/* * Copyright © 2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Shobhit Kumar <shobhit.kumar@intel.com> * Yogesh Mohan Marimuthu <yogesh.mohan.marimuthu@intel.com> */ #include <linux/kernel.h> #include "intel_drv.h" #include "i915_drv.h" #include "intel_dsi.h" #define DSI_HSS_PACKET_SIZE 4 #define DSI_HSE_PACKET_SIZE 4 #define DSI_HSA_PACKET_EXTRA_SIZE 6 #define DSI_HBP_PACKET_EXTRA_SIZE 6 #define DSI_HACTIVE_PACKET_EXTRA_SIZE 6 #define DSI_HFP_PACKET_EXTRA_SIZE 6 #define DSI_EOTP_PACKET_SIZE 4 struct dsi_mnp { u32 dsi_pll_ctrl; u32 dsi_pll_div; }; static const u32 lfsr_converts[] = { 426, 469, 234, 373, 442, 221, 110, 311, 411, /* 62 - 70 */ 461, 486, 243, 377, 188, 350, 175, 343, 427, 213, /* 71 - 80 */ 106, 53, 282, 397, 354, 227, 113, 56, 284, 142, /* 81 - 90 */ 71, 35 /* 91 - 92 */ }; #ifdef DSI_CLK_FROM_RR static u32 dsi_rr_formula(const struct drm_display_mode *mode, int pixel_format, int video_mode_format, int lane_count, bool eotp) { u32 bpp; u32 hactive, vactive, hfp, hsync, hbp, vfp, vsync, vbp; u32 hsync_bytes, hbp_bytes, hactive_bytes, hfp_bytes; u32 bytes_per_line, bytes_per_frame; u32 num_frames; u32 bytes_per_x_frames, bytes_per_x_frames_x_lanes; u32 dsi_bit_clock_hz; u32 dsi_clk; switch (pixel_format) { default: case VID_MODE_FORMAT_RGB888: case VID_MODE_FORMAT_RGB666_LOOSE: bpp = 24; break; case VID_MODE_FORMAT_RGB666: bpp = 18; break; case VID_MODE_FORMAT_RGB565: bpp = 16; break; } hactive = mode->hdisplay; vactive = mode->vdisplay; hfp = mode->hsync_start - mode->hdisplay; hsync = mode->hsync_end - mode->hsync_start; hbp = mode->htotal - mode->hsync_end; vfp = mode->vsync_start - mode->vdisplay; vsync = mode->vsync_end - mode->vsync_start; vbp = mode->vtotal - mode->vsync_end; hsync_bytes = DIV_ROUND_UP(hsync * bpp, 8); hbp_bytes = DIV_ROUND_UP(hbp * bpp, 8); hactive_bytes = DIV_ROUND_UP(hactive * bpp, 8); hfp_bytes = DIV_ROUND_UP(hfp * bpp, 8); bytes_per_line = DSI_HSS_PACKET_SIZE + hsync_bytes + DSI_HSA_PACKET_EXTRA_SIZE + DSI_HSE_PACKET_SIZE + hbp_bytes + DSI_HBP_PACKET_EXTRA_SIZE + hactive_bytes + DSI_HACTIVE_PACKET_EXTRA_SIZE + hfp_bytes + DSI_HFP_PACKET_EXTRA_SIZE; /* * XXX: Need to accurately calculate LP to HS transition timeout and add * it to bytes_per_line/bytes_per_frame. */ if (eotp && video_mode_format == VIDEO_MODE_BURST) bytes_per_line += DSI_EOTP_PACKET_SIZE; bytes_per_frame = vsync * bytes_per_line + vbp * bytes_per_line + vactive * bytes_per_line + vfp * bytes_per_line; if (eotp && (video_mode_format == VIDEO_MODE_NON_BURST_WITH_SYNC_PULSE || video_mode_format == VIDEO_MODE_NON_BURST_WITH_SYNC_EVENTS)) bytes_per_frame += DSI_EOTP_PACKET_SIZE; num_frames = drm_mode_vrefresh(mode); bytes_per_x_frames = num_frames * bytes_per_frame; bytes_per_x_frames_x_lanes = bytes_per_x_frames / lane_count; /* the dsi clock is divided by 2 in the hardware to get dsi ddr clock */ dsi_bit_clock_hz = bytes_per_x_frames_x_lanes * 8; dsi_clk = dsi_bit_clock_hz / 1000; if (eotp && video_mode_format == VIDEO_MODE_BURST) dsi_clk *= 2; return dsi_clk; } #else /* Get DSI clock from pixel clock */ static u32 dsi_clk_from_pclk(u32 pclk, int pixel_format, int lane_count) { u32 dsi_clk_khz; u32 bpp; switch (pixel_format) { default: case VID_MODE_FORMAT_RGB888: case VID_MODE_FORMAT_RGB666_LOOSE: bpp = 24; break; case VID_MODE_FORMAT_RGB666: bpp = 18; break; case VID_MODE_FORMAT_RGB565: bpp = 16; break; } /* DSI data rate = pixel clock * bits per pixel / lane count pixel clock is converted from KHz to Hz */ dsi_clk_khz = DIV_ROUND_CLOSEST(pclk * bpp, lane_count); return dsi_clk_khz; } #endif static int dsi_calc_mnp(u32 dsi_clk, struct dsi_mnp *dsi_mnp) { u32 m, n, p; u32 ref_clk; u32 error; u32 tmp_error; int target_dsi_clk; int calc_dsi_clk; u32 calc_m; u32 calc_p; u32 m_seed; /* dsi_clk is expected in KHZ */ if (dsi_clk < 300000 || dsi_clk > 1150000) { DRM_ERROR("DSI CLK Out of Range\n"); return -ECHRNG; } ref_clk = 25000; target_dsi_clk = dsi_clk; error = 0xFFFFFFFF; tmp_error = 0xFFFFFFFF; calc_m = 0; calc_p = 0; for (m = 62; m <= 92; m++) { for (p = 2; p <= 6; p++) { /* Find the optimal m and p divisors with minimal error +/- the required clock */ calc_dsi_clk = (m * ref_clk) / p; if (calc_dsi_clk == target_dsi_clk) { calc_m = m; calc_p = p; error = 0; break; } else tmp_error = abs(target_dsi_clk - calc_dsi_clk); if (tmp_error < error) { error = tmp_error; calc_m = m; calc_p = p; } } if (error == 0) break; } m_seed = lfsr_converts[calc_m - 62]; n = 1; dsi_mnp->dsi_pll_ctrl = 1 << (DSI_PLL_P1_POST_DIV_SHIFT + calc_p - 2); dsi_mnp->dsi_pll_div = (n - 1) << DSI_PLL_N1_DIV_SHIFT | m_seed << DSI_PLL_M1_DIV_SHIFT; return 0; } /* * XXX: The muxing and gating is hard coded for now. Need to add support for * sharing PLLs with two DSI outputs. */ static void vlv_configure_dsi_pll(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; struct intel_dsi *intel_dsi = enc_to_intel_dsi(&encoder->base); int ret; struct dsi_mnp dsi_mnp; u32 dsi_clk; dsi_clk = dsi_clk_from_pclk(intel_dsi->pclk, intel_dsi->pixel_format, intel_dsi->lane_count); ret = dsi_calc_mnp(dsi_clk, &dsi_mnp); if (ret) { DRM_DEBUG_KMS("dsi_calc_mnp failed\n"); return; } if (intel_dsi->ports & (1 << PORT_A)) dsi_mnp.dsi_pll_ctrl |= DSI_PLL_CLK_GATE_DSI0_DSIPLL; if (intel_dsi->ports & (1 << PORT_C)) dsi_mnp.dsi_pll_ctrl |= DSI_PLL_CLK_GATE_DSI1_DSIPLL; DRM_DEBUG_KMS("dsi pll div %08x, ctrl %08x\n", dsi_mnp.dsi_pll_div, dsi_mnp.dsi_pll_ctrl); vlv_cck_write(dev_priv, CCK_REG_DSI_PLL_CONTROL, 0); vlv_cck_write(dev_priv, CCK_REG_DSI_PLL_DIVIDER, dsi_mnp.dsi_pll_div); vlv_cck_write(dev_priv, CCK_REG_DSI_PLL_CONTROL, dsi_mnp.dsi_pll_ctrl); } void vlv_enable_dsi_pll(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; u32 tmp; DRM_DEBUG_KMS("\n"); mutex_lock(&dev_priv->dpio_lock); vlv_configure_dsi_pll(encoder); /* wait at least 0.5 us after ungating before enabling VCO */ usleep_range(1, 10); tmp = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); tmp |= DSI_PLL_VCO_EN; vlv_cck_write(dev_priv, CCK_REG_DSI_PLL_CONTROL, tmp); if (wait_for(vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL) & DSI_PLL_LOCK, 20)) { mutex_unlock(&dev_priv->dpio_lock); DRM_ERROR("DSI PLL lock failed\n"); return; } mutex_unlock(&dev_priv->dpio_lock); DRM_DEBUG_KMS("DSI PLL locked\n"); } void vlv_disable_dsi_pll(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; u32 tmp; DRM_DEBUG_KMS("\n"); mutex_lock(&dev_priv->dpio_lock); tmp = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); tmp &= ~DSI_PLL_VCO_EN; tmp |= DSI_PLL_LDO_GATE; vlv_cck_write(dev_priv, CCK_REG_DSI_PLL_CONTROL, tmp); mutex_unlock(&dev_priv->dpio_lock); } static void assert_bpp_mismatch(int pixel_format, int pipe_bpp) { int bpp; switch (pixel_format) { default: case VID_MODE_FORMAT_RGB888: case VID_MODE_FORMAT_RGB666_LOOSE: bpp = 24; break; case VID_MODE_FORMAT_RGB666: bpp = 18; break; case VID_MODE_FORMAT_RGB565: bpp = 16; break; } WARN(bpp != pipe_bpp, "bpp match assertion failure (expected %d, current %d)\n", bpp, pipe_bpp); } u32 vlv_get_dsi_pclk(struct intel_encoder *encoder, int pipe_bpp) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; struct intel_dsi *intel_dsi = enc_to_intel_dsi(&encoder->base); u32 dsi_clock, pclk; u32 pll_ctl, pll_div; u32 m = 0, p = 0; int refclk = 25000; int i; DRM_DEBUG_KMS("\n"); mutex_lock(&dev_priv->dpio_lock); pll_ctl = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); pll_div = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_DIVIDER); mutex_unlock(&dev_priv->dpio_lock); /* mask out other bits and extract the P1 divisor */ pll_ctl &= DSI_PLL_P1_POST_DIV_MASK; pll_ctl = pll_ctl >> (DSI_PLL_P1_POST_DIV_SHIFT - 2); /* mask out the other bits and extract the M1 divisor */ pll_div &= DSI_PLL_M1_DIV_MASK; pll_div = pll_div >> DSI_PLL_M1_DIV_SHIFT; while (pll_ctl) { pll_ctl = pll_ctl >> 1; p++; } p--; if (!p) { DRM_ERROR("wrong P1 divisor\n"); return 0; } for (i = 0; i < ARRAY_SIZE(lfsr_converts); i++) { if (lfsr_converts[i] == pll_div) break; } if (i == ARRAY_SIZE(lfsr_converts)) { DRM_ERROR("wrong m_seed programmed\n"); return 0; } m = i + 62; dsi_clock = (m * refclk) / p; /* pixel_format and pipe_bpp should agree */ assert_bpp_mismatch(intel_dsi->pixel_format, pipe_bpp); pclk = DIV_ROUND_CLOSEST(dsi_clock * intel_dsi->lane_count, pipe_bpp); return pclk; }