/* * Copyright 2013 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "dport.h" #include "outpdp.h" #include "nv50.h" #include <subdev/bios.h> #include <subdev/bios/init.h> #include <subdev/i2c.h> #include <nvif/class.h> /****************************************************************************** * link training *****************************************************************************/ struct dp_state { struct nvkm_output_dp *outp; int link_nr; u32 link_bw; u8 stat[6]; u8 conf[4]; bool pc2; u8 pc2stat; u8 pc2conf[2]; }; static int dp_set_link_config(struct dp_state *dp) { struct nvkm_output_dp_impl *impl = (void *)nv_oclass(dp->outp); struct nvkm_output_dp *outp = dp->outp; struct nvkm_disp *disp = nvkm_disp(outp); struct nvkm_bios *bios = nvkm_bios(disp); struct nvbios_init init = { .subdev = nv_subdev(disp), .bios = bios, .offset = 0x0000, .outp = &outp->base.info, .crtc = -1, .execute = 1, }; u32 lnkcmp; u8 sink[2]; int ret; DBG("%d lanes at %d KB/s\n", dp->link_nr, dp->link_bw); /* set desired link configuration on the source */ if ((lnkcmp = dp->outp->info.lnkcmp)) { if (outp->version < 0x30) { while ((dp->link_bw / 10) < nv_ro16(bios, lnkcmp)) lnkcmp += 4; init.offset = nv_ro16(bios, lnkcmp + 2); } else { while ((dp->link_bw / 27000) < nv_ro08(bios, lnkcmp)) lnkcmp += 3; init.offset = nv_ro16(bios, lnkcmp + 1); } nvbios_exec(&init); } ret = impl->lnk_ctl(outp, dp->link_nr, dp->link_bw / 27000, outp->dpcd[DPCD_RC02] & DPCD_RC02_ENHANCED_FRAME_CAP); if (ret) { if (ret < 0) ERR("lnk_ctl failed with %d\n", ret); return ret; } impl->lnk_pwr(outp, dp->link_nr); /* set desired link configuration on the sink */ sink[0] = dp->link_bw / 27000; sink[1] = dp->link_nr; if (outp->dpcd[DPCD_RC02] & DPCD_RC02_ENHANCED_FRAME_CAP) sink[1] |= DPCD_LC01_ENHANCED_FRAME_EN; return nv_wraux(outp->base.edid, DPCD_LC00_LINK_BW_SET, sink, 2); } static void dp_set_training_pattern(struct dp_state *dp, u8 pattern) { struct nvkm_output_dp_impl *impl = (void *)nv_oclass(dp->outp); struct nvkm_output_dp *outp = dp->outp; u8 sink_tp; DBG("training pattern %d\n", pattern); impl->pattern(outp, pattern); nv_rdaux(outp->base.edid, DPCD_LC02, &sink_tp, 1); sink_tp &= ~DPCD_LC02_TRAINING_PATTERN_SET; sink_tp |= pattern; nv_wraux(outp->base.edid, DPCD_LC02, &sink_tp, 1); } static int dp_link_train_commit(struct dp_state *dp, bool pc) { struct nvkm_output_dp_impl *impl = (void *)nv_oclass(dp->outp); struct nvkm_output_dp *outp = dp->outp; int ret, i; for (i = 0; i < dp->link_nr; i++) { u8 lane = (dp->stat[4 + (i >> 1)] >> ((i & 1) * 4)) & 0xf; u8 lpc2 = (dp->pc2stat >> (i * 2)) & 0x3; u8 lpre = (lane & 0x0c) >> 2; u8 lvsw = (lane & 0x03) >> 0; u8 hivs = 3 - lpre; u8 hipe = 3; u8 hipc = 3; if (lpc2 >= hipc) lpc2 = hipc | DPCD_LC0F_LANE0_MAX_POST_CURSOR2_REACHED; if (lpre >= hipe) { lpre = hipe | DPCD_LC03_MAX_SWING_REACHED; /* yes. */ lvsw = hivs = 3 - (lpre & 3); } else if (lvsw >= hivs) { lvsw = hivs | DPCD_LC03_MAX_SWING_REACHED; } dp->conf[i] = (lpre << 3) | lvsw; dp->pc2conf[i >> 1] |= lpc2 << ((i & 1) * 4); DBG("config lane %d %02x %02x\n", i, dp->conf[i], lpc2); impl->drv_ctl(outp, i, lvsw & 3, lpre & 3, lpc2 & 3); } ret = nv_wraux(outp->base.edid, DPCD_LC03(0), dp->conf, 4); if (ret) return ret; if (pc) { ret = nv_wraux(outp->base.edid, DPCD_LC0F, dp->pc2conf, 2); if (ret) return ret; } return 0; } static int dp_link_train_update(struct dp_state *dp, bool pc, u32 delay) { struct nvkm_output_dp *outp = dp->outp; int ret; if (outp->dpcd[DPCD_RC0E_AUX_RD_INTERVAL]) mdelay(outp->dpcd[DPCD_RC0E_AUX_RD_INTERVAL] * 4); else udelay(delay); ret = nv_rdaux(outp->base.edid, DPCD_LS02, dp->stat, 6); if (ret) return ret; if (pc) { ret = nv_rdaux(outp->base.edid, DPCD_LS0C, &dp->pc2stat, 1); if (ret) dp->pc2stat = 0x00; DBG("status %6ph pc2 %02x\n", dp->stat, dp->pc2stat); } else { DBG("status %6ph\n", dp->stat); } return 0; } static int dp_link_train_cr(struct dp_state *dp) { bool cr_done = false, abort = false; int voltage = dp->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET; int tries = 0, i; dp_set_training_pattern(dp, 1); do { if (dp_link_train_commit(dp, false) || dp_link_train_update(dp, false, 100)) break; cr_done = true; for (i = 0; i < dp->link_nr; i++) { u8 lane = (dp->stat[i >> 1] >> ((i & 1) * 4)) & 0xf; if (!(lane & DPCD_LS02_LANE0_CR_DONE)) { cr_done = false; if (dp->conf[i] & DPCD_LC03_MAX_SWING_REACHED) abort = true; break; } } if ((dp->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET) != voltage) { voltage = dp->conf[0] & DPCD_LC03_VOLTAGE_SWING_SET; tries = 0; } } while (!cr_done && !abort && ++tries < 5); return cr_done ? 0 : -1; } static int dp_link_train_eq(struct dp_state *dp) { struct nvkm_output_dp *outp = dp->outp; bool eq_done = false, cr_done = true; int tries = 0, i; if (outp->dpcd[2] & DPCD_RC02_TPS3_SUPPORTED) dp_set_training_pattern(dp, 3); else dp_set_training_pattern(dp, 2); do { if ((tries && dp_link_train_commit(dp, dp->pc2)) || dp_link_train_update(dp, dp->pc2, 400)) break; eq_done = !!(dp->stat[2] & DPCD_LS04_INTERLANE_ALIGN_DONE); for (i = 0; i < dp->link_nr && eq_done; i++) { u8 lane = (dp->stat[i >> 1] >> ((i & 1) * 4)) & 0xf; if (!(lane & DPCD_LS02_LANE0_CR_DONE)) cr_done = false; if (!(lane & DPCD_LS02_LANE0_CHANNEL_EQ_DONE) || !(lane & DPCD_LS02_LANE0_SYMBOL_LOCKED)) eq_done = false; } } while (!eq_done && cr_done && ++tries <= 5); return eq_done ? 0 : -1; } static void dp_link_train_init(struct dp_state *dp, bool spread) { struct nvkm_output_dp *outp = dp->outp; struct nvkm_disp *disp = nvkm_disp(outp); struct nvkm_bios *bios = nvkm_bios(disp); struct nvbios_init init = { .subdev = nv_subdev(disp), .bios = bios, .outp = &outp->base.info, .crtc = -1, .execute = 1, }; /* set desired spread */ if (spread) init.offset = outp->info.script[2]; else init.offset = outp->info.script[3]; nvbios_exec(&init); /* pre-train script */ init.offset = outp->info.script[0]; nvbios_exec(&init); } static void dp_link_train_fini(struct dp_state *dp) { struct nvkm_output_dp *outp = dp->outp; struct nvkm_disp *disp = nvkm_disp(outp); struct nvkm_bios *bios = nvkm_bios(disp); struct nvbios_init init = { .subdev = nv_subdev(disp), .bios = bios, .outp = &outp->base.info, .crtc = -1, .execute = 1, }; /* post-train script */ init.offset = outp->info.script[1], nvbios_exec(&init); } static const struct dp_rates { u32 rate; u8 bw; u8 nr; } nvkm_dp_rates[] = { { 2160000, 0x14, 4 }, { 1080000, 0x0a, 4 }, { 1080000, 0x14, 2 }, { 648000, 0x06, 4 }, { 540000, 0x0a, 2 }, { 540000, 0x14, 1 }, { 324000, 0x06, 2 }, { 270000, 0x0a, 1 }, { 162000, 0x06, 1 }, {} }; void nvkm_dp_train(struct work_struct *w) { struct nvkm_output_dp *outp = container_of(w, typeof(*outp), lt.work); struct nv50_disp_priv *priv = (void *)nvkm_disp(outp); const struct dp_rates *cfg = nvkm_dp_rates; struct dp_state _dp = { .outp = outp, }, *dp = &_dp; u32 datarate = 0; int ret; if (!outp->base.info.location && priv->sor.magic) priv->sor.magic(&outp->base); /* bring capabilities within encoder limits */ if (nv_mclass(priv) < GF110_DISP) outp->dpcd[2] &= ~DPCD_RC02_TPS3_SUPPORTED; if ((outp->dpcd[2] & 0x1f) > outp->base.info.dpconf.link_nr) { outp->dpcd[2] &= ~DPCD_RC02_MAX_LANE_COUNT; outp->dpcd[2] |= outp->base.info.dpconf.link_nr; } if (outp->dpcd[1] > outp->base.info.dpconf.link_bw) outp->dpcd[1] = outp->base.info.dpconf.link_bw; dp->pc2 = outp->dpcd[2] & DPCD_RC02_TPS3_SUPPORTED; /* restrict link config to the lowest required rate, if requested */ if (datarate) { datarate = (datarate / 8) * 10; /* 8B/10B coding overhead */ while (cfg[1].rate >= datarate) cfg++; } cfg--; /* disable link interrupt handling during link training */ nvkm_notify_put(&outp->irq); /* enable down-spreading and execute pre-train script from vbios */ dp_link_train_init(dp, outp->dpcd[3] & 0x01); while (ret = -EIO, (++cfg)->rate) { /* select next configuration supported by encoder and sink */ while (cfg->nr > (outp->dpcd[2] & DPCD_RC02_MAX_LANE_COUNT) || cfg->bw > (outp->dpcd[DPCD_RC01_MAX_LINK_RATE])) cfg++; dp->link_bw = cfg->bw * 27000; dp->link_nr = cfg->nr; /* program selected link configuration */ ret = dp_set_link_config(dp); if (ret == 0) { /* attempt to train the link at this configuration */ memset(dp->stat, 0x00, sizeof(dp->stat)); if (!dp_link_train_cr(dp) && !dp_link_train_eq(dp)) break; } else if (ret) { /* dp_set_link_config() handled training, or * we failed to communicate with the sink. */ break; } } /* finish link training and execute post-train script from vbios */ dp_set_training_pattern(dp, 0); if (ret < 0) ERR("link training failed\n"); dp_link_train_fini(dp); /* signal completion and enable link interrupt handling */ DBG("training complete\n"); atomic_set(&outp->lt.done, 1); wake_up(&outp->lt.wait); nvkm_notify_get(&outp->irq); }