/* * Copyright 2005-2006 Erik Waling * Copyright 2006 Stephane Marchesin * Copyright 2007-2009 Stuart Bennett * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <drm/drmP.h> #include "nouveau_drm.h" #include "nouveau_reg.h" #include "dispnv04/hw.h" #include "nouveau_encoder.h" #include <linux/io-mapping.h> #include <linux/firmware.h> /* these defines are made up */ #define NV_CIO_CRE_44_HEADA 0x0 #define NV_CIO_CRE_44_HEADB 0x3 #define FEATURE_MOBILE 0x10 /* also FEATURE_QUADRO for BMP */ #define EDID1_LEN 128 #define BIOSLOG(sip, fmt, arg...) NV_DEBUG(sip->dev, fmt, ##arg) #define LOG_OLD_VALUE(x) struct init_exec { bool execute; bool repeat; }; static bool nv_cksum(const uint8_t *data, unsigned int length) { /* * There's a few checksums in the BIOS, so here's a generic checking * function. */ int i; uint8_t sum = 0; for (i = 0; i < length; i++) sum += data[i]; if (sum) return true; return false; } static uint16_t clkcmptable(struct nvbios *bios, uint16_t clktable, int pxclk) { int compare_record_len, i = 0; uint16_t compareclk, scriptptr = 0; if (bios->major_version < 5) /* pre BIT */ compare_record_len = 3; else compare_record_len = 4; do { compareclk = ROM16(bios->data[clktable + compare_record_len * i]); if (pxclk >= compareclk * 10) { if (bios->major_version < 5) { uint8_t tmdssub = bios->data[clktable + 2 + compare_record_len * i]; scriptptr = ROM16(bios->data[bios->init_script_tbls_ptr + tmdssub * 2]); } else scriptptr = ROM16(bios->data[clktable + 2 + compare_record_len * i]); break; } i++; } while (compareclk); return scriptptr; } static void run_digital_op_script(struct drm_device *dev, uint16_t scriptptr, struct dcb_output *dcbent, int head, bool dl) { struct nouveau_drm *drm = nouveau_drm(dev); NV_INFO(drm, "0x%04X: Parsing digital output script table\n", scriptptr); NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_44, head ? NV_CIO_CRE_44_HEADB : NV_CIO_CRE_44_HEADA); nouveau_bios_run_init_table(dev, scriptptr, dcbent, head); nv04_dfp_bind_head(dev, dcbent, head, dl); } static int call_lvds_manufacturer_script(struct drm_device *dev, struct dcb_output *dcbent, int head, enum LVDS_script script) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvbios *bios = &drm->vbios; uint8_t sub = bios->data[bios->fp.xlated_entry + script] + (bios->fp.link_c_increment && dcbent->or & DCB_OUTPUT_C ? 1 : 0); uint16_t scriptofs = ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]); if (!bios->fp.xlated_entry || !sub || !scriptofs) return -EINVAL; run_digital_op_script(dev, scriptofs, dcbent, head, bios->fp.dual_link); if (script == LVDS_PANEL_OFF) { /* off-on delay in ms */ mdelay(ROM16(bios->data[bios->fp.xlated_entry + 7])); } #ifdef __powerpc__ /* Powerbook specific quirks */ if (script == LVDS_RESET && (dev->pdev->device == 0x0179 || dev->pdev->device == 0x0189 || dev->pdev->device == 0x0329)) nv_write_tmds(dev, dcbent->or, 0, 0x02, 0x72); #endif return 0; } static int run_lvds_table(struct drm_device *dev, struct dcb_output *dcbent, int head, enum LVDS_script script, int pxclk) { /* * The BIT LVDS table's header has the information to setup the * necessary registers. Following the standard 4 byte header are: * A bitmask byte and a dual-link transition pxclk value for use in * selecting the init script when not using straps; 4 script pointers * for panel power, selected by output and on/off; and 8 table pointers * for panel init, the needed one determined by output, and bits in the * conf byte. These tables are similar to the TMDS tables, consisting * of a list of pxclks and script pointers. */ struct nouveau_drm *drm = nouveau_drm(dev); struct nvbios *bios = &drm->vbios; unsigned int outputset = (dcbent->or == 4) ? 1 : 0; uint16_t scriptptr = 0, clktable; /* * For now we assume version 3.0 table - g80 support will need some * changes */ switch (script) { case LVDS_INIT: return -ENOSYS; case LVDS_BACKLIGHT_ON: case LVDS_PANEL_ON: scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 7 + outputset * 2]); break; case LVDS_BACKLIGHT_OFF: case LVDS_PANEL_OFF: scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 11 + outputset * 2]); break; case LVDS_RESET: clktable = bios->fp.lvdsmanufacturerpointer + 15; if (dcbent->or == 4) clktable += 8; if (dcbent->lvdsconf.use_straps_for_mode) { if (bios->fp.dual_link) clktable += 4; if (bios->fp.if_is_24bit) clktable += 2; } else { /* using EDID */ int cmpval_24bit = (dcbent->or == 4) ? 4 : 1; if (bios->fp.dual_link) { clktable += 4; cmpval_24bit <<= 1; } if (bios->fp.strapless_is_24bit & cmpval_24bit) clktable += 2; } clktable = ROM16(bios->data[clktable]); if (!clktable) { NV_ERROR(drm, "Pixel clock comparison table not found\n"); return -ENOENT; } scriptptr = clkcmptable(bios, clktable, pxclk); } if (!scriptptr) { NV_ERROR(drm, "LVDS output init script not found\n"); return -ENOENT; } run_digital_op_script(dev, scriptptr, dcbent, head, bios->fp.dual_link); return 0; } int call_lvds_script(struct drm_device *dev, struct dcb_output *dcbent, int head, enum LVDS_script script, int pxclk) { /* * LVDS operations are multiplexed in an effort to present a single API * which works with two vastly differing underlying structures. * This acts as the demux */ struct nouveau_drm *drm = nouveau_drm(dev); struct nvif_device *device = &drm->device; struct nvbios *bios = &drm->vbios; uint8_t lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer]; uint32_t sel_clk_binding, sel_clk; int ret; if (bios->fp.last_script_invoc == (script << 1 | head) || !lvds_ver || (lvds_ver >= 0x30 && script == LVDS_INIT)) return 0; if (!bios->fp.lvds_init_run) { bios->fp.lvds_init_run = true; call_lvds_script(dev, dcbent, head, LVDS_INIT, pxclk); } if (script == LVDS_PANEL_ON && bios->fp.reset_after_pclk_change) call_lvds_script(dev, dcbent, head, LVDS_RESET, pxclk); if (script == LVDS_RESET && bios->fp.power_off_for_reset) call_lvds_script(dev, dcbent, head, LVDS_PANEL_OFF, pxclk); NV_INFO(drm, "Calling LVDS script %d:\n", script); /* don't let script change pll->head binding */ sel_clk_binding = nvif_rd32(device, NV_PRAMDAC_SEL_CLK) & 0x50000; if (lvds_ver < 0x30) ret = call_lvds_manufacturer_script(dev, dcbent, head, script); else ret = run_lvds_table(dev, dcbent, head, script, pxclk); bios->fp.last_script_invoc = (script << 1 | head); sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000; NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding); /* some scripts set a value in NV_PBUS_POWERCTRL_2 and break video overlay */ nvif_wr32(device, NV_PBUS_POWERCTRL_2, 0); return ret; } struct lvdstableheader { uint8_t lvds_ver, headerlen, recordlen; }; static int parse_lvds_manufacturer_table_header(struct drm_device *dev, struct nvbios *bios, struct lvdstableheader *lth) { /* * BMP version (0xa) LVDS table has a simple header of version and * record length. The BIT LVDS table has the typical BIT table header: * version byte, header length byte, record length byte, and a byte for * the maximum number of records that can be held in the table. */ struct nouveau_drm *drm = nouveau_drm(dev); uint8_t lvds_ver, headerlen, recordlen; memset(lth, 0, sizeof(struct lvdstableheader)); if (bios->fp.lvdsmanufacturerpointer == 0x0) { NV_ERROR(drm, "Pointer to LVDS manufacturer table invalid\n"); return -EINVAL; } lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer]; switch (lvds_ver) { case 0x0a: /* pre NV40 */ headerlen = 2; recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1]; break; case 0x30: /* NV4x */ headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1]; if (headerlen < 0x1f) { NV_ERROR(drm, "LVDS table header not understood\n"); return -EINVAL; } recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2]; break; case 0x40: /* G80/G90 */ headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1]; if (headerlen < 0x7) { NV_ERROR(drm, "LVDS table header not understood\n"); return -EINVAL; } recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2]; break; default: NV_ERROR(drm, "LVDS table revision %d.%d not currently supported\n", lvds_ver >> 4, lvds_ver & 0xf); return -ENOSYS; } lth->lvds_ver = lvds_ver; lth->headerlen = headerlen; lth->recordlen = recordlen; return 0; } static int get_fp_strap(struct drm_device *dev, struct nvbios *bios) { struct nvif_device *device = &nouveau_drm(dev)->device; /* * The fp strap is normally dictated by the "User Strap" in * PEXTDEV_BOOT_0[20:16], but on BMP cards when bit 2 of the * Internal_Flags struct at 0x48 is set, the user strap gets overriden * by the PCI subsystem ID during POST, but not before the previous user * strap has been committed to CR58 for CR57=0xf on head A, which may be * read and used instead */ if (bios->major_version < 5 && bios->data[0x48] & 0x4) return NVReadVgaCrtc5758(dev, 0, 0xf) & 0xf; if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) return (nvif_rd32(device, NV_PEXTDEV_BOOT_0) >> 24) & 0xf; else return (nvif_rd32(device, NV_PEXTDEV_BOOT_0) >> 16) & 0xf; } static int parse_fp_mode_table(struct drm_device *dev, struct nvbios *bios) { struct nouveau_drm *drm = nouveau_drm(dev); uint8_t *fptable; uint8_t fptable_ver, headerlen = 0, recordlen, fpentries = 0xf, fpindex; int ret, ofs, fpstrapping; struct lvdstableheader lth; if (bios->fp.fptablepointer == 0x0) { /* Apple cards don't have the fp table; the laptops use DDC */ /* The table is also missing on some x86 IGPs */ #ifndef __powerpc__ NV_ERROR(drm, "Pointer to flat panel table invalid\n"); #endif bios->digital_min_front_porch = 0x4b; return 0; } fptable = &bios->data[bios->fp.fptablepointer]; fptable_ver = fptable[0]; switch (fptable_ver) { /* * BMP version 0x5.0x11 BIOSen have version 1 like tables, but no * version field, and miss one of the spread spectrum/PWM bytes. * This could affect early GF2Go parts (not seen any appropriate ROMs * though). Here we assume that a version of 0x05 matches this case * (combining with a BMP version check would be better), as the * common case for the panel type field is 0x0005, and that is in * fact what we are reading the first byte of. */ case 0x05: /* some NV10, 11, 15, 16 */ recordlen = 42; ofs = -1; break; case 0x10: /* some NV15/16, and NV11+ */ recordlen = 44; ofs = 0; break; case 0x20: /* NV40+ */ headerlen = fptable[1]; recordlen = fptable[2]; fpentries = fptable[3]; /* * fptable[4] is the minimum * RAMDAC_FP_HCRTC -> RAMDAC_FP_HSYNC_START gap */ bios->digital_min_front_porch = fptable[4]; ofs = -7; break; default: NV_ERROR(drm, "FP table revision %d.%d not currently supported\n", fptable_ver >> 4, fptable_ver & 0xf); return -ENOSYS; } if (!bios->is_mobile) /* !mobile only needs digital_min_front_porch */ return 0; ret = parse_lvds_manufacturer_table_header(dev, bios, <h); if (ret) return ret; if (lth.lvds_ver == 0x30 || lth.lvds_ver == 0x40) { bios->fp.fpxlatetableptr = bios->fp.lvdsmanufacturerpointer + lth.headerlen + 1; bios->fp.xlatwidth = lth.recordlen; } if (bios->fp.fpxlatetableptr == 0x0) { NV_ERROR(drm, "Pointer to flat panel xlat table invalid\n"); return -EINVAL; } fpstrapping = get_fp_strap(dev, bios); fpindex = bios->data[bios->fp.fpxlatetableptr + fpstrapping * bios->fp.xlatwidth]; if (fpindex > fpentries) { NV_ERROR(drm, "Bad flat panel table index\n"); return -ENOENT; } /* nv4x cards need both a strap value and fpindex of 0xf to use DDC */ if (lth.lvds_ver > 0x10) bios->fp_no_ddc = fpstrapping != 0xf || fpindex != 0xf; /* * If either the strap or xlated fpindex value are 0xf there is no * panel using a strap-derived bios mode present. this condition * includes, but is different from, the DDC panel indicator above */ if (fpstrapping == 0xf || fpindex == 0xf) return 0; bios->fp.mode_ptr = bios->fp.fptablepointer + headerlen + recordlen * fpindex + ofs; NV_INFO(drm, "BIOS FP mode: %dx%d (%dkHz pixel clock)\n", ROM16(bios->data[bios->fp.mode_ptr + 11]) + 1, ROM16(bios->data[bios->fp.mode_ptr + 25]) + 1, ROM16(bios->data[bios->fp.mode_ptr + 7]) * 10); return 0; } bool nouveau_bios_fp_mode(struct drm_device *dev, struct drm_display_mode *mode) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvbios *bios = &drm->vbios; uint8_t *mode_entry = &bios->data[bios->fp.mode_ptr]; if (!mode) /* just checking whether we can produce a mode */ return bios->fp.mode_ptr; memset(mode, 0, sizeof(struct drm_display_mode)); /* * For version 1.0 (version in byte 0): * bytes 1-2 are "panel type", including bits on whether Colour/mono, * single/dual link, and type (TFT etc.) * bytes 3-6 are bits per colour in RGBX */ mode->clock = ROM16(mode_entry[7]) * 10; /* bytes 9-10 is HActive */ mode->hdisplay = ROM16(mode_entry[11]) + 1; /* * bytes 13-14 is HValid Start * bytes 15-16 is HValid End */ mode->hsync_start = ROM16(mode_entry[17]) + 1; mode->hsync_end = ROM16(mode_entry[19]) + 1; mode->htotal = ROM16(mode_entry[21]) + 1; /* bytes 23-24, 27-30 similarly, but vertical */ mode->vdisplay = ROM16(mode_entry[25]) + 1; mode->vsync_start = ROM16(mode_entry[31]) + 1; mode->vsync_end = ROM16(mode_entry[33]) + 1; mode->vtotal = ROM16(mode_entry[35]) + 1; mode->flags |= (mode_entry[37] & 0x10) ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; mode->flags |= (mode_entry[37] & 0x1) ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; /* * bytes 38-39 relate to spread spectrum settings * bytes 40-43 are something to do with PWM */ mode->status = MODE_OK; mode->type = DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED; drm_mode_set_name(mode); return bios->fp.mode_ptr; } int nouveau_bios_parse_lvds_table(struct drm_device *dev, int pxclk, bool *dl, bool *if_is_24bit) { /* * The LVDS table header is (mostly) described in * parse_lvds_manufacturer_table_header(): the BIT header additionally * contains the dual-link transition pxclk (in 10s kHz), at byte 5 - if * straps are not being used for the panel, this specifies the frequency * at which modes should be set up in the dual link style. * * Following the header, the BMP (ver 0xa) table has several records, * indexed by a separate xlat table, indexed in turn by the fp strap in * EXTDEV_BOOT. Each record had a config byte, followed by 6 script * numbers for use by INIT_SUB which controlled panel init and power, * and finally a dword of ms to sleep between power off and on * operations. * * In the BIT versions, the table following the header serves as an * integrated config and xlat table: the records in the table are * indexed by the FP strap nibble in EXTDEV_BOOT, and each record has * two bytes - the first as a config byte, the second for indexing the * fp mode table pointed to by the BIT 'D' table * * DDC is not used until after card init, so selecting the correct table * entry and setting the dual link flag for EDID equipped panels, * requiring tests against the native-mode pixel clock, cannot be done * until later, when this function should be called with non-zero pxclk */ struct nouveau_drm *drm = nouveau_drm(dev); struct nvbios *bios = &drm->vbios; int fpstrapping = get_fp_strap(dev, bios), lvdsmanufacturerindex = 0; struct lvdstableheader lth; uint16_t lvdsofs; int ret, chip_version = bios->chip_version; ret = parse_lvds_manufacturer_table_header(dev, bios, <h); if (ret) return ret; switch (lth.lvds_ver) { case 0x0a: /* pre NV40 */ lvdsmanufacturerindex = bios->data[ bios->fp.fpxlatemanufacturertableptr + fpstrapping]; /* we're done if this isn't the EDID panel case */ if (!pxclk) break; if (chip_version < 0x25) { /* nv17 behaviour * * It seems the old style lvds script pointer is reused * to select 18/24 bit colour depth for EDID panels. */ lvdsmanufacturerindex = (bios->legacy.lvds_single_a_script_ptr & 1) ? 2 : 0; if (pxclk >= bios->fp.duallink_transition_clk) lvdsmanufacturerindex++; } else if (chip_version < 0x30) { /* nv28 behaviour (off-chip encoder) * * nv28 does a complex dance of first using byte 121 of * the EDID to choose the lvdsmanufacturerindex, then * later attempting to match the EDID manufacturer and * product IDs in a table (signature 'pidt' (panel id * table?)), setting an lvdsmanufacturerindex of 0 and * an fp strap of the match index (or 0xf if none) */ lvdsmanufacturerindex = 0; } else { /* nv31, nv34 behaviour */ lvdsmanufacturerindex = 0; if (pxclk >= bios->fp.duallink_transition_clk) lvdsmanufacturerindex = 2; if (pxclk >= 140000) lvdsmanufacturerindex = 3; } /* * nvidia set the high nibble of (cr57=f, cr58) to * lvdsmanufacturerindex in this case; we don't */ break; case 0x30: /* NV4x */ case 0x40: /* G80/G90 */ lvdsmanufacturerindex = fpstrapping; break; default: NV_ERROR(drm, "LVDS table revision not currently supported\n"); return -ENOSYS; } lvdsofs = bios->fp.xlated_entry = bios->fp.lvdsmanufacturerpointer + lth.headerlen + lth.recordlen * lvdsmanufacturerindex; switch (lth.lvds_ver) { case 0x0a: bios->fp.power_off_for_reset = bios->data[lvdsofs] & 1; bios->fp.reset_after_pclk_change = bios->data[lvdsofs] & 2; bios->fp.dual_link = bios->data[lvdsofs] & 4; bios->fp.link_c_increment = bios->data[lvdsofs] & 8; *if_is_24bit = bios->data[lvdsofs] & 16; break; case 0x30: case 0x40: /* * No sign of the "power off for reset" or "reset for panel * on" bits, but it's safer to assume we should */ bios->fp.power_off_for_reset = true; bios->fp.reset_after_pclk_change = true; /* * It's ok lvdsofs is wrong for nv4x edid case; dual_link is * over-written, and if_is_24bit isn't used */ bios->fp.dual_link = bios->data[lvdsofs] & 1; bios->fp.if_is_24bit = bios->data[lvdsofs] & 2; bios->fp.strapless_is_24bit = bios->data[bios->fp.lvdsmanufacturerpointer + 4]; bios->fp.duallink_transition_clk = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 5]) * 10; break; } /* set dual_link flag for EDID case */ if (pxclk && (chip_version < 0x25 || chip_version > 0x28)) bios->fp.dual_link = (pxclk >= bios->fp.duallink_transition_clk); *dl = bios->fp.dual_link; return 0; } int run_tmds_table(struct drm_device *dev, struct dcb_output *dcbent, int head, int pxclk) { /* * the pxclk parameter is in kHz * * This runs the TMDS regs setting code found on BIT bios cards * * For ffs(or) == 1 use the first table, for ffs(or) == 2 and * ffs(or) == 3, use the second. */ struct nouveau_drm *drm = nouveau_drm(dev); struct nvif_device *device = &drm->device; struct nvbios *bios = &drm->vbios; int cv = bios->chip_version; uint16_t clktable = 0, scriptptr; uint32_t sel_clk_binding, sel_clk; /* pre-nv17 off-chip tmds uses scripts, post nv17 doesn't */ if (cv >= 0x17 && cv != 0x1a && cv != 0x20 && dcbent->location != DCB_LOC_ON_CHIP) return 0; switch (ffs(dcbent->or)) { case 1: clktable = bios->tmds.output0_script_ptr; break; case 2: case 3: clktable = bios->tmds.output1_script_ptr; break; } if (!clktable) { NV_ERROR(drm, "Pixel clock comparison table not found\n"); return -EINVAL; } scriptptr = clkcmptable(bios, clktable, pxclk); if (!scriptptr) { NV_ERROR(drm, "TMDS output init script not found\n"); return -ENOENT; } /* don't let script change pll->head binding */ sel_clk_binding = nvif_rd32(device, NV_PRAMDAC_SEL_CLK) & 0x50000; run_digital_op_script(dev, scriptptr, dcbent, head, pxclk >= 165000); sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000; NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding); return 0; } static void parse_script_table_pointers(struct nvbios *bios, uint16_t offset) { /* * Parses the init table segment for pointers used in script execution. * * offset + 0 (16 bits): init script tables pointer * offset + 2 (16 bits): macro index table pointer * offset + 4 (16 bits): macro table pointer * offset + 6 (16 bits): condition table pointer * offset + 8 (16 bits): io condition table pointer * offset + 10 (16 bits): io flag condition table pointer * offset + 12 (16 bits): init function table pointer */ bios->init_script_tbls_ptr = ROM16(bios->data[offset]); } static int parse_bit_A_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) { /* * Parses the load detect values for g80 cards. * * offset + 0 (16 bits): loadval table pointer */ struct nouveau_drm *drm = nouveau_drm(dev); uint16_t load_table_ptr; uint8_t version, headerlen, entrylen, num_entries; if (bitentry->length != 3) { NV_ERROR(drm, "Do not understand BIT A table\n"); return -EINVAL; } load_table_ptr = ROM16(bios->data[bitentry->offset]); if (load_table_ptr == 0x0) { NV_DEBUG(drm, "Pointer to BIT loadval table invalid\n"); return -EINVAL; } version = bios->data[load_table_ptr]; if (version != 0x10) { NV_ERROR(drm, "BIT loadval table version %d.%d not supported\n", version >> 4, version & 0xF); return -ENOSYS; } headerlen = bios->data[load_table_ptr + 1]; entrylen = bios->data[load_table_ptr + 2]; num_entries = bios->data[load_table_ptr + 3]; if (headerlen != 4 || entrylen != 4 || num_entries != 2) { NV_ERROR(drm, "Do not understand BIT loadval table\n"); return -EINVAL; } /* First entry is normal dac, 2nd tv-out perhaps? */ bios->dactestval = ROM32(bios->data[load_table_ptr + headerlen]) & 0x3ff; return 0; } static int parse_bit_display_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) { /* * Parses the flat panel table segment that the bit entry points to. * Starting at bitentry->offset: * * offset + 0 (16 bits): ??? table pointer - seems to have 18 byte * records beginning with a freq. * offset + 2 (16 bits): mode table pointer */ struct nouveau_drm *drm = nouveau_drm(dev); if (bitentry->length != 4) { NV_ERROR(drm, "Do not understand BIT display table\n"); return -EINVAL; } bios->fp.fptablepointer = ROM16(bios->data[bitentry->offset + 2]); return 0; } static int parse_bit_init_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) { /* * Parses the init table segment that the bit entry points to. * * See parse_script_table_pointers for layout */ struct nouveau_drm *drm = nouveau_drm(dev); if (bitentry->length < 14) { NV_ERROR(drm, "Do not understand init table\n"); return -EINVAL; } parse_script_table_pointers(bios, bitentry->offset); return 0; } static int parse_bit_i_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) { /* * BIT 'i' (info?) table * * offset + 0 (32 bits): BIOS version dword (as in B table) * offset + 5 (8 bits): BIOS feature byte (same as for BMP?) * offset + 13 (16 bits): pointer to table containing DAC load * detection comparison values * * There's other things in the table, purpose unknown */ struct nouveau_drm *drm = nouveau_drm(dev); uint16_t daccmpoffset; uint8_t dacver, dacheaderlen; if (bitentry->length < 6) { NV_ERROR(drm, "BIT i table too short for needed information\n"); return -EINVAL; } /* * bit 4 seems to indicate a mobile bios (doesn't suffer from BMP's * Quadro identity crisis), other bits possibly as for BMP feature byte */ bios->feature_byte = bios->data[bitentry->offset + 5]; bios->is_mobile = bios->feature_byte & FEATURE_MOBILE; if (bitentry->length < 15) { NV_WARN(drm, "BIT i table not long enough for DAC load " "detection comparison table\n"); return -EINVAL; } daccmpoffset = ROM16(bios->data[bitentry->offset + 13]); /* doesn't exist on g80 */ if (!daccmpoffset) return 0; /* * The first value in the table, following the header, is the * comparison value, the second entry is a comparison value for * TV load detection. */ dacver = bios->data[daccmpoffset]; dacheaderlen = bios->data[daccmpoffset + 1]; if (dacver != 0x00 && dacver != 0x10) { NV_WARN(drm, "DAC load detection comparison table version " "%d.%d not known\n", dacver >> 4, dacver & 0xf); return -ENOSYS; } bios->dactestval = ROM32(bios->data[daccmpoffset + dacheaderlen]); bios->tvdactestval = ROM32(bios->data[daccmpoffset + dacheaderlen + 4]); return 0; } static int parse_bit_lvds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) { /* * Parses the LVDS table segment that the bit entry points to. * Starting at bitentry->offset: * * offset + 0 (16 bits): LVDS strap xlate table pointer */ struct nouveau_drm *drm = nouveau_drm(dev); if (bitentry->length != 2) { NV_ERROR(drm, "Do not understand BIT LVDS table\n"); return -EINVAL; } /* * No idea if it's still called the LVDS manufacturer table, but * the concept's close enough. */ bios->fp.lvdsmanufacturerpointer = ROM16(bios->data[bitentry->offset]); return 0; } static int parse_bit_M_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) { /* * offset + 2 (8 bits): number of options in an * INIT_RAM_RESTRICT_ZM_REG_GROUP opcode option set * offset + 3 (16 bits): pointer to strap xlate table for RAM * restrict option selection * * There's a bunch of bits in this table other than the RAM restrict * stuff that we don't use - their use currently unknown */ /* * Older bios versions don't have a sufficiently long table for * what we want */ if (bitentry->length < 0x5) return 0; if (bitentry->version < 2) { bios->ram_restrict_group_count = bios->data[bitentry->offset + 2]; bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 3]); } else { bios->ram_restrict_group_count = bios->data[bitentry->offset + 0]; bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 1]); } return 0; } static int parse_bit_tmds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry) { /* * Parses the pointer to the TMDS table * * Starting at bitentry->offset: * * offset + 0 (16 bits): TMDS table pointer * * The TMDS table is typically found just before the DCB table, with a * characteristic signature of 0x11,0x13 (1.1 being version, 0x13 being * length?) * * At offset +7 is a pointer to a script, which I don't know how to * run yet. * At offset +9 is a pointer to another script, likewise * Offset +11 has a pointer to a table where the first word is a pxclk * frequency and the second word a pointer to a script, which should be * run if the comparison pxclk frequency is less than the pxclk desired. * This repeats for decreasing comparison frequencies * Offset +13 has a pointer to a similar table * The selection of table (and possibly +7/+9 script) is dictated by * "or" from the DCB. */ struct nouveau_drm *drm = nouveau_drm(dev); uint16_t tmdstableptr, script1, script2; if (bitentry->length != 2) { NV_ERROR(drm, "Do not understand BIT TMDS table\n"); return -EINVAL; } tmdstableptr = ROM16(bios->data[bitentry->offset]); if (!tmdstableptr) { NV_ERROR(drm, "Pointer to TMDS table invalid\n"); return -EINVAL; } NV_INFO(drm, "TMDS table version %d.%d\n", bios->data[tmdstableptr] >> 4, bios->data[tmdstableptr] & 0xf); /* nv50+ has v2.0, but we don't parse it atm */ if (bios->data[tmdstableptr] != 0x11) return -ENOSYS; /* * These two scripts are odd: they don't seem to get run even when * they are not stubbed. */ script1 = ROM16(bios->data[tmdstableptr + 7]); script2 = ROM16(bios->data[tmdstableptr + 9]); if (bios->data[script1] != 'q' || bios->data[script2] != 'q') NV_WARN(drm, "TMDS table script pointers not stubbed\n"); bios->tmds.output0_script_ptr = ROM16(bios->data[tmdstableptr + 11]); bios->tmds.output1_script_ptr = ROM16(bios->data[tmdstableptr + 13]); return 0; } struct bit_table { const char id; int (* const parse_fn)(struct drm_device *, struct nvbios *, struct bit_entry *); }; #define BIT_TABLE(id, funcid) ((struct bit_table){ id, parse_bit_##funcid##_tbl_entry }) int bit_table(struct drm_device *dev, u8 id, struct bit_entry *bit) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvbios *bios = &drm->vbios; u8 entries, *entry; if (bios->type != NVBIOS_BIT) return -ENODEV; entries = bios->data[bios->offset + 10]; entry = &bios->data[bios->offset + 12]; while (entries--) { if (entry[0] == id) { bit->id = entry[0]; bit->version = entry[1]; bit->length = ROM16(entry[2]); bit->offset = ROM16(entry[4]); bit->data = ROMPTR(dev, entry[4]); return 0; } entry += bios->data[bios->offset + 9]; } return -ENOENT; } static int parse_bit_table(struct nvbios *bios, const uint16_t bitoffset, struct bit_table *table) { struct drm_device *dev = bios->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct bit_entry bitentry; if (bit_table(dev, table->id, &bitentry) == 0) return table->parse_fn(dev, bios, &bitentry); NV_INFO(drm, "BIT table '%c' not found\n", table->id); return -ENOSYS; } static int parse_bit_structure(struct nvbios *bios, const uint16_t bitoffset) { int ret; /* * The only restriction on parsing order currently is having 'i' first * for use of bios->*_version or bios->feature_byte while parsing; * functions shouldn't be actually *doing* anything apart from pulling * data from the image into the bios struct, thus no interdependencies */ ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('i', i)); if (ret) /* info? */ return ret; if (bios->major_version >= 0x60) /* g80+ */ parse_bit_table(bios, bitoffset, &BIT_TABLE('A', A)); parse_bit_table(bios, bitoffset, &BIT_TABLE('D', display)); ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('I', init)); if (ret) return ret; parse_bit_table(bios, bitoffset, &BIT_TABLE('M', M)); /* memory? */ parse_bit_table(bios, bitoffset, &BIT_TABLE('L', lvds)); parse_bit_table(bios, bitoffset, &BIT_TABLE('T', tmds)); return 0; } static int parse_bmp_structure(struct drm_device *dev, struct nvbios *bios, unsigned int offset) { /* * Parses the BMP structure for useful things, but does not act on them * * offset + 5: BMP major version * offset + 6: BMP minor version * offset + 9: BMP feature byte * offset + 10: BCD encoded BIOS version * * offset + 18: init script table pointer (for bios versions < 5.10h) * offset + 20: extra init script table pointer (for bios * versions < 5.10h) * * offset + 24: memory init table pointer (used on early bios versions) * offset + 26: SDR memory sequencing setup data table * offset + 28: DDR memory sequencing setup data table * * offset + 54: index of I2C CRTC pair to use for CRT output * offset + 55: index of I2C CRTC pair to use for TV output * offset + 56: index of I2C CRTC pair to use for flat panel output * offset + 58: write CRTC index for I2C pair 0 * offset + 59: read CRTC index for I2C pair 0 * offset + 60: write CRTC index for I2C pair 1 * offset + 61: read CRTC index for I2C pair 1 * * offset + 67: maximum internal PLL frequency (single stage PLL) * offset + 71: minimum internal PLL frequency (single stage PLL) * * offset + 75: script table pointers, as described in * parse_script_table_pointers * * offset + 89: TMDS single link output A table pointer * offset + 91: TMDS single link output B table pointer * offset + 95: LVDS single link output A table pointer * offset + 105: flat panel timings table pointer * offset + 107: flat panel strapping translation table pointer * offset + 117: LVDS manufacturer panel config table pointer * offset + 119: LVDS manufacturer strapping translation table pointer * * offset + 142: PLL limits table pointer * * offset + 156: minimum pixel clock for LVDS dual link */ struct nouveau_drm *drm = nouveau_drm(dev); uint8_t *bmp = &bios->data[offset], bmp_version_major, bmp_version_minor; uint16_t bmplength; uint16_t legacy_scripts_offset, legacy_i2c_offset; /* load needed defaults in case we can't parse this info */ bios->digital_min_front_porch = 0x4b; bios->fmaxvco = 256000; bios->fminvco = 128000; bios->fp.duallink_transition_clk = 90000; bmp_version_major = bmp[5]; bmp_version_minor = bmp[6]; NV_INFO(drm, "BMP version %d.%d\n", bmp_version_major, bmp_version_minor); /* * Make sure that 0x36 is blank and can't be mistaken for a DCB * pointer on early versions */ if (bmp_version_major < 5) *(uint16_t *)&bios->data[0x36] = 0; /* * Seems that the minor version was 1 for all major versions prior * to 5. Version 6 could theoretically exist, but I suspect BIT * happened instead. */ if ((bmp_version_major < 5 && bmp_version_minor != 1) || bmp_version_major > 5) { NV_ERROR(drm, "You have an unsupported BMP version. " "Please send in your bios\n"); return -ENOSYS; } if (bmp_version_major == 0) /* nothing that's currently useful in this version */ return 0; else if (bmp_version_major == 1) bmplength = 44; /* exact for 1.01 */ else if (bmp_version_major == 2) bmplength = 48; /* exact for 2.01 */ else if (bmp_version_major == 3) bmplength = 54; /* guessed - mem init tables added in this version */ else if (bmp_version_major == 4 || bmp_version_minor < 0x1) /* don't know if 5.0 exists... */ bmplength = 62; /* guessed - BMP I2C indices added in version 4*/ else if (bmp_version_minor < 0x6) bmplength = 67; /* exact for 5.01 */ else if (bmp_version_minor < 0x10) bmplength = 75; /* exact for 5.06 */ else if (bmp_version_minor == 0x10) bmplength = 89; /* exact for 5.10h */ else if (bmp_version_minor < 0x14) bmplength = 118; /* exact for 5.11h */ else if (bmp_version_minor < 0x24) /* * Not sure of version where pll limits came in; * certainly exist by 0x24 though. */ /* length not exact: this is long enough to get lvds members */ bmplength = 123; else if (bmp_version_minor < 0x27) /* * Length not exact: this is long enough to get pll limit * member */ bmplength = 144; else /* * Length not exact: this is long enough to get dual link * transition clock. */ bmplength = 158; /* checksum */ if (nv_cksum(bmp, 8)) { NV_ERROR(drm, "Bad BMP checksum\n"); return -EINVAL; } /* * Bit 4 seems to indicate either a mobile bios or a quadro card -- * mobile behaviour consistent (nv11+), quadro only seen nv18gl-nv36gl * (not nv10gl), bit 5 that the flat panel tables are present, and * bit 6 a tv bios. */ bios->feature_byte = bmp[9]; if (bmp_version_major < 5 || bmp_version_minor < 0x10) bios->old_style_init = true; legacy_scripts_offset = 18; if (bmp_version_major < 2) legacy_scripts_offset -= 4; bios->init_script_tbls_ptr = ROM16(bmp[legacy_scripts_offset]); bios->extra_init_script_tbl_ptr = ROM16(bmp[legacy_scripts_offset + 2]); if (bmp_version_major > 2) { /* appears in BMP 3 */ bios->legacy.mem_init_tbl_ptr = ROM16(bmp[24]); bios->legacy.sdr_seq_tbl_ptr = ROM16(bmp[26]); bios->legacy.ddr_seq_tbl_ptr = ROM16(bmp[28]); } legacy_i2c_offset = 0x48; /* BMP version 2 & 3 */ if (bmplength > 61) legacy_i2c_offset = offset + 54; bios->legacy.i2c_indices.crt = bios->data[legacy_i2c_offset]; bios->legacy.i2c_indices.tv = bios->data[legacy_i2c_offset + 1]; bios->legacy.i2c_indices.panel = bios->data[legacy_i2c_offset + 2]; if (bmplength > 74) { bios->fmaxvco = ROM32(bmp[67]); bios->fminvco = ROM32(bmp[71]); } if (bmplength > 88) parse_script_table_pointers(bios, offset + 75); if (bmplength > 94) { bios->tmds.output0_script_ptr = ROM16(bmp[89]); bios->tmds.output1_script_ptr = ROM16(bmp[91]); /* * Never observed in use with lvds scripts, but is reused for * 18/24 bit panel interface default for EDID equipped panels * (if_is_24bit not set directly to avoid any oscillation). */ bios->legacy.lvds_single_a_script_ptr = ROM16(bmp[95]); } if (bmplength > 108) { bios->fp.fptablepointer = ROM16(bmp[105]); bios->fp.fpxlatetableptr = ROM16(bmp[107]); bios->fp.xlatwidth = 1; } if (bmplength > 120) { bios->fp.lvdsmanufacturerpointer = ROM16(bmp[117]); bios->fp.fpxlatemanufacturertableptr = ROM16(bmp[119]); } #if 0 if (bmplength > 143) bios->pll_limit_tbl_ptr = ROM16(bmp[142]); #endif if (bmplength > 157) bios->fp.duallink_transition_clk = ROM16(bmp[156]) * 10; return 0; } static uint16_t findstr(uint8_t *data, int n, const uint8_t *str, int len) { int i, j; for (i = 0; i <= (n - len); i++) { for (j = 0; j < len; j++) if (data[i + j] != str[j]) break; if (j == len) return i; } return 0; } void * olddcb_table(struct drm_device *dev) { struct nouveau_drm *drm = nouveau_drm(dev); u8 *dcb = NULL; if (drm->device.info.family > NV_DEVICE_INFO_V0_TNT) dcb = ROMPTR(dev, drm->vbios.data[0x36]); if (!dcb) { NV_WARN(drm, "No DCB data found in VBIOS\n"); return NULL; } if (dcb[0] >= 0x42) { NV_WARN(drm, "DCB version 0x%02x unknown\n", dcb[0]); return NULL; } else if (dcb[0] >= 0x30) { if (ROM32(dcb[6]) == 0x4edcbdcb) return dcb; } else if (dcb[0] >= 0x20) { if (ROM32(dcb[4]) == 0x4edcbdcb) return dcb; } else if (dcb[0] >= 0x15) { if (!memcmp(&dcb[-7], "DEV_REC", 7)) return dcb; } else { /* * v1.4 (some NV15/16, NV11+) seems the same as v1.5, but * always has the same single (crt) entry, even when tv-out * present, so the conclusion is this version cannot really * be used. * * v1.2 tables (some NV6/10, and NV15+) normally have the * same 5 entries, which are not specific to the card and so * no use. * * v1.2 does have an I2C table that read_dcb_i2c_table can * handle, but cards exist (nv11 in #14821) with a bad i2c * table pointer, so use the indices parsed in * parse_bmp_structure. * * v1.1 (NV5+, maybe some NV4) is entirely unhelpful */ NV_WARN(drm, "No useful DCB data in VBIOS\n"); return NULL; } NV_WARN(drm, "DCB header validation failed\n"); return NULL; } void * olddcb_outp(struct drm_device *dev, u8 idx) { u8 *dcb = olddcb_table(dev); if (dcb && dcb[0] >= 0x30) { if (idx < dcb[2]) return dcb + dcb[1] + (idx * dcb[3]); } else if (dcb && dcb[0] >= 0x20) { u8 *i2c = ROMPTR(dev, dcb[2]); u8 *ent = dcb + 8 + (idx * 8); if (i2c && ent < i2c) return ent; } else if (dcb && dcb[0] >= 0x15) { u8 *i2c = ROMPTR(dev, dcb[2]); u8 *ent = dcb + 4 + (idx * 10); if (i2c && ent < i2c) return ent; } return NULL; } int olddcb_outp_foreach(struct drm_device *dev, void *data, int (*exec)(struct drm_device *, void *, int idx, u8 *outp)) { int ret, idx = -1; u8 *outp = NULL; while ((outp = olddcb_outp(dev, ++idx))) { if (ROM32(outp[0]) == 0x00000000) break; /* seen on an NV11 with DCB v1.5 */ if (ROM32(outp[0]) == 0xffffffff) break; /* seen on an NV17 with DCB v2.0 */ if ((outp[0] & 0x0f) == DCB_OUTPUT_UNUSED) continue; if ((outp[0] & 0x0f) == DCB_OUTPUT_EOL) break; ret = exec(dev, data, idx, outp); if (ret) return ret; } return 0; } u8 * olddcb_conntab(struct drm_device *dev) { u8 *dcb = olddcb_table(dev); if (dcb && dcb[0] >= 0x30 && dcb[1] >= 0x16) { u8 *conntab = ROMPTR(dev, dcb[0x14]); if (conntab && conntab[0] >= 0x30 && conntab[0] <= 0x40) return conntab; } return NULL; } u8 * olddcb_conn(struct drm_device *dev, u8 idx) { u8 *conntab = olddcb_conntab(dev); if (conntab && idx < conntab[2]) return conntab + conntab[1] + (idx * conntab[3]); return NULL; } static struct dcb_output *new_dcb_entry(struct dcb_table *dcb) { struct dcb_output *entry = &dcb->entry[dcb->entries]; memset(entry, 0, sizeof(struct dcb_output)); entry->index = dcb->entries++; return entry; } static void fabricate_dcb_output(struct dcb_table *dcb, int type, int i2c, int heads, int or) { struct dcb_output *entry = new_dcb_entry(dcb); entry->type = type; entry->i2c_index = i2c; entry->heads = heads; if (type != DCB_OUTPUT_ANALOG) entry->location = !DCB_LOC_ON_CHIP; /* ie OFF CHIP */ entry->or = or; } static bool parse_dcb20_entry(struct drm_device *dev, struct dcb_table *dcb, uint32_t conn, uint32_t conf, struct dcb_output *entry) { struct nouveau_drm *drm = nouveau_drm(dev); int link = 0; entry->type = conn & 0xf; entry->i2c_index = (conn >> 4) & 0xf; entry->heads = (conn >> 8) & 0xf; entry->connector = (conn >> 12) & 0xf; entry->bus = (conn >> 16) & 0xf; entry->location = (conn >> 20) & 0x3; entry->or = (conn >> 24) & 0xf; switch (entry->type) { case DCB_OUTPUT_ANALOG: /* * Although the rest of a CRT conf dword is usually * zeros, mac biosen have stuff there so we must mask */ entry->crtconf.maxfreq = (dcb->version < 0x30) ? (conf & 0xffff) * 10 : (conf & 0xff) * 10000; break; case DCB_OUTPUT_LVDS: { uint32_t mask; if (conf & 0x1) entry->lvdsconf.use_straps_for_mode = true; if (dcb->version < 0x22) { mask = ~0xd; /* * The laptop in bug 14567 lies and claims to not use * straps when it does, so assume all DCB 2.0 laptops * use straps, until a broken EDID using one is produced */ entry->lvdsconf.use_straps_for_mode = true; /* * Both 0x4 and 0x8 show up in v2.0 tables; assume they * mean the same thing (probably wrong, but might work) */ if (conf & 0x4 || conf & 0x8) entry->lvdsconf.use_power_scripts = true; } else { mask = ~0x7; if (conf & 0x2) entry->lvdsconf.use_acpi_for_edid = true; if (conf & 0x4) entry->lvdsconf.use_power_scripts = true; entry->lvdsconf.sor.link = (conf & 0x00000030) >> 4; link = entry->lvdsconf.sor.link; } if (conf & mask) { /* * Until we even try to use these on G8x, it's * useless reporting unknown bits. They all are. */ if (dcb->version >= 0x40) break; NV_ERROR(drm, "Unknown LVDS configuration bits, " "please report\n"); } break; } case DCB_OUTPUT_TV: { if (dcb->version >= 0x30) entry->tvconf.has_component_output = conf & (0x8 << 4); else entry->tvconf.has_component_output = false; break; } case DCB_OUTPUT_DP: entry->dpconf.sor.link = (conf & 0x00000030) >> 4; entry->extdev = (conf & 0x0000ff00) >> 8; switch ((conf & 0x00e00000) >> 21) { case 0: entry->dpconf.link_bw = 162000; break; case 1: entry->dpconf.link_bw = 270000; break; default: entry->dpconf.link_bw = 540000; break; } entry->dpconf.link_nr = (conf & 0x0f000000) >> 24; if (dcb->version < 0x41) { switch (entry->dpconf.link_nr) { case 0xf: entry->dpconf.link_nr = 4; break; case 0x3: entry->dpconf.link_nr = 2; break; default: entry->dpconf.link_nr = 1; break; } } link = entry->dpconf.sor.link; entry->i2c_index += NV_I2C_AUX(0); break; case DCB_OUTPUT_TMDS: if (dcb->version >= 0x40) { entry->tmdsconf.sor.link = (conf & 0x00000030) >> 4; entry->extdev = (conf & 0x0000ff00) >> 8; link = entry->tmdsconf.sor.link; } else if (dcb->version >= 0x30) entry->tmdsconf.slave_addr = (conf & 0x00000700) >> 8; else if (dcb->version >= 0x22) entry->tmdsconf.slave_addr = (conf & 0x00000070) >> 4; break; case DCB_OUTPUT_EOL: /* weird g80 mobile type that "nv" treats as a terminator */ dcb->entries--; return false; default: break; } if (dcb->version < 0x40) { /* Normal entries consist of a single bit, but dual link has * the next most significant bit set too */ entry->duallink_possible = ((1 << (ffs(entry->or) - 1)) * 3 == entry->or); } else { entry->duallink_possible = (entry->sorconf.link == 3); } /* unsure what DCB version introduces this, 3.0? */ if (conf & 0x100000) entry->i2c_upper_default = true; entry->hasht = (entry->location << 4) | entry->type; entry->hashm = (entry->heads << 8) | (link << 6) | entry->or; return true; } static bool parse_dcb15_entry(struct drm_device *dev, struct dcb_table *dcb, uint32_t conn, uint32_t conf, struct dcb_output *entry) { struct nouveau_drm *drm = nouveau_drm(dev); switch (conn & 0x0000000f) { case 0: entry->type = DCB_OUTPUT_ANALOG; break; case 1: entry->type = DCB_OUTPUT_TV; break; case 2: case 4: if (conn & 0x10) entry->type = DCB_OUTPUT_LVDS; else entry->type = DCB_OUTPUT_TMDS; break; case 3: entry->type = DCB_OUTPUT_LVDS; break; default: NV_ERROR(drm, "Unknown DCB type %d\n", conn & 0x0000000f); return false; } entry->i2c_index = (conn & 0x0003c000) >> 14; entry->heads = ((conn & 0x001c0000) >> 18) + 1; entry->or = entry->heads; /* same as heads, hopefully safe enough */ entry->location = (conn & 0x01e00000) >> 21; entry->bus = (conn & 0x0e000000) >> 25; entry->duallink_possible = false; switch (entry->type) { case DCB_OUTPUT_ANALOG: entry->crtconf.maxfreq = (conf & 0xffff) * 10; break; case DCB_OUTPUT_TV: entry->tvconf.has_component_output = false; break; case DCB_OUTPUT_LVDS: if ((conn & 0x00003f00) >> 8 != 0x10) entry->lvdsconf.use_straps_for_mode = true; entry->lvdsconf.use_power_scripts = true; break; default: break; } return true; } static void merge_like_dcb_entries(struct drm_device *dev, struct dcb_table *dcb) { /* * DCB v2.0 lists each output combination separately. * Here we merge compatible entries to have fewer outputs, with * more options */ struct nouveau_drm *drm = nouveau_drm(dev); int i, newentries = 0; for (i = 0; i < dcb->entries; i++) { struct dcb_output *ient = &dcb->entry[i]; int j; for (j = i + 1; j < dcb->entries; j++) { struct dcb_output *jent = &dcb->entry[j]; if (jent->type == 100) /* already merged entry */ continue; /* merge heads field when all other fields the same */ if (jent->i2c_index == ient->i2c_index && jent->type == ient->type && jent->location == ient->location && jent->or == ient->or) { NV_INFO(drm, "Merging DCB entries %d and %d\n", i, j); ient->heads |= jent->heads; jent->type = 100; /* dummy value */ } } } /* Compact entries merged into others out of dcb */ for (i = 0; i < dcb->entries; i++) { if (dcb->entry[i].type == 100) continue; if (newentries != i) { dcb->entry[newentries] = dcb->entry[i]; dcb->entry[newentries].index = newentries; } newentries++; } dcb->entries = newentries; } static bool apply_dcb_encoder_quirks(struct drm_device *dev, int idx, u32 *conn, u32 *conf) { struct nouveau_drm *drm = nouveau_drm(dev); struct dcb_table *dcb = &drm->vbios.dcb; /* Dell Precision M6300 * DCB entry 2: 02025312 00000010 * DCB entry 3: 02026312 00000020 * * Identical, except apparently a different connector on a * different SOR link. Not a clue how we're supposed to know * which one is in use if it even shares an i2c line... * * Ignore the connector on the second SOR link to prevent * nasty problems until this is sorted (assuming it's not a * VBIOS bug). */ if (nv_match_device(dev, 0x040d, 0x1028, 0x019b)) { if (*conn == 0x02026312 && *conf == 0x00000020) return false; } /* GeForce3 Ti 200 * * DCB reports an LVDS output that should be TMDS: * DCB entry 1: f2005014 ffffffff */ if (nv_match_device(dev, 0x0201, 0x1462, 0x8851)) { if (*conn == 0xf2005014 && *conf == 0xffffffff) { fabricate_dcb_output(dcb, DCB_OUTPUT_TMDS, 1, 1, 1); return false; } } /* XFX GT-240X-YA * * So many things wrong here, replace the entire encoder table.. */ if (nv_match_device(dev, 0x0ca3, 0x1682, 0x3003)) { if (idx == 0) { *conn = 0x02001300; /* VGA, connector 1 */ *conf = 0x00000028; } else if (idx == 1) { *conn = 0x01010312; /* DVI, connector 0 */ *conf = 0x00020030; } else if (idx == 2) { *conn = 0x01010310; /* VGA, connector 0 */ *conf = 0x00000028; } else if (idx == 3) { *conn = 0x02022362; /* HDMI, connector 2 */ *conf = 0x00020010; } else { *conn = 0x0000000e; /* EOL */ *conf = 0x00000000; } } /* Some other twisted XFX board (rhbz#694914) * * The DVI/VGA encoder combo that's supposed to represent the * DVI-I connector actually point at two different ones, and * the HDMI connector ends up paired with the VGA instead. * * Connector table is missing anything for VGA at all, pointing it * an invalid conntab entry 2 so we figure it out ourself. */ if (nv_match_device(dev, 0x0615, 0x1682, 0x2605)) { if (idx == 0) { *conn = 0x02002300; /* VGA, connector 2 */ *conf = 0x00000028; } else if (idx == 1) { *conn = 0x01010312; /* DVI, connector 0 */ *conf = 0x00020030; } else if (idx == 2) { *conn = 0x04020310; /* VGA, connector 0 */ *conf = 0x00000028; } else if (idx == 3) { *conn = 0x02021322; /* HDMI, connector 1 */ *conf = 0x00020010; } else { *conn = 0x0000000e; /* EOL */ *conf = 0x00000000; } } /* fdo#50830: connector indices for VGA and DVI-I are backwards */ if (nv_match_device(dev, 0x0421, 0x3842, 0xc793)) { if (idx == 0 && *conn == 0x02000300) *conn = 0x02011300; else if (idx == 1 && *conn == 0x04011310) *conn = 0x04000310; else if (idx == 2 && *conn == 0x02011312) *conn = 0x02000312; } return true; } static void fabricate_dcb_encoder_table(struct drm_device *dev, struct nvbios *bios) { struct dcb_table *dcb = &bios->dcb; int all_heads = (nv_two_heads(dev) ? 3 : 1); #ifdef __powerpc__ /* Apple iMac G4 NV17 */ if (of_machine_is_compatible("PowerMac4,5")) { fabricate_dcb_output(dcb, DCB_OUTPUT_TMDS, 0, all_heads, 1); fabricate_dcb_output(dcb, DCB_OUTPUT_ANALOG, 1, all_heads, 2); return; } #endif /* Make up some sane defaults */ fabricate_dcb_output(dcb, DCB_OUTPUT_ANALOG, bios->legacy.i2c_indices.crt, 1, 1); if (nv04_tv_identify(dev, bios->legacy.i2c_indices.tv) >= 0) fabricate_dcb_output(dcb, DCB_OUTPUT_TV, bios->legacy.i2c_indices.tv, all_heads, 0); else if (bios->tmds.output0_script_ptr || bios->tmds.output1_script_ptr) fabricate_dcb_output(dcb, DCB_OUTPUT_TMDS, bios->legacy.i2c_indices.panel, all_heads, 1); } static int parse_dcb_entry(struct drm_device *dev, void *data, int idx, u8 *outp) { struct nouveau_drm *drm = nouveau_drm(dev); struct dcb_table *dcb = &drm->vbios.dcb; u32 conf = (dcb->version >= 0x20) ? ROM32(outp[4]) : ROM32(outp[6]); u32 conn = ROM32(outp[0]); bool ret; if (apply_dcb_encoder_quirks(dev, idx, &conn, &conf)) { struct dcb_output *entry = new_dcb_entry(dcb); NV_INFO(drm, "DCB outp %02d: %08x %08x\n", idx, conn, conf); if (dcb->version >= 0x20) ret = parse_dcb20_entry(dev, dcb, conn, conf, entry); else ret = parse_dcb15_entry(dev, dcb, conn, conf, entry); if (!ret) return 1; /* stop parsing */ /* Ignore the I2C index for on-chip TV-out, as there * are cards with bogus values (nv31m in bug 23212), * and it's otherwise useless. */ if (entry->type == DCB_OUTPUT_TV && entry->location == DCB_LOC_ON_CHIP) entry->i2c_index = 0x0f; } return 0; } static void dcb_fake_connectors(struct nvbios *bios) { struct dcb_table *dcbt = &bios->dcb; u8 map[16] = { }; int i, idx = 0; /* heuristic: if we ever get a non-zero connector field, assume * that all the indices are valid and we don't need fake them. * * and, as usual, a blacklist of boards with bad bios data.. */ if (!nv_match_device(bios->dev, 0x0392, 0x107d, 0x20a2)) { for (i = 0; i < dcbt->entries; i++) { if (dcbt->entry[i].connector) return; } } /* no useful connector info available, we need to make it up * ourselves. the rule here is: anything on the same i2c bus * is considered to be on the same connector. any output * without an associated i2c bus is assigned its own unique * connector index. */ for (i = 0; i < dcbt->entries; i++) { u8 i2c = dcbt->entry[i].i2c_index; if (i2c == 0x0f) { dcbt->entry[i].connector = idx++; } else { if (!map[i2c]) map[i2c] = ++idx; dcbt->entry[i].connector = map[i2c] - 1; } } /* if we created more than one connector, destroy the connector * table - just in case it has random, rather than stub, entries. */ if (i > 1) { u8 *conntab = olddcb_conntab(bios->dev); if (conntab) conntab[0] = 0x00; } } static int parse_dcb_table(struct drm_device *dev, struct nvbios *bios) { struct nouveau_drm *drm = nouveau_drm(dev); struct dcb_table *dcb = &bios->dcb; u8 *dcbt, *conn; int idx; dcbt = olddcb_table(dev); if (!dcbt) { /* handle pre-DCB boards */ if (bios->type == NVBIOS_BMP) { fabricate_dcb_encoder_table(dev, bios); return 0; } return -EINVAL; } NV_INFO(drm, "DCB version %d.%d\n", dcbt[0] >> 4, dcbt[0] & 0xf); dcb->version = dcbt[0]; olddcb_outp_foreach(dev, NULL, parse_dcb_entry); /* * apart for v2.1+ not being known for requiring merging, this * guarantees dcbent->index is the index of the entry in the rom image */ if (dcb->version < 0x21) merge_like_dcb_entries(dev, dcb); /* dump connector table entries to log, if any exist */ idx = -1; while ((conn = olddcb_conn(dev, ++idx))) { if (conn[0] != 0xff) { NV_INFO(drm, "DCB conn %02d: ", idx); if (olddcb_conntab(dev)[3] < 4) pr_cont("%04x\n", ROM16(conn[0])); else pr_cont("%08x\n", ROM32(conn[0])); } } dcb_fake_connectors(bios); return 0; } static int load_nv17_hwsq_ucode_entry(struct drm_device *dev, struct nvbios *bios, uint16_t hwsq_offset, int entry) { /* * The header following the "HWSQ" signature has the number of entries, * and the entry size * * An entry consists of a dword to write to the sequencer control reg * (0x00001304), followed by the ucode bytes, written sequentially, * starting at reg 0x00001400 */ struct nouveau_drm *drm = nouveau_drm(dev); struct nvif_device *device = &drm->device; uint8_t bytes_to_write; uint16_t hwsq_entry_offset; int i; if (bios->data[hwsq_offset] <= entry) { NV_ERROR(drm, "Too few entries in HW sequencer table for " "requested entry\n"); return -ENOENT; } bytes_to_write = bios->data[hwsq_offset + 1]; if (bytes_to_write != 36) { NV_ERROR(drm, "Unknown HW sequencer entry size\n"); return -EINVAL; } NV_INFO(drm, "Loading NV17 power sequencing microcode\n"); hwsq_entry_offset = hwsq_offset + 2 + entry * bytes_to_write; /* set sequencer control */ nvif_wr32(device, 0x00001304, ROM32(bios->data[hwsq_entry_offset])); bytes_to_write -= 4; /* write ucode */ for (i = 0; i < bytes_to_write; i += 4) nvif_wr32(device, 0x00001400 + i, ROM32(bios->data[hwsq_entry_offset + i + 4])); /* twiddle NV_PBUS_DEBUG_4 */ nvif_wr32(device, NV_PBUS_DEBUG_4, nvif_rd32(device, NV_PBUS_DEBUG_4) | 0x18); return 0; } static int load_nv17_hw_sequencer_ucode(struct drm_device *dev, struct nvbios *bios) { /* * BMP based cards, from NV17, need a microcode loading to correctly * control the GPIO etc for LVDS panels * * BIT based cards seem to do this directly in the init scripts * * The microcode entries are found by the "HWSQ" signature. */ const uint8_t hwsq_signature[] = { 'H', 'W', 'S', 'Q' }; const int sz = sizeof(hwsq_signature); int hwsq_offset; hwsq_offset = findstr(bios->data, bios->length, hwsq_signature, sz); if (!hwsq_offset) return 0; /* always use entry 0? */ return load_nv17_hwsq_ucode_entry(dev, bios, hwsq_offset + sz, 0); } uint8_t *nouveau_bios_embedded_edid(struct drm_device *dev) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvbios *bios = &drm->vbios; const uint8_t edid_sig[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 }; uint16_t offset = 0; uint16_t newoffset; int searchlen = NV_PROM_SIZE; if (bios->fp.edid) return bios->fp.edid; while (searchlen) { newoffset = findstr(&bios->data[offset], searchlen, edid_sig, 8); if (!newoffset) return NULL; offset += newoffset; if (!nv_cksum(&bios->data[offset], EDID1_LEN)) break; searchlen -= offset; offset++; } NV_INFO(drm, "Found EDID in BIOS\n"); return bios->fp.edid = &bios->data[offset]; } static bool NVInitVBIOS(struct drm_device *dev) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvkm_bios *bios = nvxx_bios(&drm->device); struct nvbios *legacy = &drm->vbios; memset(legacy, 0, sizeof(struct nvbios)); spin_lock_init(&legacy->lock); legacy->dev = dev; legacy->data = bios->data; legacy->length = bios->size; legacy->major_version = bios->version.major; legacy->chip_version = bios->version.chip; if (bios->bit_offset) { legacy->type = NVBIOS_BIT; legacy->offset = bios->bit_offset; return !parse_bit_structure(legacy, legacy->offset + 6); } else if (bios->bmp_offset) { legacy->type = NVBIOS_BMP; legacy->offset = bios->bmp_offset; return !parse_bmp_structure(dev, legacy, legacy->offset); } return false; } int nouveau_run_vbios_init(struct drm_device *dev) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvbios *bios = &drm->vbios; int ret = 0; /* Reset the BIOS head to 0. */ bios->state.crtchead = 0; if (bios->major_version < 5) /* BMP only */ load_nv17_hw_sequencer_ucode(dev, bios); if (bios->execute) { bios->fp.last_script_invoc = 0; bios->fp.lvds_init_run = false; } return ret; } static bool nouveau_bios_posted(struct drm_device *dev) { struct nouveau_drm *drm = nouveau_drm(dev); unsigned htotal; if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) return true; htotal = NVReadVgaCrtc(dev, 0, 0x06); htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x01) << 8; htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x20) << 4; htotal |= (NVReadVgaCrtc(dev, 0, 0x25) & 0x01) << 10; htotal |= (NVReadVgaCrtc(dev, 0, 0x41) & 0x01) << 11; return (htotal != 0); } int nouveau_bios_init(struct drm_device *dev) { struct nouveau_drm *drm = nouveau_drm(dev); struct nvbios *bios = &drm->vbios; int ret; /* only relevant for PCI devices */ if (!dev->pdev) return 0; if (!NVInitVBIOS(dev)) return -ENODEV; ret = parse_dcb_table(dev, bios); if (ret) return ret; if (!bios->major_version) /* we don't run version 0 bios */ return 0; /* init script execution disabled */ bios->execute = false; /* ... unless card isn't POSTed already */ if (!nouveau_bios_posted(dev)) { NV_INFO(drm, "Adaptor not initialised, " "running VBIOS init tables.\n"); bios->execute = true; } ret = nouveau_run_vbios_init(dev); if (ret) return ret; /* feature_byte on BMP is poor, but init always sets CR4B */ if (bios->major_version < 5) bios->is_mobile = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_4B) & 0x40; /* all BIT systems need p_f_m_t for digital_min_front_porch */ if (bios->is_mobile || bios->major_version >= 5) ret = parse_fp_mode_table(dev, bios); /* allow subsequent scripts to execute */ bios->execute = true; return 0; } void nouveau_bios_takedown(struct drm_device *dev) { }