_update_ring_freq(dev); intel_runtime_pm_enable_interrupts(dev_priv); intel_enable_gt_powersave(dev); if (ret) DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret); else DRM_DEBUG_KMS("Device resumed\n"); return ret; } /* * This function implements common functionality of runtime and system * suspend sequence. */ static int intel_suspend_complete(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; int ret; if (IS_HASWELL(dev) || IS_BROADWELL(dev)) ret = hsw_suspend_complete(dev_priv); else if (IS_VALLEYVIEW(dev)) ret = vlv_suspend_complete(dev_priv); else ret = 0; return ret; } static const struct dev_pm_ops i915_pm_ops = { /* * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND, * PMSG_RESUME] */ .suspend = i915_pm_suspend, .suspend_late = i915_pm_suspend_late, .resume_early = i915_pm_resume_early, .resume = i915_pm_resume, /* * S4 event handlers * @freeze, @freeze_late : called (1) before creating the * hibernation image [PMSG_FREEZE] and * (2) after rebooting, before restoring * the image [PMSG_QUIESCE] * @thaw, @thaw_early : called (1) after creating the hibernation * image, before writing it [PMSG_THAW] * and (2) after failing to create or * restore the image [PMSG_RECOVER] * @poweroff, @poweroff_late: called after writing the hibernation * image, before rebooting [PMSG_HIBERNATE] * @restore, @restore_early : called after rebooting and restoring the * hibernation image [PMSG_RESTORE] */ .freeze = i915_pm_suspend, .freeze_late = i915_pm_suspend_late, .thaw_early = i915_pm_resume_early, .thaw = i915_pm_resume, .poweroff = i915_pm_suspend, .poweroff_late = i915_pm_poweroff_late, .restore_early = i915_pm_resume_early, .restore = i915_pm_resume, /* S0ix (via runtime suspend) event handlers */ .runtime_suspend = intel_runtime_suspend, .runtime_resume = intel_runtime_resume, }; static const struct vm_operations_struct i915_gem_vm_ops = { .fault = i915_gem_fault, .open = drm_gem_vm_open, .close = drm_gem_vm_close, }; static const struct file_operations i915_driver_fops = { .owner = THIS_MODULE, .open = drm_open, .release = drm_release, .unlocked_ioctl = drm_ioctl, .mmap = drm_gem_mmap, .poll = drm_poll, .read = drm_read, #ifdef CONFIG_COMPAT .compat_ioctl = i915_compat_ioctl, #endif .llseek = noop_llseek, }; static struct drm_driver driver = { /* Don't use MTRRs here; the Xserver or userspace app should * deal with them for Intel hardware. */ .driver_features = DRIVER_USE_AGP | DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME | DRIVER_RENDER, .load = i915_driver_load, .unload = i915_driver_unload, .open = i915_driver_open, .lastclose = i915_driver_lastclose, .preclose = i915_driver_preclose, .postclose = i915_driver_postclose, .set_busid = drm_pci_set_busid, /* Used in place of i915_pm_ops for non-DRIVER_MODESET */ .suspend = i915_suspend_legacy, .resume = i915_resume_legacy, .device_is_agp = i915_driver_device_is_agp, #if defined(CONFIG_DEBUG_FS) .debugfs_init = i915_debugfs_init, .debugfs_cleanup = i915_debugfs_cleanup, #endif .gem_free_object = i915_gem_free_object, .gem_vm_ops = &i915_gem_vm_ops, .prime_handle_to_fd = drm_gem_prime_handle_to_fd, .prime_fd_to_handle = drm_gem_prime_fd_to_handle, .gem_prime_export = i915_gem_prime_export, .gem_prime_import = i915_gem_prime_import, .dumb_create = i915_gem_dumb_create, .dumb_map_offset = i915_gem_mmap_gtt, .dumb_destroy = drm_gem_dumb_destroy, .ioctls = i915_ioctls, .fops = &i915_driver_fops, .name = DRIVER_NAME, .desc = DRIVER_DESC, .date = DRIVER_DATE, .major = DRIVER_MAJOR, .minor = DRIVER_MINOR, .patchlevel = DRIVER_PATCHLEVEL, }; static struct pci_driver i915_pci_driver = { .name = DRIVER_NAME, .id_table = pciidlist, .probe = i915_pci_probe, .remove = i915_pci_remove, .driver.pm = &i915_pm_ops, }; static int __init i915_init(void) { driver.num_ioctls = i915_max_ioctl; /* * If CONFIG_DRM_I915_KMS is set, default to KMS unless * explicitly disabled with the module pararmeter. * * Otherwise, just follow the parameter (defaulting to off). * * Allow optional vga_text_mode_force boot option to override * the default behavior. */ #if defined(CONFIG_DRM_I915_KMS) if (i915.modeset != 0) driver.driver_features |= DRIVER_MODESET; #endif if (i915.modeset == 1) driver.driver_features |= DRIVER_MODESET; #ifdef CONFIG_VGA_CONSOLE if (vgacon_text_force() && i915.modeset == -1) driver.driver_features &= ~DRIVER_MODESET; #endif if (!(driver.driver_features & DRIVER_MODESET)) { driver.get_vblank_timestamp = NULL; /* Silently fail loading to not upset userspace. */ DRM_DEBUG_DRIVER("KMS and UMS disabled.\n"); return 0; } /* * FIXME: Note that we're lying to the DRM core here so that we can get access * to the atomic ioctl and the atomic properties. Only plane operations on * a single CRTC will actually work. */ if (i915.nuclear_pageflip) driver.driver_features |= DRIVER_ATOMIC; return drm_pci_init(&driver, &i915_pci_driver); } static void __exit i915_exit(void) { if (!(driver.driver_features & DRIVER_MODESET)) return; /* Never loaded a driver. */ drm_pci_exit(&driver, &i915_pci_driver); } module_init(i915_init); module_exit(i915_exit); MODULE_AUTHOR("Tungsten Graphics, Inc."); MODULE_AUTHOR("Intel Corporation"); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL and additional rights");