/* * Copyright (c) 2015, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/gpio.h> #include <linux/interrupt.h> #include <linux/of_device.h> #include <linux/of_gpio.h> #include <linux/of_irq.h> #include <linux/regulator/consumer.h> #include <linux/spinlock.h> #include <video/mipi_display.h> #include "dsi.h" #include "dsi.xml.h" #define MSM_DSI_VER_MAJOR_V2 0x02 #define MSM_DSI_VER_MAJOR_6G 0x03 #define MSM_DSI_6G_VER_MINOR_V1_0 0x10000000 #define MSM_DSI_6G_VER_MINOR_V1_1 0x10010000 #define MSM_DSI_6G_VER_MINOR_V1_1_1 0x10010001 #define MSM_DSI_6G_VER_MINOR_V1_2 0x10020000 #define MSM_DSI_6G_VER_MINOR_V1_3_1 0x10030001 #define DSI_6G_REG_SHIFT 4 #define DSI_REGULATOR_MAX 8 struct dsi_reg_entry { char name[32]; int min_voltage; int max_voltage; int enable_load; int disable_load; }; struct dsi_reg_config { int num; struct dsi_reg_entry regs[DSI_REGULATOR_MAX]; }; struct dsi_config { u32 major; u32 minor; u32 io_offset; enum msm_dsi_phy_type phy_type; struct dsi_reg_config reg_cfg; }; static const struct dsi_config dsi_cfgs[] = { {MSM_DSI_VER_MAJOR_V2, 0, 0, MSM_DSI_PHY_UNKNOWN}, { /* 8974 v1 */ .major = MSM_DSI_VER_MAJOR_6G, .minor = MSM_DSI_6G_VER_MINOR_V1_0, .io_offset = DSI_6G_REG_SHIFT, .phy_type = MSM_DSI_PHY_28NM, .reg_cfg = { .num = 4, .regs = { {"gdsc", -1, -1, -1, -1}, {"vdd", 3000000, 3000000, 150000, 100}, {"vdda", 1200000, 1200000, 100000, 100}, {"vddio", 1800000, 1800000, 100000, 100}, }, }, }, { /* 8974 v2 */ .major = MSM_DSI_VER_MAJOR_6G, .minor = MSM_DSI_6G_VER_MINOR_V1_1, .io_offset = DSI_6G_REG_SHIFT, .phy_type = MSM_DSI_PHY_28NM, .reg_cfg = { .num = 4, .regs = { {"gdsc", -1, -1, -1, -1}, {"vdd", 3000000, 3000000, 150000, 100}, {"vdda", 1200000, 1200000, 100000, 100}, {"vddio", 1800000, 1800000, 100000, 100}, }, }, }, { /* 8974 v3 */ .major = MSM_DSI_VER_MAJOR_6G, .minor = MSM_DSI_6G_VER_MINOR_V1_1_1, .io_offset = DSI_6G_REG_SHIFT, .phy_type = MSM_DSI_PHY_28NM, .reg_cfg = { .num = 4, .regs = { {"gdsc", -1, -1, -1, -1}, {"vdd", 3000000, 3000000, 150000, 100}, {"vdda", 1200000, 1200000, 100000, 100}, {"vddio", 1800000, 1800000, 100000, 100}, }, }, }, { /* 8084 */ .major = MSM_DSI_VER_MAJOR_6G, .minor = MSM_DSI_6G_VER_MINOR_V1_2, .io_offset = DSI_6G_REG_SHIFT, .phy_type = MSM_DSI_PHY_28NM, .reg_cfg = { .num = 4, .regs = { {"gdsc", -1, -1, -1, -1}, {"vdd", 3000000, 3000000, 150000, 100}, {"vdda", 1200000, 1200000, 100000, 100}, {"vddio", 1800000, 1800000, 100000, 100}, }, }, }, { /* 8916 */ .major = MSM_DSI_VER_MAJOR_6G, .minor = MSM_DSI_6G_VER_MINOR_V1_3_1, .io_offset = DSI_6G_REG_SHIFT, .phy_type = MSM_DSI_PHY_28NM, .reg_cfg = { .num = 4, .regs = { {"gdsc", -1, -1, -1, -1}, {"vdd", 2850000, 2850000, 100000, 100}, {"vdda", 1200000, 1200000, 100000, 100}, {"vddio", 1800000, 1800000, 100000, 100}, }, }, }, }; static int dsi_get_version(const void __iomem *base, u32 *major, u32 *minor) { u32 ver; u32 ver_6g; if (!major || !minor) return -EINVAL; /* From DSI6G(v3), addition of a 6G_HW_VERSION register at offset 0 * makes all other registers 4-byte shifted down. */ ver_6g = msm_readl(base + REG_DSI_6G_HW_VERSION); if (ver_6g == 0) { ver = msm_readl(base + REG_DSI_VERSION); ver = FIELD(ver, DSI_VERSION_MAJOR); if (ver <= MSM_DSI_VER_MAJOR_V2) { /* old versions */ *major = ver; *minor = 0; return 0; } else { return -EINVAL; } } else { ver = msm_readl(base + DSI_6G_REG_SHIFT + REG_DSI_VERSION); ver = FIELD(ver, DSI_VERSION_MAJOR); if (ver == MSM_DSI_VER_MAJOR_6G) { /* 6G version */ *major = ver; *minor = ver_6g; return 0; } else { return -EINVAL; } } } #define DSI_ERR_STATE_ACK 0x0000 #define DSI_ERR_STATE_TIMEOUT 0x0001 #define DSI_ERR_STATE_DLN0_PHY 0x0002 #define DSI_ERR_STATE_FIFO 0x0004 #define DSI_ERR_STATE_MDP_FIFO_UNDERFLOW 0x0008 #define DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION 0x0010 #define DSI_ERR_STATE_PLL_UNLOCKED 0x0020 #define DSI_CLK_CTRL_ENABLE_CLKS \ (DSI_CLK_CTRL_AHBS_HCLK_ON | DSI_CLK_CTRL_AHBM_SCLK_ON | \ DSI_CLK_CTRL_PCLK_ON | DSI_CLK_CTRL_DSICLK_ON | \ DSI_CLK_CTRL_BYTECLK_ON | DSI_CLK_CTRL_ESCCLK_ON | \ DSI_CLK_CTRL_FORCE_ON_DYN_AHBM_HCLK) struct msm_dsi_host { struct mipi_dsi_host base; struct platform_device *pdev; struct drm_device *dev; int id; void __iomem *ctrl_base; struct regulator_bulk_data supplies[DSI_REGULATOR_MAX]; struct clk *mdp_core_clk; struct clk *ahb_clk; struct clk *axi_clk; struct clk *mmss_misc_ahb_clk; struct clk *byte_clk; struct clk *esc_clk; struct clk *pixel_clk; u32 byte_clk_rate; struct gpio_desc *disp_en_gpio; struct gpio_desc *te_gpio; const struct dsi_config *cfg; struct completion dma_comp; struct completion video_comp; struct mutex dev_mutex; struct mutex cmd_mutex; struct mutex clk_mutex; spinlock_t intr_lock; /* Protect interrupt ctrl register */ u32 err_work_state; struct work_struct err_work; struct workqueue_struct *workqueue; struct drm_gem_object *tx_gem_obj; u8 *rx_buf; struct drm_display_mode *mode; /* Panel info */ struct device_node *panel_node; unsigned int channel; unsigned int lanes; enum mipi_dsi_pixel_format format; unsigned long mode_flags; u32 dma_cmd_ctrl_restore; bool registered; bool power_on; int irq; }; static u32 dsi_get_bpp(const enum mipi_dsi_pixel_format fmt) { switch (fmt) { case MIPI_DSI_FMT_RGB565: return 16; case MIPI_DSI_FMT_RGB666_PACKED: return 18; case MIPI_DSI_FMT_RGB666: case MIPI_DSI_FMT_RGB888: default: return 24; } } static inline u32 dsi_read(struct msm_dsi_host *msm_host, u32 reg) { return msm_readl(msm_host->ctrl_base + msm_host->cfg->io_offset + reg); } static inline void dsi_write(struct msm_dsi_host *msm_host, u32 reg, u32 data) { msm_writel(data, msm_host->ctrl_base + msm_host->cfg->io_offset + reg); } static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host); static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host); static const struct dsi_config *dsi_get_config(struct msm_dsi_host *msm_host) { const struct dsi_config *cfg; struct regulator *gdsc_reg; int i, ret; u32 major = 0, minor = 0; gdsc_reg = regulator_get(&msm_host->pdev->dev, "gdsc"); if (IS_ERR_OR_NULL(gdsc_reg)) { pr_err("%s: cannot get gdsc\n", __func__); goto fail; } ret = regulator_enable(gdsc_reg); if (ret) { pr_err("%s: unable to enable gdsc\n", __func__); regulator_put(gdsc_reg); goto fail; } ret = clk_prepare_enable(msm_host->ahb_clk); if (ret) { pr_err("%s: unable to enable ahb_clk\n", __func__); regulator_disable(gdsc_reg); regulator_put(gdsc_reg); goto fail; } ret = dsi_get_version(msm_host->ctrl_base, &major, &minor); clk_disable_unprepare(msm_host->ahb_clk); regulator_disable(gdsc_reg); regulator_put(gdsc_reg); if (ret) { pr_err("%s: Invalid version\n", __func__); goto fail; } for (i = 0; i < ARRAY_SIZE(dsi_cfgs); i++) { cfg = dsi_cfgs + i; if ((cfg->major == major) && (cfg->minor == minor)) return cfg; } pr_err("%s: Version %x:%x not support\n", __func__, major, minor); fail: return NULL; } static inline struct msm_dsi_host *to_msm_dsi_host(struct mipi_dsi_host *host) { return container_of(host, struct msm_dsi_host, base); } static void dsi_host_regulator_disable(struct msm_dsi_host *msm_host) { struct regulator_bulk_data *s = msm_host->supplies; const struct dsi_reg_entry *regs = msm_host->cfg->reg_cfg.regs; int num = msm_host->cfg->reg_cfg.num; int i; DBG(""); for (i = num - 1; i >= 0; i--) if (regs[i].disable_load >= 0) regulator_set_load(s[i].consumer, regs[i].disable_load); regulator_bulk_disable(num, s); } static int dsi_host_regulator_enable(struct msm_dsi_host *msm_host) { struct regulator_bulk_data *s = msm_host->supplies; const struct dsi_reg_entry *regs = msm_host->cfg->reg_cfg.regs; int num = msm_host->cfg->reg_cfg.num; int ret, i; DBG(""); for (i = 0; i < num; i++) { if (regs[i].enable_load >= 0) { ret = regulator_set_load(s[i].consumer, regs[i].enable_load); if (ret < 0) { pr_err("regulator %d set op mode failed, %d\n", i, ret); goto fail; } } } ret = regulator_bulk_enable(num, s); if (ret < 0) { pr_err("regulator enable failed, %d\n", ret); goto fail; } return 0; fail: for (i--; i >= 0; i--) regulator_set_load(s[i].consumer, regs[i].disable_load); return ret; } static int dsi_regulator_init(struct msm_dsi_host *msm_host) { struct regulator_bulk_data *s = msm_host->supplies; const struct dsi_reg_entry *regs = msm_host->cfg->reg_cfg.regs; int num = msm_host->cfg->reg_cfg.num; int i, ret; for (i = 0; i < num; i++) s[i].supply = regs[i].name; ret = devm_regulator_bulk_get(&msm_host->pdev->dev, num, s); if (ret < 0) { pr_err("%s: failed to init regulator, ret=%d\n", __func__, ret); return ret; } for (i = 0; i < num; i++) { if ((regs[i].min_voltage >= 0) && (regs[i].max_voltage >= 0)) { ret = regulator_set_voltage(s[i].consumer, regs[i].min_voltage, regs[i].max_voltage); if (ret < 0) { pr_err("regulator %d set voltage failed, %d\n", i, ret); return ret; } } } return 0; } static int dsi_clk_init(struct msm_dsi_host *msm_host) { struct device *dev = &msm_host->pdev->dev; int ret = 0; msm_host->mdp_core_clk = devm_clk_get(dev, "mdp_core_clk"); if (IS_ERR(msm_host->mdp_core_clk)) { ret = PTR_ERR(msm_host->mdp_core_clk); pr_err("%s: Unable to get mdp core clk. ret=%d\n", __func__, ret); goto exit; } msm_host->ahb_clk = devm_clk_get(dev, "iface_clk"); if (IS_ERR(msm_host->ahb_clk)) { ret = PTR_ERR(msm_host->ahb_clk); pr_err("%s: Unable to get mdss ahb clk. ret=%d\n", __func__, ret); goto exit; } msm_host->axi_clk = devm_clk_get(dev, "bus_clk"); if (IS_ERR(msm_host->axi_clk)) { ret = PTR_ERR(msm_host->axi_clk); pr_err("%s: Unable to get axi bus clk. ret=%d\n", __func__, ret); goto exit; } msm_host->mmss_misc_ahb_clk = devm_clk_get(dev, "core_mmss_clk"); if (IS_ERR(msm_host->mmss_misc_ahb_clk)) { ret = PTR_ERR(msm_host->mmss_misc_ahb_clk); pr_err("%s: Unable to get mmss misc ahb clk. ret=%d\n", __func__, ret); goto exit; } msm_host->byte_clk = devm_clk_get(dev, "byte_clk"); if (IS_ERR(msm_host->byte_clk)) { ret = PTR_ERR(msm_host->byte_clk); pr_err("%s: can't find dsi_byte_clk. ret=%d\n", __func__, ret); msm_host->byte_clk = NULL; goto exit; } msm_host->pixel_clk = devm_clk_get(dev, "pixel_clk"); if (IS_ERR(msm_host->pixel_clk)) { ret = PTR_ERR(msm_host->pixel_clk); pr_err("%s: can't find dsi_pixel_clk. ret=%d\n", __func__, ret); msm_host->pixel_clk = NULL; goto exit; } msm_host->esc_clk = devm_clk_get(dev, "core_clk"); if (IS_ERR(msm_host->esc_clk)) { ret = PTR_ERR(msm_host->esc_clk); pr_err("%s: can't find dsi_esc_clk. ret=%d\n", __func__, ret); msm_host->esc_clk = NULL; goto exit; } exit: return ret; } static int dsi_bus_clk_enable(struct msm_dsi_host *msm_host) { int ret; DBG("id=%d", msm_host->id); ret = clk_prepare_enable(msm_host->mdp_core_clk); if (ret) { pr_err("%s: failed to enable mdp_core_clock, %d\n", __func__, ret); goto core_clk_err; } ret = clk_prepare_enable(msm_host->ahb_clk); if (ret) { pr_err("%s: failed to enable ahb clock, %d\n", __func__, ret); goto ahb_clk_err; } ret = clk_prepare_enable(msm_host->axi_clk); if (ret) { pr_err("%s: failed to enable ahb clock, %d\n", __func__, ret); goto axi_clk_err; } ret = clk_prepare_enable(msm_host->mmss_misc_ahb_clk); if (ret) { pr_err("%s: failed to enable mmss misc ahb clk, %d\n", __func__, ret); goto misc_ahb_clk_err; } return 0; misc_ahb_clk_err: clk_disable_unprepare(msm_host->axi_clk); axi_clk_err: clk_disable_unprepare(msm_host->ahb_clk); ahb_clk_err: clk_disable_unprepare(msm_host->mdp_core_clk); core_clk_err: return ret; } static void dsi_bus_clk_disable(struct msm_dsi_host *msm_host) { DBG(""); clk_disable_unprepare(msm_host->mmss_misc_ahb_clk); clk_disable_unprepare(msm_host->axi_clk); clk_disable_unprepare(msm_host->ahb_clk); clk_disable_unprepare(msm_host->mdp_core_clk); } static int dsi_link_clk_enable(struct msm_dsi_host *msm_host) { int ret; DBG("Set clk rates: pclk=%d, byteclk=%d", msm_host->mode->clock, msm_host->byte_clk_rate); ret = clk_set_rate(msm_host->byte_clk, msm_host->byte_clk_rate); if (ret) { pr_err("%s: Failed to set rate byte clk, %d\n", __func__, ret); goto error; } ret = clk_set_rate(msm_host->pixel_clk, msm_host->mode->clock * 1000); if (ret) { pr_err("%s: Failed to set rate pixel clk, %d\n", __func__, ret); goto error; } ret = clk_prepare_enable(msm_host->esc_clk); if (ret) { pr_err("%s: Failed to enable dsi esc clk\n", __func__); goto error; } ret = clk_prepare_enable(msm_host->byte_clk); if (ret) { pr_err("%s: Failed to enable dsi byte clk\n", __func__); goto byte_clk_err; } ret = clk_prepare_enable(msm_host->pixel_clk); if (ret) { pr_err("%s: Failed to enable dsi pixel clk\n", __func__); goto pixel_clk_err; } return 0; pixel_clk_err: clk_disable_unprepare(msm_host->byte_clk); byte_clk_err: clk_disable_unprepare(msm_host->esc_clk); error: return ret; } static void dsi_link_clk_disable(struct msm_dsi_host *msm_host) { clk_disable_unprepare(msm_host->esc_clk); clk_disable_unprepare(msm_host->pixel_clk); clk_disable_unprepare(msm_host->byte_clk); } static int dsi_clk_ctrl(struct msm_dsi_host *msm_host, bool enable) { int ret = 0; mutex_lock(&msm_host->clk_mutex); if (enable) { ret = dsi_bus_clk_enable(msm_host); if (ret) { pr_err("%s: Can not enable bus clk, %d\n", __func__, ret); goto unlock_ret; } ret = dsi_link_clk_enable(msm_host); if (ret) { pr_err("%s: Can not enable link clk, %d\n", __func__, ret); dsi_bus_clk_disable(msm_host); goto unlock_ret; } } else { dsi_link_clk_disable(msm_host); dsi_bus_clk_disable(msm_host); } unlock_ret: mutex_unlock(&msm_host->clk_mutex); return ret; } static int dsi_calc_clk_rate(struct msm_dsi_host *msm_host) { struct drm_display_mode *mode = msm_host->mode; u8 lanes = msm_host->lanes; u32 bpp = dsi_get_bpp(msm_host->format); u32 pclk_rate; if (!mode) { pr_err("%s: mode not set\n", __func__); return -EINVAL; } pclk_rate = mode->clock * 1000; if (lanes > 0) { msm_host->byte_clk_rate = (pclk_rate * bpp) / (8 * lanes); } else { pr_err("%s: forcing mdss_dsi lanes to 1\n", __func__); msm_host->byte_clk_rate = (pclk_rate * bpp) / 8; } DBG("pclk=%d, bclk=%d", pclk_rate, msm_host->byte_clk_rate); return 0; } static void dsi_phy_sw_reset(struct msm_dsi_host *msm_host) { DBG(""); dsi_write(msm_host, REG_DSI_PHY_RESET, DSI_PHY_RESET_RESET); /* Make sure fully reset */ wmb(); udelay(1000); dsi_write(msm_host, REG_DSI_PHY_RESET, 0); udelay(100); } static void dsi_intr_ctrl(struct msm_dsi_host *msm_host, u32 mask, int enable) { u32 intr; unsigned long flags; spin_lock_irqsave(&msm_host->intr_lock, flags); intr = dsi_read(msm_host, REG_DSI_INTR_CTRL); if (enable) intr |= mask; else intr &= ~mask; DBG("intr=%x enable=%d", intr, enable); dsi_write(msm_host, REG_DSI_INTR_CTRL, intr); spin_unlock_irqrestore(&msm_host->intr_lock, flags); } static inline enum dsi_traffic_mode dsi_get_traffic_mode(const u32 mode_flags) { if (mode_flags & MIPI_DSI_MODE_VIDEO_BURST) return BURST_MODE; else if (mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) return NON_BURST_SYNCH_PULSE; return NON_BURST_SYNCH_EVENT; } static inline enum dsi_vid_dst_format dsi_get_vid_fmt( const enum mipi_dsi_pixel_format mipi_fmt) { switch (mipi_fmt) { case MIPI_DSI_FMT_RGB888: return VID_DST_FORMAT_RGB888; case MIPI_DSI_FMT_RGB666: return VID_DST_FORMAT_RGB666_LOOSE; case MIPI_DSI_FMT_RGB666_PACKED: return VID_DST_FORMAT_RGB666; case MIPI_DSI_FMT_RGB565: return VID_DST_FORMAT_RGB565; default: return VID_DST_FORMAT_RGB888; } } static inline enum dsi_cmd_dst_format dsi_get_cmd_fmt( const enum mipi_dsi_pixel_format mipi_fmt) { switch (mipi_fmt) { case MIPI_DSI_FMT_RGB888: return CMD_DST_FORMAT_RGB888; case MIPI_DSI_FMT_RGB666_PACKED: case MIPI_DSI_FMT_RGB666: return VID_DST_FORMAT_RGB666; case MIPI_DSI_FMT_RGB565: return CMD_DST_FORMAT_RGB565; default: return CMD_DST_FORMAT_RGB888; } } static void dsi_ctrl_config(struct msm_dsi_host *msm_host, bool enable, u32 clk_pre, u32 clk_post) { u32 flags = msm_host->mode_flags; enum mipi_dsi_pixel_format mipi_fmt = msm_host->format; u32 data = 0; if (!enable) { dsi_write(msm_host, REG_DSI_CTRL, 0); return; } if (flags & MIPI_DSI_MODE_VIDEO) { if (flags & MIPI_DSI_MODE_VIDEO_HSE) data |= DSI_VID_CFG0_PULSE_MODE_HSA_HE; if (flags & MIPI_DSI_MODE_VIDEO_HFP) data |= DSI_VID_CFG0_HFP_POWER_STOP; if (flags & MIPI_DSI_MODE_VIDEO_HBP) data |= DSI_VID_CFG0_HBP_POWER_STOP; if (flags & MIPI_DSI_MODE_VIDEO_HSA) data |= DSI_VID_CFG0_HSA_POWER_STOP; /* Always set low power stop mode for BLLP * to let command engine send packets */ data |= DSI_VID_CFG0_EOF_BLLP_POWER_STOP | DSI_VID_CFG0_BLLP_POWER_STOP; data |= DSI_VID_CFG0_TRAFFIC_MODE(dsi_get_traffic_mode(flags)); data |= DSI_VID_CFG0_DST_FORMAT(dsi_get_vid_fmt(mipi_fmt)); data |= DSI_VID_CFG0_VIRT_CHANNEL(msm_host->channel); dsi_write(msm_host, REG_DSI_VID_CFG0, data); /* Do not swap RGB colors */ data = DSI_VID_CFG1_RGB_SWAP(SWAP_RGB); dsi_write(msm_host, REG_DSI_VID_CFG1, 0); } else { /* Do not swap RGB colors */ data = DSI_CMD_CFG0_RGB_SWAP(SWAP_RGB); data |= DSI_CMD_CFG0_DST_FORMAT(dsi_get_cmd_fmt(mipi_fmt)); dsi_write(msm_host, REG_DSI_CMD_CFG0, data); data = DSI_CMD_CFG1_WR_MEM_START(MIPI_DCS_WRITE_MEMORY_START) | DSI_CMD_CFG1_WR_MEM_CONTINUE( MIPI_DCS_WRITE_MEMORY_CONTINUE); /* Always insert DCS command */ data |= DSI_CMD_CFG1_INSERT_DCS_COMMAND; dsi_write(msm_host, REG_DSI_CMD_CFG1, data); } dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, DSI_CMD_DMA_CTRL_FROM_FRAME_BUFFER | DSI_CMD_DMA_CTRL_LOW_POWER); data = 0; /* Always assume dedicated TE pin */ data |= DSI_TRIG_CTRL_TE; data |= DSI_TRIG_CTRL_MDP_TRIGGER(TRIGGER_NONE); data |= DSI_TRIG_CTRL_DMA_TRIGGER(TRIGGER_SW); data |= DSI_TRIG_CTRL_STREAM(msm_host->channel); if ((msm_host->cfg->major == MSM_DSI_VER_MAJOR_6G) && (msm_host->cfg->minor >= MSM_DSI_6G_VER_MINOR_V1_2)) data |= DSI_TRIG_CTRL_BLOCK_DMA_WITHIN_FRAME; dsi_write(msm_host, REG_DSI_TRIG_CTRL, data); data = DSI_CLKOUT_TIMING_CTRL_T_CLK_POST(clk_post) | DSI_CLKOUT_TIMING_CTRL_T_CLK_PRE(clk_pre); dsi_write(msm_host, REG_DSI_CLKOUT_TIMING_CTRL, data); data = 0; if (!(flags & MIPI_DSI_MODE_EOT_PACKET)) data |= DSI_EOT_PACKET_CTRL_TX_EOT_APPEND; dsi_write(msm_host, REG_DSI_EOT_PACKET_CTRL, data); /* allow only ack-err-status to generate interrupt */ dsi_write(msm_host, REG_DSI_ERR_INT_MASK0, 0x13ff3fe0); dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); data = DSI_CTRL_CLK_EN; DBG("lane number=%d", msm_host->lanes); if (msm_host->lanes == 2) { data |= DSI_CTRL_LANE1 | DSI_CTRL_LANE2; /* swap lanes for 2-lane panel for better performance */ dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL, DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(LANE_SWAP_1230)); } else { /* Take 4 lanes as default */ data |= DSI_CTRL_LANE0 | DSI_CTRL_LANE1 | DSI_CTRL_LANE2 | DSI_CTRL_LANE3; /* Do not swap lanes for 4-lane panel */ dsi_write(msm_host, REG_DSI_LANE_SWAP_CTRL, DSI_LANE_SWAP_CTRL_DLN_SWAP_SEL(LANE_SWAP_0123)); } data |= DSI_CTRL_ENABLE; dsi_write(msm_host, REG_DSI_CTRL, data); } static void dsi_timing_setup(struct msm_dsi_host *msm_host) { struct drm_display_mode *mode = msm_host->mode; u32 hs_start = 0, vs_start = 0; /* take sync start as 0 */ u32 h_total = mode->htotal; u32 v_total = mode->vtotal; u32 hs_end = mode->hsync_end - mode->hsync_start; u32 vs_end = mode->vsync_end - mode->vsync_start; u32 ha_start = h_total - mode->hsync_start; u32 ha_end = ha_start + mode->hdisplay; u32 va_start = v_total - mode->vsync_start; u32 va_end = va_start + mode->vdisplay; u32 wc; DBG(""); if (msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) { dsi_write(msm_host, REG_DSI_ACTIVE_H, DSI_ACTIVE_H_START(ha_start) | DSI_ACTIVE_H_END(ha_end)); dsi_write(msm_host, REG_DSI_ACTIVE_V, DSI_ACTIVE_V_START(va_start) | DSI_ACTIVE_V_END(va_end)); dsi_write(msm_host, REG_DSI_TOTAL, DSI_TOTAL_H_TOTAL(h_total - 1) | DSI_TOTAL_V_TOTAL(v_total - 1)); dsi_write(msm_host, REG_DSI_ACTIVE_HSYNC, DSI_ACTIVE_HSYNC_START(hs_start) | DSI_ACTIVE_HSYNC_END(hs_end)); dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_HPOS, 0); dsi_write(msm_host, REG_DSI_ACTIVE_VSYNC_VPOS, DSI_ACTIVE_VSYNC_VPOS_START(vs_start) | DSI_ACTIVE_VSYNC_VPOS_END(vs_end)); } else { /* command mode */ /* image data and 1 byte write_memory_start cmd */ wc = mode->hdisplay * dsi_get_bpp(msm_host->format) / 8 + 1; dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_CTRL, DSI_CMD_MDP_STREAM_CTRL_WORD_COUNT(wc) | DSI_CMD_MDP_STREAM_CTRL_VIRTUAL_CHANNEL( msm_host->channel) | DSI_CMD_MDP_STREAM_CTRL_DATA_TYPE( MIPI_DSI_DCS_LONG_WRITE)); dsi_write(msm_host, REG_DSI_CMD_MDP_STREAM_TOTAL, DSI_CMD_MDP_STREAM_TOTAL_H_TOTAL(mode->hdisplay) | DSI_CMD_MDP_STREAM_TOTAL_V_TOTAL(mode->vdisplay)); } } static void dsi_sw_reset(struct msm_dsi_host *msm_host) { dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); wmb(); /* clocks need to be enabled before reset */ dsi_write(msm_host, REG_DSI_RESET, 1); wmb(); /* make sure reset happen */ dsi_write(msm_host, REG_DSI_RESET, 0); } static void dsi_op_mode_config(struct msm_dsi_host *msm_host, bool video_mode, bool enable) { u32 dsi_ctrl; dsi_ctrl = dsi_read(msm_host, REG_DSI_CTRL); if (!enable) { dsi_ctrl &= ~(DSI_CTRL_ENABLE | DSI_CTRL_VID_MODE_EN | DSI_CTRL_CMD_MODE_EN); dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE | DSI_IRQ_MASK_VIDEO_DONE, 0); } else { if (video_mode) { dsi_ctrl |= DSI_CTRL_VID_MODE_EN; } else { /* command mode */ dsi_ctrl |= DSI_CTRL_CMD_MODE_EN; dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_MDP_DONE, 1); } dsi_ctrl |= DSI_CTRL_ENABLE; } dsi_write(msm_host, REG_DSI_CTRL, dsi_ctrl); } static void dsi_set_tx_power_mode(int mode, struct msm_dsi_host *msm_host) { u32 data; data = dsi_read(msm_host, REG_DSI_CMD_DMA_CTRL); if (mode == 0) data &= ~DSI_CMD_DMA_CTRL_LOW_POWER; else data |= DSI_CMD_DMA_CTRL_LOW_POWER; dsi_write(msm_host, REG_DSI_CMD_DMA_CTRL, data); } static void dsi_wait4video_done(struct msm_dsi_host *msm_host) { dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 1); reinit_completion(&msm_host->video_comp); wait_for_completion_timeout(&msm_host->video_comp, msecs_to_jiffies(70)); dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_VIDEO_DONE, 0); } static void dsi_wait4video_eng_busy(struct msm_dsi_host *msm_host) { if (!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO)) return; if (msm_host->power_on) { dsi_wait4video_done(msm_host); /* delay 4 ms to skip BLLP */ usleep_range(2000, 4000); } } /* dsi_cmd */ static int dsi_tx_buf_alloc(struct msm_dsi_host *msm_host, int size) { struct drm_device *dev = msm_host->dev; int ret; u32 iova; mutex_lock(&dev->struct_mutex); msm_host->tx_gem_obj = msm_gem_new(dev, size, MSM_BO_UNCACHED); if (IS_ERR(msm_host->tx_gem_obj)) { ret = PTR_ERR(msm_host->tx_gem_obj); pr_err("%s: failed to allocate gem, %d\n", __func__, ret); msm_host->tx_gem_obj = NULL; mutex_unlock(&dev->struct_mutex); return ret; } ret = msm_gem_get_iova_locked(msm_host->tx_gem_obj, 0, &iova); if (ret) { pr_err("%s: failed to get iova, %d\n", __func__, ret); return ret; } mutex_unlock(&dev->struct_mutex); if (iova & 0x07) { pr_err("%s: buf NOT 8 bytes aligned\n", __func__); return -EINVAL; } return 0; } static void dsi_tx_buf_free(struct msm_dsi_host *msm_host) { struct drm_device *dev = msm_host->dev; if (msm_host->tx_gem_obj) { msm_gem_put_iova(msm_host->tx_gem_obj, 0); mutex_lock(&dev->struct_mutex); msm_gem_free_object(msm_host->tx_gem_obj); msm_host->tx_gem_obj = NULL; mutex_unlock(&dev->struct_mutex); } } /* * prepare cmd buffer to be txed */ static int dsi_cmd_dma_add(struct drm_gem_object *tx_gem, const struct mipi_dsi_msg *msg) { struct mipi_dsi_packet packet; int len; int ret; u8 *data; ret = mipi_dsi_create_packet(&packet, msg); if (ret) { pr_err("%s: create packet failed, %d\n", __func__, ret); return ret; } len = (packet.size + 3) & (~0x3); if (len > tx_gem->size) { pr_err("%s: packet size is too big\n", __func__); return -EINVAL; } data = msm_gem_vaddr(tx_gem); if (IS_ERR(data)) { ret = PTR_ERR(data); pr_err("%s: get vaddr failed, %d\n", __func__, ret); return ret; } /* MSM specific command format in memory */ data[0] = packet.header[1]; data[1] = packet.header[2]; data[2] = packet.header[0]; data[3] = BIT(7); /* Last packet */ if (mipi_dsi_packet_format_is_long(msg->type)) data[3] |= BIT(6); if (msg->rx_buf && msg->rx_len) data[3] |= BIT(5); /* Long packet */ if (packet.payload && packet.payload_length) memcpy(data + 4, packet.payload, packet.payload_length); /* Append 0xff to the end */ if (packet.size < len) memset(data + packet.size, 0xff, len - packet.size); return len; } /* * dsi_short_read1_resp: 1 parameter */ static int dsi_short_read1_resp(u8 *buf, const struct mipi_dsi_msg *msg) { u8 *data = msg->rx_buf; if (data && (msg->rx_len >= 1)) { *data = buf[1]; /* strip out dcs type */ return 1; } else { pr_err("%s: read data does not match with rx_buf len %zu\n", __func__, msg->rx_len); return -EINVAL; } } /* * dsi_short_read2_resp: 2 parameter */ static int dsi_short_read2_resp(u8 *buf, const struct mipi_dsi_msg *msg) { u8 *data = msg->rx_buf; if (data && (msg->rx_len >= 2)) { data[0] = buf[1]; /* strip out dcs type */ data[1] = buf[2]; return 2; } else { pr_err("%s: read data does not match with rx_buf len %zu\n", __func__, msg->rx_len); return -EINVAL; } } static int dsi_long_read_resp(u8 *buf, const struct mipi_dsi_msg *msg) { /* strip out 4 byte dcs header */ if (msg->rx_buf && msg->rx_len) memcpy(msg->rx_buf, buf + 4, msg->rx_len); return msg->rx_len; } static int dsi_cmd_dma_tx(struct msm_dsi_host *msm_host, int len) { int ret; u32 iova; bool triggered; ret = msm_gem_get_iova(msm_host->tx_gem_obj, 0, &iova); if (ret) { pr_err("%s: failed to get iova: %d\n", __func__, ret); return ret; } reinit_completion(&msm_host->dma_comp); dsi_wait4video_eng_busy(msm_host); triggered = msm_dsi_manager_cmd_xfer_trigger( msm_host->id, iova, len); if (triggered) { ret = wait_for_completion_timeout(&msm_host->dma_comp, msecs_to_jiffies(200)); DBG("ret=%d", ret); if (ret == 0) ret = -ETIMEDOUT; else ret = len; } else ret = len; return ret; } static int dsi_cmd_dma_rx(struct msm_dsi_host *msm_host, u8 *buf, int rx_byte, int pkt_size) { u32 *lp, *temp, data; int i, j = 0, cnt; u32 read_cnt; u8 reg[16]; int repeated_bytes = 0; int buf_offset = buf - msm_host->rx_buf; lp = (u32 *)buf; temp = (u32 *)reg; cnt = (rx_byte + 3) >> 2; if (cnt > 4) cnt = 4; /* 4 x 32 bits registers only */ if (rx_byte == 4) read_cnt = 4; else read_cnt = pkt_size + 6; /* * In case of multiple reads from the panel, after the first read, there * is possibility that there are some bytes in the payload repeating in * the RDBK_DATA registers. Since we read all the parameters from the * panel right from the first byte for every pass. We need to skip the * repeating bytes and then append the new parameters to the rx buffer. */ if (read_cnt > 16) { int bytes_shifted; /* Any data more than 16 bytes will be shifted out. * The temp read buffer should already contain these bytes. * The remaining bytes in read buffer are the repeated bytes. */ bytes_shifted = read_cnt - 16; repeated_bytes = buf_offset - bytes_shifted; } for (i = cnt - 1; i >= 0; i--) { data = dsi_read(msm_host, REG_DSI_RDBK_DATA(i)); *temp++ = ntohl(data); /* to host byte order */ DBG("data = 0x%x and ntohl(data) = 0x%x", data, ntohl(data)); } for (i = repeated_bytes; i < 16; i++) buf[j++] = reg[i]; return j; } static int dsi_cmds2buf_tx(struct msm_dsi_host *msm_host, const struct mipi_dsi_msg *msg) { int len, ret; int bllp_len = msm_host->mode->hdisplay * dsi_get_bpp(msm_host->format) / 8; len = dsi_cmd_dma_add(msm_host->tx_gem_obj, msg); if (!len) { pr_err("%s: failed to add cmd type = 0x%x\n", __func__, msg->type); return -EINVAL; } /* for video mode, do not send cmds more than * one pixel line, since it only transmit it * during BLLP. */ /* TODO: if the command is sent in LP mode, the bit rate is only * half of esc clk rate. In this case, if the video is already * actively streaming, we need to check more carefully if the * command can be fit into one BLLP. */ if ((msm_host->mode_flags & MIPI_DSI_MODE_VIDEO) && (len > bllp_len)) { pr_err("%s: cmd cannot fit into BLLP period, len=%d\n", __func__, len); return -EINVAL; } ret = dsi_cmd_dma_tx(msm_host, len); if (ret < len) { pr_err("%s: cmd dma tx failed, type=0x%x, data0=0x%x, len=%d\n", __func__, msg->type, (*(u8 *)(msg->tx_buf)), len); return -ECOMM; } return len; } static void dsi_sw_reset_restore(struct msm_dsi_host *msm_host) { u32 data0, data1; data0 = dsi_read(msm_host, REG_DSI_CTRL); data1 = data0; data1 &= ~DSI_CTRL_ENABLE; dsi_write(msm_host, REG_DSI_CTRL, data1); /* * dsi controller need to be disabled before * clocks turned on */ wmb(); dsi_write(msm_host, REG_DSI_CLK_CTRL, DSI_CLK_CTRL_ENABLE_CLKS); wmb(); /* make sure clocks enabled */ /* dsi controller can only be reset while clocks are running */ dsi_write(msm_host, REG_DSI_RESET, 1); wmb(); /* make sure reset happen */ dsi_write(msm_host, REG_DSI_RESET, 0); wmb(); /* controller out of reset */ dsi_write(msm_host, REG_DSI_CTRL, data0); wmb(); /* make sure dsi controller enabled again */ } static void dsi_err_worker(struct work_struct *work) { struct msm_dsi_host *msm_host = container_of(work, struct msm_dsi_host, err_work); u32 status = msm_host->err_work_state; pr_err_ratelimited("%s: status=%x\n", __func__, status); if (status & DSI_ERR_STATE_MDP_FIFO_UNDERFLOW) dsi_sw_reset_restore(msm_host); /* It is safe to clear here because error irq is disabled. */ msm_host->err_work_state = 0; /* enable dsi error interrupt */ dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 1); } static void dsi_ack_err_status(struct msm_dsi_host *msm_host) { u32 status; status = dsi_read(msm_host, REG_DSI_ACK_ERR_STATUS); if (status) { dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, status); /* Writing of an extra 0 needed to clear error bits */ dsi_write(msm_host, REG_DSI_ACK_ERR_STATUS, 0); msm_host->err_work_state |= DSI_ERR_STATE_ACK; } } static void dsi_timeout_status(struct msm_dsi_host *msm_host) { u32 status; status = dsi_read(msm_host, REG_DSI_TIMEOUT_STATUS); if (status) { dsi_write(msm_host, REG_DSI_TIMEOUT_STATUS, status); msm_host->err_work_state |= DSI_ERR_STATE_TIMEOUT; } } static void dsi_dln0_phy_err(struct msm_dsi_host *msm_host) { u32 status; status = dsi_read(msm_host, REG_DSI_DLN0_PHY_ERR); if (status) { dsi_write(msm_host, REG_DSI_DLN0_PHY_ERR, status); msm_host->err_work_state |= DSI_ERR_STATE_DLN0_PHY; } } static void dsi_fifo_status(struct msm_dsi_host *msm_host) { u32 status; status = dsi_read(msm_host, REG_DSI_FIFO_STATUS); /* fifo underflow, overflow */ if (status) { dsi_write(msm_host, REG_DSI_FIFO_STATUS, status); msm_host->err_work_state |= DSI_ERR_STATE_FIFO; if (status & DSI_FIFO_STATUS_CMD_MDP_FIFO_UNDERFLOW) msm_host->err_work_state |= DSI_ERR_STATE_MDP_FIFO_UNDERFLOW; } } static void dsi_status(struct msm_dsi_host *msm_host) { u32 status; status = dsi_read(msm_host, REG_DSI_STATUS0); if (status & DSI_STATUS0_INTERLEAVE_OP_CONTENTION) { dsi_write(msm_host, REG_DSI_STATUS0, status); msm_host->err_work_state |= DSI_ERR_STATE_INTERLEAVE_OP_CONTENTION; } } static void dsi_clk_status(struct msm_dsi_host *msm_host) { u32 status; status = dsi_read(msm_host, REG_DSI_CLK_STATUS); if (status & DSI_CLK_STATUS_PLL_UNLOCKED) { dsi_write(msm_host, REG_DSI_CLK_STATUS, status); msm_host->err_work_state |= DSI_ERR_STATE_PLL_UNLOCKED; } } static void dsi_error(struct msm_dsi_host *msm_host) { /* disable dsi error interrupt */ dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_ERROR, 0); dsi_clk_status(msm_host); dsi_fifo_status(msm_host); dsi_ack_err_status(msm_host); dsi_timeout_status(msm_host); dsi_status(msm_host); dsi_dln0_phy_err(msm_host); queue_work(msm_host->workqueue, &msm_host->err_work); } static irqreturn_t dsi_host_irq(int irq, void *ptr) { struct msm_dsi_host *msm_host = ptr; u32 isr; unsigned long flags; if (!msm_host->ctrl_base) return IRQ_HANDLED; spin_lock_irqsave(&msm_host->intr_lock, flags); isr = dsi_read(msm_host, REG_DSI_INTR_CTRL); dsi_write(msm_host, REG_DSI_INTR_CTRL, isr); spin_unlock_irqrestore(&msm_host->intr_lock, flags); DBG("isr=0x%x, id=%d", isr, msm_host->id); if (isr & DSI_IRQ_ERROR) dsi_error(msm_host); if (isr & DSI_IRQ_VIDEO_DONE) complete(&msm_host->video_comp); if (isr & DSI_IRQ_CMD_DMA_DONE) complete(&msm_host->dma_comp); return IRQ_HANDLED; } static int dsi_host_init_panel_gpios(struct msm_dsi_host *msm_host, struct device *panel_device) { int ret; msm_host->disp_en_gpio = devm_gpiod_get(panel_device, "disp-enable"); if (IS_ERR(msm_host->disp_en_gpio)) { DBG("cannot get disp-enable-gpios %ld", PTR_ERR(msm_host->disp_en_gpio)); msm_host->disp_en_gpio = NULL; } if (msm_host->disp_en_gpio) { ret = gpiod_direction_output(msm_host->disp_en_gpio, 0); if (ret) { pr_err("cannot set dir to disp-en-gpios %d\n", ret); return ret; } } msm_host->te_gpio = devm_gpiod_get(panel_device, "disp-te"); if (IS_ERR(msm_host->te_gpio)) { DBG("cannot get disp-te-gpios %ld", PTR_ERR(msm_host->te_gpio)); msm_host->te_gpio = NULL; } if (msm_host->te_gpio) { ret = gpiod_direction_input(msm_host->te_gpio); if (ret) { pr_err("%s: cannot set dir to disp-te-gpios, %d\n", __func__, ret); return ret; } } return 0; } static int dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *dsi) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); int ret; msm_host->channel = dsi->channel; msm_host->lanes = dsi->lanes; msm_host->format = dsi->format; msm_host->mode_flags = dsi->mode_flags; msm_host->panel_node = dsi->dev.of_node; /* Some gpios defined in panel DT need to be controlled by host */ ret = dsi_host_init_panel_gpios(msm_host, &dsi->dev); if (ret) return ret; DBG("id=%d", msm_host->id); if (msm_host->dev) drm_helper_hpd_irq_event(msm_host->dev); return 0; } static int dsi_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *dsi) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); msm_host->panel_node = NULL; DBG("id=%d", msm_host->id); if (msm_host->dev) drm_helper_hpd_irq_event(msm_host->dev); return 0; } static ssize_t dsi_host_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); int ret; if (!msg || !msm_host->power_on) return -EINVAL; mutex_lock(&msm_host->cmd_mutex); ret = msm_dsi_manager_cmd_xfer(msm_host->id, msg); mutex_unlock(&msm_host->cmd_mutex); return ret; } static struct mipi_dsi_host_ops dsi_host_ops = { .attach = dsi_host_attach, .detach = dsi_host_detach, .transfer = dsi_host_transfer, }; int msm_dsi_host_init(struct msm_dsi *msm_dsi) { struct msm_dsi_host *msm_host = NULL; struct platform_device *pdev = msm_dsi->pdev; int ret; msm_host = devm_kzalloc(&pdev->dev, sizeof(*msm_host), GFP_KERNEL); if (!msm_host) { pr_err("%s: FAILED: cannot alloc dsi host\n", __func__); ret = -ENOMEM; goto fail; } ret = of_property_read_u32(pdev->dev.of_node, "qcom,dsi-host-index", &msm_host->id); if (ret) { dev_err(&pdev->dev, "%s: host index not specified, ret=%d\n", __func__, ret); goto fail; } msm_host->pdev = pdev; ret = dsi_clk_init(msm_host); if (ret) { pr_err("%s: unable to initialize dsi clks\n", __func__); goto fail; } msm_host->ctrl_base = msm_ioremap(pdev, "dsi_ctrl", "DSI CTRL"); if (IS_ERR(msm_host->ctrl_base)) { pr_err("%s: unable to map Dsi ctrl base\n", __func__); ret = PTR_ERR(msm_host->ctrl_base); goto fail; } msm_host->cfg = dsi_get_config(msm_host); if (!msm_host->cfg) { ret = -EINVAL; pr_err("%s: get config failed\n", __func__); goto fail; } ret = dsi_regulator_init(msm_host); if (ret) { pr_err("%s: regulator init failed\n", __func__); goto fail; } msm_host->rx_buf = devm_kzalloc(&pdev->dev, SZ_4K, GFP_KERNEL); if (!msm_host->rx_buf) { pr_err("%s: alloc rx temp buf failed\n", __func__); goto fail; } init_completion(&msm_host->dma_comp); init_completion(&msm_host->video_comp); mutex_init(&msm_host->dev_mutex); mutex_init(&msm_host->cmd_mutex); mutex_init(&msm_host->clk_mutex); spin_lock_init(&msm_host->intr_lock); /* setup workqueue */ msm_host->workqueue = alloc_ordered_workqueue("dsi_drm_work", 0); INIT_WORK(&msm_host->err_work, dsi_err_worker); msm_dsi->phy = msm_dsi_phy_init(pdev, msm_host->cfg->phy_type, msm_host->id); if (!msm_dsi->phy) { ret = -EINVAL; pr_err("%s: phy init failed\n", __func__); goto fail; } msm_dsi->host = &msm_host->base; msm_dsi->id = msm_host->id; DBG("Dsi Host %d initialized", msm_host->id); return 0; fail: return ret; } void msm_dsi_host_destroy(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); DBG(""); dsi_tx_buf_free(msm_host); if (msm_host->workqueue) { flush_workqueue(msm_host->workqueue); destroy_workqueue(msm_host->workqueue); msm_host->workqueue = NULL; } mutex_destroy(&msm_host->clk_mutex); mutex_destroy(&msm_host->cmd_mutex); mutex_destroy(&msm_host->dev_mutex); } int msm_dsi_host_modeset_init(struct mipi_dsi_host *host, struct drm_device *dev) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); struct platform_device *pdev = msm_host->pdev; int ret; msm_host->irq = irq_of_parse_and_map(pdev->dev.of_node, 0); if (msm_host->irq < 0) { ret = msm_host->irq; dev_err(dev->dev, "failed to get irq: %d\n", ret); return ret; } ret = devm_request_irq(&pdev->dev, msm_host->irq, dsi_host_irq, IRQF_TRIGGER_HIGH | IRQF_ONESHOT, "dsi_isr", msm_host); if (ret < 0) { dev_err(&pdev->dev, "failed to request IRQ%u: %d\n", msm_host->irq, ret); return ret; } msm_host->dev = dev; ret = dsi_tx_buf_alloc(msm_host, SZ_4K); if (ret) { pr_err("%s: alloc tx gem obj failed, %d\n", __func__, ret); return ret; } return 0; } int msm_dsi_host_register(struct mipi_dsi_host *host, bool check_defer) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); struct device_node *node; int ret; /* Register mipi dsi host */ if (!msm_host->registered) { host->dev = &msm_host->pdev->dev; host->ops = &dsi_host_ops; ret = mipi_dsi_host_register(host); if (ret) return ret; msm_host->registered = true; /* If the panel driver has not been probed after host register, * we should defer the host's probe. * It makes sure panel is connected when fbcon detects * connector status and gets the proper display mode to * create framebuffer. */ if (check_defer) { node = of_get_child_by_name(msm_host->pdev->dev.of_node, "panel"); if (node) { if (!of_drm_find_panel(node)) return -EPROBE_DEFER; } } } return 0; } void msm_dsi_host_unregister(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); if (msm_host->registered) { mipi_dsi_host_unregister(host); host->dev = NULL; host->ops = NULL; msm_host->registered = false; } } int msm_dsi_host_xfer_prepare(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); /* TODO: make sure dsi_cmd_mdp is idle. * Since DSI6G v1.2.0, we can set DSI_TRIG_CTRL.BLOCK_DMA_WITHIN_FRAME * to ask H/W to wait until cmd mdp is idle. S/W wait is not needed. * How to handle the old versions? Wait for mdp cmd done? */ /* * mdss interrupt is generated in mdp core clock domain * mdp clock need to be enabled to receive dsi interrupt */ dsi_clk_ctrl(msm_host, 1); /* TODO: vote for bus bandwidth */ if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) dsi_set_tx_power_mode(0, msm_host); msm_host->dma_cmd_ctrl_restore = dsi_read(msm_host, REG_DSI_CTRL); dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore | DSI_CTRL_CMD_MODE_EN | DSI_CTRL_ENABLE); dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 1); return 0; } void msm_dsi_host_xfer_restore(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); dsi_intr_ctrl(msm_host, DSI_IRQ_MASK_CMD_DMA_DONE, 0); dsi_write(msm_host, REG_DSI_CTRL, msm_host->dma_cmd_ctrl_restore); if (!(msg->flags & MIPI_DSI_MSG_USE_LPM)) dsi_set_tx_power_mode(1, msm_host); /* TODO: unvote for bus bandwidth */ dsi_clk_ctrl(msm_host, 0); } int msm_dsi_host_cmd_tx(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); return dsi_cmds2buf_tx(msm_host, msg); } int msm_dsi_host_cmd_rx(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); int data_byte, rx_byte, dlen, end; int short_response, diff, pkt_size, ret = 0; char cmd; int rlen = msg->rx_len; u8 *buf; if (rlen <= 2) { short_response = 1; pkt_size = rlen; rx_byte = 4; } else { short_response = 0; data_byte = 10; /* first read */ if (rlen < data_byte) pkt_size = rlen; else pkt_size = data_byte; rx_byte = data_byte + 6; /* 4 header + 2 crc */ } buf = msm_host->rx_buf; end = 0; while (!end) { u8 tx[2] = {pkt_size & 0xff, pkt_size >> 8}; struct mipi_dsi_msg max_pkt_size_msg = { .channel = msg->channel, .type = MIPI_DSI_SET_MAXIMUM_RETURN_PACKET_SIZE, .tx_len = 2, .tx_buf = tx, }; DBG("rlen=%d pkt_size=%d rx_byte=%d", rlen, pkt_size, rx_byte); ret = dsi_cmds2buf_tx(msm_host, &max_pkt_size_msg); if (ret < 2) { pr_err("%s: Set max pkt size failed, %d\n", __func__, ret); return -EINVAL; } if ((msm_host->cfg->major == MSM_DSI_VER_MAJOR_6G) && (msm_host->cfg->minor >= MSM_DSI_6G_VER_MINOR_V1_1)) { /* Clear the RDBK_DATA registers */ dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, DSI_RDBK_DATA_CTRL_CLR); wmb(); /* make sure the RDBK registers are cleared */ dsi_write(msm_host, REG_DSI_RDBK_DATA_CTRL, 0); wmb(); /* release cleared status before transfer */ } ret = dsi_cmds2buf_tx(msm_host, msg); if (ret < msg->tx_len) { pr_err("%s: Read cmd Tx failed, %d\n", __func__, ret); return ret; } /* * once cmd_dma_done interrupt received, * return data from client is ready and stored * at RDBK_DATA register already * since rx fifo is 16 bytes, dcs header is kept at first loop, * after that dcs header lost during shift into registers */ dlen = dsi_cmd_dma_rx(msm_host, buf, rx_byte, pkt_size); if (dlen <= 0) return 0; if (short_response) break; if (rlen <= data_byte) { diff = data_byte - rlen; end = 1; } else { diff = 0; rlen -= data_byte; } if (!end) { dlen -= 2; /* 2 crc */ dlen -= diff; buf += dlen; /* next start position */ data_byte = 14; /* NOT first read */ if (rlen < data_byte) pkt_size += rlen; else pkt_size += data_byte; DBG("buf=%p dlen=%d diff=%d", buf, dlen, diff); } } /* * For single Long read, if the requested rlen < 10, * we need to shift the start position of rx * data buffer to skip the bytes which are not * updated. */ if (pkt_size < 10 && !short_response) buf = msm_host->rx_buf + (10 - rlen); else buf = msm_host->rx_buf; cmd = buf[0]; switch (cmd) { case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: pr_err("%s: rx ACK_ERR_PACLAGE\n", __func__); ret = 0; break; case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: ret = dsi_short_read1_resp(buf, msg); break; case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: ret = dsi_short_read2_resp(buf, msg); break; case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE: case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE: ret = dsi_long_read_resp(buf, msg); break; default: pr_warn("%s:Invalid response cmd\n", __func__); ret = 0; } return ret; } void msm_dsi_host_cmd_xfer_commit(struct mipi_dsi_host *host, u32 iova, u32 len) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); dsi_write(msm_host, REG_DSI_DMA_BASE, iova); dsi_write(msm_host, REG_DSI_DMA_LEN, len); dsi_write(msm_host, REG_DSI_TRIG_DMA, 1); /* Make sure trigger happens */ wmb(); } int msm_dsi_host_enable(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); dsi_op_mode_config(msm_host, !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), true); /* TODO: clock should be turned off for command mode, * and only turned on before MDP START. * This part of code should be enabled once mdp driver support it. */ /* if (msm_panel->mode == MSM_DSI_CMD_MODE) dsi_clk_ctrl(msm_host, 0); */ return 0; } int msm_dsi_host_disable(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); dsi_op_mode_config(msm_host, !!(msm_host->mode_flags & MIPI_DSI_MODE_VIDEO), false); /* Since we have disabled INTF, the video engine won't stop so that * the cmd engine will be blocked. * Reset to disable video engine so that we can send off cmd. */ dsi_sw_reset(msm_host); return 0; } int msm_dsi_host_power_on(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); u32 clk_pre = 0, clk_post = 0; int ret = 0; mutex_lock(&msm_host->dev_mutex); if (msm_host->power_on) { DBG("dsi host already on"); goto unlock_ret; } ret = dsi_calc_clk_rate(msm_host); if (ret) { pr_err("%s: unable to calc clk rate, %d\n", __func__, ret); goto unlock_ret; } ret = dsi_host_regulator_enable(msm_host); if (ret) { pr_err("%s:Failed to enable vregs.ret=%d\n", __func__, ret); goto unlock_ret; } ret = dsi_bus_clk_enable(msm_host); if (ret) { pr_err("%s: failed to enable bus clocks, %d\n", __func__, ret); goto fail_disable_reg; } dsi_phy_sw_reset(msm_host); ret = msm_dsi_manager_phy_enable(msm_host->id, msm_host->byte_clk_rate * 8, clk_get_rate(msm_host->esc_clk), &clk_pre, &clk_post); dsi_bus_clk_disable(msm_host); if (ret) { pr_err("%s: failed to enable phy, %d\n", __func__, ret); goto fail_disable_reg; } ret = dsi_clk_ctrl(msm_host, 1); if (ret) { pr_err("%s: failed to enable clocks. ret=%d\n", __func__, ret); goto fail_disable_reg; } dsi_timing_setup(msm_host); dsi_sw_reset(msm_host); dsi_ctrl_config(msm_host, true, clk_pre, clk_post); if (msm_host->disp_en_gpio) gpiod_set_value(msm_host->disp_en_gpio, 1); msm_host->power_on = true; mutex_unlock(&msm_host->dev_mutex); return 0; fail_disable_reg: dsi_host_regulator_disable(msm_host); unlock_ret: mutex_unlock(&msm_host->dev_mutex); return ret; } int msm_dsi_host_power_off(struct mipi_dsi_host *host) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); mutex_lock(&msm_host->dev_mutex); if (!msm_host->power_on) { DBG("dsi host already off"); goto unlock_ret; } dsi_ctrl_config(msm_host, false, 0, 0); if (msm_host->disp_en_gpio) gpiod_set_value(msm_host->disp_en_gpio, 0); msm_dsi_manager_phy_disable(msm_host->id); dsi_clk_ctrl(msm_host, 0); dsi_host_regulator_disable(msm_host); DBG("-"); msm_host->power_on = false; unlock_ret: mutex_unlock(&msm_host->dev_mutex); return 0; } int msm_dsi_host_set_display_mode(struct mipi_dsi_host *host, struct drm_display_mode *mode) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); if (msm_host->mode) { drm_mode_destroy(msm_host->dev, msm_host->mode); msm_host->mode = NULL; } msm_host->mode = drm_mode_duplicate(msm_host->dev, mode); if (IS_ERR(msm_host->mode)) { pr_err("%s: cannot duplicate mode\n", __func__); return PTR_ERR(msm_host->mode); } return 0; } struct drm_panel *msm_dsi_host_get_panel(struct mipi_dsi_host *host, unsigned long *panel_flags) { struct msm_dsi_host *msm_host = to_msm_dsi_host(host); struct drm_panel *panel; panel = of_drm_find_panel(msm_host->panel_node); if (panel_flags) *panel_flags = msm_host->mode_flags; return panel; }