/* * Copyright 2012 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "nv50.h" #include "outp.h" #include "outpdp.h" #include <core/client.h> #include <core/device.h> #include <core/engctx.h> #include <core/enum.h> #include <core/handle.h> #include <core/ramht.h> #include <engine/dmaobj.h> #include <subdev/bios.h> #include <subdev/bios/dcb.h> #include <subdev/bios/disp.h> #include <subdev/bios/init.h> #include <subdev/bios/pll.h> #include <subdev/devinit.h> #include <subdev/fb.h> #include <subdev/timer.h> #include <nvif/class.h> #include <nvif/event.h> #include <nvif/unpack.h> /******************************************************************************* * EVO channel base class ******************************************************************************/ static int nv50_disp_chan_create_(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, int head, int length, void **pobject) { const struct nv50_disp_chan_impl *impl = (void *)oclass->ofuncs; struct nv50_disp_base *base = (void *)parent; struct nv50_disp_chan *chan; int chid = impl->chid + head; int ret; if (base->chan & (1 << chid)) return -EBUSY; base->chan |= (1 << chid); ret = nvkm_namedb_create_(parent, engine, oclass, 0, NULL, (1ULL << NVDEV_ENGINE_DMAOBJ), length, pobject); chan = *pobject; if (ret) return ret; chan->chid = chid; nv_parent(chan)->object_attach = impl->attach; nv_parent(chan)->object_detach = impl->detach; return 0; } static void nv50_disp_chan_destroy(struct nv50_disp_chan *chan) { struct nv50_disp_base *base = (void *)nv_object(chan)->parent; base->chan &= ~(1 << chan->chid); nvkm_namedb_destroy(&chan->base); } static void nv50_disp_chan_uevent_fini(struct nvkm_event *event, int type, int index) { struct nv50_disp_priv *priv = container_of(event, typeof(*priv), uevent); nv_mask(priv, 0x610028, 0x00000001 << index, 0x00000000 << index); nv_wr32(priv, 0x610020, 0x00000001 << index); } static void nv50_disp_chan_uevent_init(struct nvkm_event *event, int types, int index) { struct nv50_disp_priv *priv = container_of(event, typeof(*priv), uevent); nv_wr32(priv, 0x610020, 0x00000001 << index); nv_mask(priv, 0x610028, 0x00000001 << index, 0x00000001 << index); } void nv50_disp_chan_uevent_send(struct nv50_disp_priv *priv, int chid) { struct nvif_notify_uevent_rep { } rep; nvkm_event_send(&priv->uevent, 1, chid, &rep, sizeof(rep)); } int nv50_disp_chan_uevent_ctor(struct nvkm_object *object, void *data, u32 size, struct nvkm_notify *notify) { struct nv50_disp_dmac *dmac = (void *)object; union { struct nvif_notify_uevent_req none; } *args = data; int ret; if (nvif_unvers(args->none)) { notify->size = sizeof(struct nvif_notify_uevent_rep); notify->types = 1; notify->index = dmac->base.chid; return 0; } return ret; } const struct nvkm_event_func nv50_disp_chan_uevent = { .ctor = nv50_disp_chan_uevent_ctor, .init = nv50_disp_chan_uevent_init, .fini = nv50_disp_chan_uevent_fini, }; int nv50_disp_chan_ntfy(struct nvkm_object *object, u32 type, struct nvkm_event **pevent) { struct nv50_disp_priv *priv = (void *)object->engine; switch (type) { case NV50_DISP_CORE_CHANNEL_DMA_V0_NTFY_UEVENT: *pevent = &priv->uevent; return 0; default: break; } return -EINVAL; } int nv50_disp_chan_map(struct nvkm_object *object, u64 *addr, u32 *size) { struct nv50_disp_chan *chan = (void *)object; *addr = nv_device_resource_start(nv_device(object), 0) + 0x640000 + (chan->chid * 0x1000); *size = 0x001000; return 0; } u32 nv50_disp_chan_rd32(struct nvkm_object *object, u64 addr) { struct nv50_disp_priv *priv = (void *)object->engine; struct nv50_disp_chan *chan = (void *)object; return nv_rd32(priv, 0x640000 + (chan->chid * 0x1000) + addr); } void nv50_disp_chan_wr32(struct nvkm_object *object, u64 addr, u32 data) { struct nv50_disp_priv *priv = (void *)object->engine; struct nv50_disp_chan *chan = (void *)object; nv_wr32(priv, 0x640000 + (chan->chid * 0x1000) + addr, data); } /******************************************************************************* * EVO DMA channel base class ******************************************************************************/ static int nv50_disp_dmac_object_attach(struct nvkm_object *parent, struct nvkm_object *object, u32 name) { struct nv50_disp_base *base = (void *)parent->parent; struct nv50_disp_chan *chan = (void *)parent; u32 addr = nv_gpuobj(object)->node->offset; u32 chid = chan->chid; u32 data = (chid << 28) | (addr << 10) | chid; return nvkm_ramht_insert(base->ramht, chid, name, data); } static void nv50_disp_dmac_object_detach(struct nvkm_object *parent, int cookie) { struct nv50_disp_base *base = (void *)parent->parent; nvkm_ramht_remove(base->ramht, cookie); } static int nv50_disp_dmac_create_(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, u32 pushbuf, int head, int length, void **pobject) { struct nv50_disp_dmac *dmac; int ret; ret = nv50_disp_chan_create_(parent, engine, oclass, head, length, pobject); dmac = *pobject; if (ret) return ret; dmac->pushdma = (void *)nvkm_handle_ref(parent, pushbuf); if (!dmac->pushdma) return -ENOENT; switch (nv_mclass(dmac->pushdma)) { case 0x0002: case 0x003d: if (dmac->pushdma->limit - dmac->pushdma->start != 0xfff) return -EINVAL; switch (dmac->pushdma->target) { case NV_MEM_TARGET_VRAM: dmac->push = 0x00000001 | dmac->pushdma->start >> 8; break; case NV_MEM_TARGET_PCI_NOSNOOP: dmac->push = 0x00000003 | dmac->pushdma->start >> 8; break; default: return -EINVAL; } break; default: return -EINVAL; } return 0; } void nv50_disp_dmac_dtor(struct nvkm_object *object) { struct nv50_disp_dmac *dmac = (void *)object; nvkm_object_ref(NULL, (struct nvkm_object **)&dmac->pushdma); nv50_disp_chan_destroy(&dmac->base); } static int nv50_disp_dmac_init(struct nvkm_object *object) { struct nv50_disp_priv *priv = (void *)object->engine; struct nv50_disp_dmac *dmac = (void *)object; int chid = dmac->base.chid; int ret; ret = nv50_disp_chan_init(&dmac->base); if (ret) return ret; /* enable error reporting */ nv_mask(priv, 0x610028, 0x00010000 << chid, 0x00010000 << chid); /* initialise channel for dma command submission */ nv_wr32(priv, 0x610204 + (chid * 0x0010), dmac->push); nv_wr32(priv, 0x610208 + (chid * 0x0010), 0x00010000); nv_wr32(priv, 0x61020c + (chid * 0x0010), chid); nv_mask(priv, 0x610200 + (chid * 0x0010), 0x00000010, 0x00000010); nv_wr32(priv, 0x640000 + (chid * 0x1000), 0x00000000); nv_wr32(priv, 0x610200 + (chid * 0x0010), 0x00000013); /* wait for it to go inactive */ if (!nv_wait(priv, 0x610200 + (chid * 0x10), 0x80000000, 0x00000000)) { nv_error(dmac, "init timeout, 0x%08x\n", nv_rd32(priv, 0x610200 + (chid * 0x10))); return -EBUSY; } return 0; } static int nv50_disp_dmac_fini(struct nvkm_object *object, bool suspend) { struct nv50_disp_priv *priv = (void *)object->engine; struct nv50_disp_dmac *dmac = (void *)object; int chid = dmac->base.chid; /* deactivate channel */ nv_mask(priv, 0x610200 + (chid * 0x0010), 0x00001010, 0x00001000); nv_mask(priv, 0x610200 + (chid * 0x0010), 0x00000003, 0x00000000); if (!nv_wait(priv, 0x610200 + (chid * 0x10), 0x001e0000, 0x00000000)) { nv_error(dmac, "fini timeout, 0x%08x\n", nv_rd32(priv, 0x610200 + (chid * 0x10))); if (suspend) return -EBUSY; } /* disable error reporting and completion notifications */ nv_mask(priv, 0x610028, 0x00010001 << chid, 0x00000000 << chid); return nv50_disp_chan_fini(&dmac->base, suspend); } /******************************************************************************* * EVO master channel object ******************************************************************************/ static void nv50_disp_mthd_list(struct nv50_disp_priv *priv, int debug, u32 base, int c, const struct nv50_disp_mthd_list *list, int inst) { struct nvkm_object *disp = nv_object(priv); int i; for (i = 0; list->data[i].mthd; i++) { if (list->data[i].addr) { u32 next = nv_rd32(priv, list->data[i].addr + base + 0); u32 prev = nv_rd32(priv, list->data[i].addr + base + c); u32 mthd = list->data[i].mthd + (list->mthd * inst); const char *name = list->data[i].name; char mods[16]; if (prev != next) snprintf(mods, sizeof(mods), "-> 0x%08x", next); else snprintf(mods, sizeof(mods), "%13c", ' '); nv_printk_(disp, debug, "\t0x%04x: 0x%08x %s%s%s\n", mthd, prev, mods, name ? " // " : "", name ? name : ""); } } } void nv50_disp_mthd_chan(struct nv50_disp_priv *priv, int debug, int head, const struct nv50_disp_mthd_chan *chan) { struct nvkm_object *disp = nv_object(priv); const struct nv50_disp_impl *impl = (void *)disp->oclass; const struct nv50_disp_mthd_list *list; int i, j; if (debug > nv_subdev(priv)->debug) return; for (i = 0; (list = chan->data[i].mthd) != NULL; i++) { u32 base = head * chan->addr; for (j = 0; j < chan->data[i].nr; j++, base += list->addr) { const char *cname = chan->name; const char *sname = ""; char cname_[16], sname_[16]; if (chan->addr) { snprintf(cname_, sizeof(cname_), "%s %d", chan->name, head); cname = cname_; } if (chan->data[i].nr > 1) { snprintf(sname_, sizeof(sname_), " - %s %d", chan->data[i].name, j); sname = sname_; } nv_printk_(disp, debug, "%s%s:\n", cname, sname); nv50_disp_mthd_list(priv, debug, base, impl->mthd.prev, list, j); } } } const struct nv50_disp_mthd_list nv50_disp_core_mthd_base = { .mthd = 0x0000, .addr = 0x000000, .data = { { 0x0080, 0x000000 }, { 0x0084, 0x610bb8 }, { 0x0088, 0x610b9c }, { 0x008c, 0x000000 }, {} } }; static const struct nv50_disp_mthd_list nv50_disp_core_mthd_dac = { .mthd = 0x0080, .addr = 0x000008, .data = { { 0x0400, 0x610b58 }, { 0x0404, 0x610bdc }, { 0x0420, 0x610828 }, {} } }; const struct nv50_disp_mthd_list nv50_disp_core_mthd_sor = { .mthd = 0x0040, .addr = 0x000008, .data = { { 0x0600, 0x610b70 }, {} } }; const struct nv50_disp_mthd_list nv50_disp_core_mthd_pior = { .mthd = 0x0040, .addr = 0x000008, .data = { { 0x0700, 0x610b80 }, {} } }; static const struct nv50_disp_mthd_list nv50_disp_core_mthd_head = { .mthd = 0x0400, .addr = 0x000540, .data = { { 0x0800, 0x610ad8 }, { 0x0804, 0x610ad0 }, { 0x0808, 0x610a48 }, { 0x080c, 0x610a78 }, { 0x0810, 0x610ac0 }, { 0x0814, 0x610af8 }, { 0x0818, 0x610b00 }, { 0x081c, 0x610ae8 }, { 0x0820, 0x610af0 }, { 0x0824, 0x610b08 }, { 0x0828, 0x610b10 }, { 0x082c, 0x610a68 }, { 0x0830, 0x610a60 }, { 0x0834, 0x000000 }, { 0x0838, 0x610a40 }, { 0x0840, 0x610a24 }, { 0x0844, 0x610a2c }, { 0x0848, 0x610aa8 }, { 0x084c, 0x610ab0 }, { 0x0860, 0x610a84 }, { 0x0864, 0x610a90 }, { 0x0868, 0x610b18 }, { 0x086c, 0x610b20 }, { 0x0870, 0x610ac8 }, { 0x0874, 0x610a38 }, { 0x0880, 0x610a58 }, { 0x0884, 0x610a9c }, { 0x08a0, 0x610a70 }, { 0x08a4, 0x610a50 }, { 0x08a8, 0x610ae0 }, { 0x08c0, 0x610b28 }, { 0x08c4, 0x610b30 }, { 0x08c8, 0x610b40 }, { 0x08d4, 0x610b38 }, { 0x08d8, 0x610b48 }, { 0x08dc, 0x610b50 }, { 0x0900, 0x610a18 }, { 0x0904, 0x610ab8 }, {} } }; static const struct nv50_disp_mthd_chan nv50_disp_core_mthd_chan = { .name = "Core", .addr = 0x000000, .data = { { "Global", 1, &nv50_disp_core_mthd_base }, { "DAC", 3, &nv50_disp_core_mthd_dac }, { "SOR", 2, &nv50_disp_core_mthd_sor }, { "PIOR", 3, &nv50_disp_core_mthd_pior }, { "HEAD", 2, &nv50_disp_core_mthd_head }, {} } }; int nv50_disp_core_ctor(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, void *data, u32 size, struct nvkm_object **pobject) { union { struct nv50_disp_core_channel_dma_v0 v0; } *args = data; struct nv50_disp_dmac *mast; int ret; nv_ioctl(parent, "create disp core channel dma size %d\n", size); if (nvif_unpack(args->v0, 0, 0, false)) { nv_ioctl(parent, "create disp core channel dma vers %d " "pushbuf %08x\n", args->v0.version, args->v0.pushbuf); } else return ret; ret = nv50_disp_dmac_create_(parent, engine, oclass, args->v0.pushbuf, 0, sizeof(*mast), (void **)&mast); *pobject = nv_object(mast); if (ret) return ret; return 0; } static int nv50_disp_core_init(struct nvkm_object *object) { struct nv50_disp_priv *priv = (void *)object->engine; struct nv50_disp_dmac *mast = (void *)object; int ret; ret = nv50_disp_chan_init(&mast->base); if (ret) return ret; /* enable error reporting */ nv_mask(priv, 0x610028, 0x00010000, 0x00010000); /* attempt to unstick channel from some unknown state */ if ((nv_rd32(priv, 0x610200) & 0x009f0000) == 0x00020000) nv_mask(priv, 0x610200, 0x00800000, 0x00800000); if ((nv_rd32(priv, 0x610200) & 0x003f0000) == 0x00030000) nv_mask(priv, 0x610200, 0x00600000, 0x00600000); /* initialise channel for dma command submission */ nv_wr32(priv, 0x610204, mast->push); nv_wr32(priv, 0x610208, 0x00010000); nv_wr32(priv, 0x61020c, 0x00000000); nv_mask(priv, 0x610200, 0x00000010, 0x00000010); nv_wr32(priv, 0x640000, 0x00000000); nv_wr32(priv, 0x610200, 0x01000013); /* wait for it to go inactive */ if (!nv_wait(priv, 0x610200, 0x80000000, 0x00000000)) { nv_error(mast, "init: 0x%08x\n", nv_rd32(priv, 0x610200)); return -EBUSY; } return 0; } static int nv50_disp_core_fini(struct nvkm_object *object, bool suspend) { struct nv50_disp_priv *priv = (void *)object->engine; struct nv50_disp_dmac *mast = (void *)object; /* deactivate channel */ nv_mask(priv, 0x610200, 0x00000010, 0x00000000); nv_mask(priv, 0x610200, 0x00000003, 0x00000000); if (!nv_wait(priv, 0x610200, 0x001e0000, 0x00000000)) { nv_error(mast, "fini: 0x%08x\n", nv_rd32(priv, 0x610200)); if (suspend) return -EBUSY; } /* disable error reporting and completion notifications */ nv_mask(priv, 0x610028, 0x00010001, 0x00000000); return nv50_disp_chan_fini(&mast->base, suspend); } struct nv50_disp_chan_impl nv50_disp_core_ofuncs = { .base.ctor = nv50_disp_core_ctor, .base.dtor = nv50_disp_dmac_dtor, .base.init = nv50_disp_core_init, .base.fini = nv50_disp_core_fini, .base.map = nv50_disp_chan_map, .base.ntfy = nv50_disp_chan_ntfy, .base.rd32 = nv50_disp_chan_rd32, .base.wr32 = nv50_disp_chan_wr32, .chid = 0, .attach = nv50_disp_dmac_object_attach, .detach = nv50_disp_dmac_object_detach, }; /******************************************************************************* * EVO sync channel objects ******************************************************************************/ static const struct nv50_disp_mthd_list nv50_disp_base_mthd_base = { .mthd = 0x0000, .addr = 0x000000, .data = { { 0x0080, 0x000000 }, { 0x0084, 0x0008c4 }, { 0x0088, 0x0008d0 }, { 0x008c, 0x0008dc }, { 0x0090, 0x0008e4 }, { 0x0094, 0x610884 }, { 0x00a0, 0x6108a0 }, { 0x00a4, 0x610878 }, { 0x00c0, 0x61086c }, { 0x00e0, 0x610858 }, { 0x00e4, 0x610860 }, { 0x00e8, 0x6108ac }, { 0x00ec, 0x6108b4 }, { 0x0100, 0x610894 }, { 0x0110, 0x6108bc }, { 0x0114, 0x61088c }, {} } }; const struct nv50_disp_mthd_list nv50_disp_base_mthd_image = { .mthd = 0x0400, .addr = 0x000000, .data = { { 0x0800, 0x6108f0 }, { 0x0804, 0x6108fc }, { 0x0808, 0x61090c }, { 0x080c, 0x610914 }, { 0x0810, 0x610904 }, {} } }; static const struct nv50_disp_mthd_chan nv50_disp_base_mthd_chan = { .name = "Base", .addr = 0x000540, .data = { { "Global", 1, &nv50_disp_base_mthd_base }, { "Image", 2, &nv50_disp_base_mthd_image }, {} } }; int nv50_disp_base_ctor(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, void *data, u32 size, struct nvkm_object **pobject) { union { struct nv50_disp_base_channel_dma_v0 v0; } *args = data; struct nv50_disp_priv *priv = (void *)engine; struct nv50_disp_dmac *dmac; int ret; nv_ioctl(parent, "create disp base channel dma size %d\n", size); if (nvif_unpack(args->v0, 0, 0, false)) { nv_ioctl(parent, "create disp base channel dma vers %d " "pushbuf %08x head %d\n", args->v0.version, args->v0.pushbuf, args->v0.head); if (args->v0.head > priv->head.nr) return -EINVAL; } else return ret; ret = nv50_disp_dmac_create_(parent, engine, oclass, args->v0.pushbuf, args->v0.head, sizeof(*dmac), (void **)&dmac); *pobject = nv_object(dmac); if (ret) return ret; return 0; } struct nv50_disp_chan_impl nv50_disp_base_ofuncs = { .base.ctor = nv50_disp_base_ctor, .base.dtor = nv50_disp_dmac_dtor, .base.init = nv50_disp_dmac_init, .base.fini = nv50_disp_dmac_fini, .base.ntfy = nv50_disp_chan_ntfy, .base.map = nv50_disp_chan_map, .base.rd32 = nv50_disp_chan_rd32, .base.wr32 = nv50_disp_chan_wr32, .chid = 1, .attach = nv50_disp_dmac_object_attach, .detach = nv50_disp_dmac_object_detach, }; /******************************************************************************* * EVO overlay channel objects ******************************************************************************/ const struct nv50_disp_mthd_list nv50_disp_ovly_mthd_base = { .mthd = 0x0000, .addr = 0x000000, .data = { { 0x0080, 0x000000 }, { 0x0084, 0x0009a0 }, { 0x0088, 0x0009c0 }, { 0x008c, 0x0009c8 }, { 0x0090, 0x6109b4 }, { 0x0094, 0x610970 }, { 0x00a0, 0x610998 }, { 0x00a4, 0x610964 }, { 0x00c0, 0x610958 }, { 0x00e0, 0x6109a8 }, { 0x00e4, 0x6109d0 }, { 0x00e8, 0x6109d8 }, { 0x0100, 0x61094c }, { 0x0104, 0x610984 }, { 0x0108, 0x61098c }, { 0x0800, 0x6109f8 }, { 0x0808, 0x610a08 }, { 0x080c, 0x610a10 }, { 0x0810, 0x610a00 }, {} } }; static const struct nv50_disp_mthd_chan nv50_disp_ovly_mthd_chan = { .name = "Overlay", .addr = 0x000540, .data = { { "Global", 1, &nv50_disp_ovly_mthd_base }, {} } }; int nv50_disp_ovly_ctor(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, void *data, u32 size, struct nvkm_object **pobject) { union { struct nv50_disp_overlay_channel_dma_v0 v0; } *args = data; struct nv50_disp_priv *priv = (void *)engine; struct nv50_disp_dmac *dmac; int ret; nv_ioctl(parent, "create disp overlay channel dma size %d\n", size); if (nvif_unpack(args->v0, 0, 0, false)) { nv_ioctl(parent, "create disp overlay channel dma vers %d " "pushbuf %08x head %d\n", args->v0.version, args->v0.pushbuf, args->v0.head); if (args->v0.head > priv->head.nr) return -EINVAL; } else return ret; ret = nv50_disp_dmac_create_(parent, engine, oclass, args->v0.pushbuf, args->v0.head, sizeof(*dmac), (void **)&dmac); *pobject = nv_object(dmac); if (ret) return ret; return 0; } struct nv50_disp_chan_impl nv50_disp_ovly_ofuncs = { .base.ctor = nv50_disp_ovly_ctor, .base.dtor = nv50_disp_dmac_dtor, .base.init = nv50_disp_dmac_init, .base.fini = nv50_disp_dmac_fini, .base.ntfy = nv50_disp_chan_ntfy, .base.map = nv50_disp_chan_map, .base.rd32 = nv50_disp_chan_rd32, .base.wr32 = nv50_disp_chan_wr32, .chid = 3, .attach = nv50_disp_dmac_object_attach, .detach = nv50_disp_dmac_object_detach, }; /******************************************************************************* * EVO PIO channel base class ******************************************************************************/ static int nv50_disp_pioc_create_(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, int head, int length, void **pobject) { return nv50_disp_chan_create_(parent, engine, oclass, head, length, pobject); } void nv50_disp_pioc_dtor(struct nvkm_object *object) { struct nv50_disp_pioc *pioc = (void *)object; nv50_disp_chan_destroy(&pioc->base); } static int nv50_disp_pioc_init(struct nvkm_object *object) { struct nv50_disp_priv *priv = (void *)object->engine; struct nv50_disp_pioc *pioc = (void *)object; int chid = pioc->base.chid; int ret; ret = nv50_disp_chan_init(&pioc->base); if (ret) return ret; nv_wr32(priv, 0x610200 + (chid * 0x10), 0x00002000); if (!nv_wait(priv, 0x610200 + (chid * 0x10), 0x00000000, 0x00000000)) { nv_error(pioc, "timeout0: 0x%08x\n", nv_rd32(priv, 0x610200 + (chid * 0x10))); return -EBUSY; } nv_wr32(priv, 0x610200 + (chid * 0x10), 0x00000001); if (!nv_wait(priv, 0x610200 + (chid * 0x10), 0x00030000, 0x00010000)) { nv_error(pioc, "timeout1: 0x%08x\n", nv_rd32(priv, 0x610200 + (chid * 0x10))); return -EBUSY; } return 0; } static int nv50_disp_pioc_fini(struct nvkm_object *object, bool suspend) { struct nv50_disp_priv *priv = (void *)object->engine; struct nv50_disp_pioc *pioc = (void *)object; int chid = pioc->base.chid; nv_mask(priv, 0x610200 + (chid * 0x10), 0x00000001, 0x00000000); if (!nv_wait(priv, 0x610200 + (chid * 0x10), 0x00030000, 0x00000000)) { nv_error(pioc, "timeout: 0x%08x\n", nv_rd32(priv, 0x610200 + (chid * 0x10))); if (suspend) return -EBUSY; } return nv50_disp_chan_fini(&pioc->base, suspend); } /******************************************************************************* * EVO immediate overlay channel objects ******************************************************************************/ int nv50_disp_oimm_ctor(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, void *data, u32 size, struct nvkm_object **pobject) { union { struct nv50_disp_overlay_v0 v0; } *args = data; struct nv50_disp_priv *priv = (void *)engine; struct nv50_disp_pioc *pioc; int ret; nv_ioctl(parent, "create disp overlay size %d\n", size); if (nvif_unpack(args->v0, 0, 0, false)) { nv_ioctl(parent, "create disp overlay vers %d head %d\n", args->v0.version, args->v0.head); if (args->v0.head > priv->head.nr) return -EINVAL; } else return ret; ret = nv50_disp_pioc_create_(parent, engine, oclass, args->v0.head, sizeof(*pioc), (void **)&pioc); *pobject = nv_object(pioc); if (ret) return ret; return 0; } struct nv50_disp_chan_impl nv50_disp_oimm_ofuncs = { .base.ctor = nv50_disp_oimm_ctor, .base.dtor = nv50_disp_pioc_dtor, .base.init = nv50_disp_pioc_init, .base.fini = nv50_disp_pioc_fini, .base.ntfy = nv50_disp_chan_ntfy, .base.map = nv50_disp_chan_map, .base.rd32 = nv50_disp_chan_rd32, .base.wr32 = nv50_disp_chan_wr32, .chid = 5, }; /******************************************************************************* * EVO cursor channel objects ******************************************************************************/ int nv50_disp_curs_ctor(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, void *data, u32 size, struct nvkm_object **pobject) { union { struct nv50_disp_cursor_v0 v0; } *args = data; struct nv50_disp_priv *priv = (void *)engine; struct nv50_disp_pioc *pioc; int ret; nv_ioctl(parent, "create disp cursor size %d\n", size); if (nvif_unpack(args->v0, 0, 0, false)) { nv_ioctl(parent, "create disp cursor vers %d head %d\n", args->v0.version, args->v0.head); if (args->v0.head > priv->head.nr) return -EINVAL; } else return ret; ret = nv50_disp_pioc_create_(parent, engine, oclass, args->v0.head, sizeof(*pioc), (void **)&pioc); *pobject = nv_object(pioc); if (ret) return ret; return 0; } struct nv50_disp_chan_impl nv50_disp_curs_ofuncs = { .base.ctor = nv50_disp_curs_ctor, .base.dtor = nv50_disp_pioc_dtor, .base.init = nv50_disp_pioc_init, .base.fini = nv50_disp_pioc_fini, .base.ntfy = nv50_disp_chan_ntfy, .base.map = nv50_disp_chan_map, .base.rd32 = nv50_disp_chan_rd32, .base.wr32 = nv50_disp_chan_wr32, .chid = 7, }; /******************************************************************************* * Base display object ******************************************************************************/ int nv50_disp_main_scanoutpos(NV50_DISP_MTHD_V0) { const u32 blanke = nv_rd32(priv, 0x610aec + (head * 0x540)); const u32 blanks = nv_rd32(priv, 0x610af4 + (head * 0x540)); const u32 total = nv_rd32(priv, 0x610afc + (head * 0x540)); union { struct nv04_disp_scanoutpos_v0 v0; } *args = data; int ret; nv_ioctl(object, "disp scanoutpos size %d\n", size); if (nvif_unpack(args->v0, 0, 0, false)) { nv_ioctl(object, "disp scanoutpos vers %d\n", args->v0.version); args->v0.vblanke = (blanke & 0xffff0000) >> 16; args->v0.hblanke = (blanke & 0x0000ffff); args->v0.vblanks = (blanks & 0xffff0000) >> 16; args->v0.hblanks = (blanks & 0x0000ffff); args->v0.vtotal = ( total & 0xffff0000) >> 16; args->v0.htotal = ( total & 0x0000ffff); args->v0.time[0] = ktime_to_ns(ktime_get()); args->v0.vline = /* vline read locks hline */ nv_rd32(priv, 0x616340 + (head * 0x800)) & 0xffff; args->v0.time[1] = ktime_to_ns(ktime_get()); args->v0.hline = nv_rd32(priv, 0x616344 + (head * 0x800)) & 0xffff; } else return ret; return 0; } int nv50_disp_main_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size) { const struct nv50_disp_impl *impl = (void *)nv_oclass(object->engine); union { struct nv50_disp_mthd_v0 v0; struct nv50_disp_mthd_v1 v1; } *args = data; struct nv50_disp_priv *priv = (void *)object->engine; struct nvkm_output *outp = NULL; struct nvkm_output *temp; u16 type, mask = 0; int head, ret; if (mthd != NV50_DISP_MTHD) return -EINVAL; nv_ioctl(object, "disp mthd size %d\n", size); if (nvif_unpack(args->v0, 0, 0, true)) { nv_ioctl(object, "disp mthd vers %d mthd %02x head %d\n", args->v0.version, args->v0.method, args->v0.head); mthd = args->v0.method; head = args->v0.head; } else if (nvif_unpack(args->v1, 1, 1, true)) { nv_ioctl(object, "disp mthd vers %d mthd %02x " "type %04x mask %04x\n", args->v1.version, args->v1.method, args->v1.hasht, args->v1.hashm); mthd = args->v1.method; type = args->v1.hasht; mask = args->v1.hashm; head = ffs((mask >> 8) & 0x0f) - 1; } else return ret; if (head < 0 || head >= priv->head.nr) return -ENXIO; if (mask) { list_for_each_entry(temp, &priv->base.outp, head) { if ((temp->info.hasht == type) && (temp->info.hashm & mask) == mask) { outp = temp; break; } } if (outp == NULL) return -ENXIO; } switch (mthd) { case NV50_DISP_SCANOUTPOS: return impl->head.scanoutpos(object, priv, data, size, head); default: break; } switch (mthd * !!outp) { case NV50_DISP_MTHD_V1_DAC_PWR: return priv->dac.power(object, priv, data, size, head, outp); case NV50_DISP_MTHD_V1_DAC_LOAD: return priv->dac.sense(object, priv, data, size, head, outp); case NV50_DISP_MTHD_V1_SOR_PWR: return priv->sor.power(object, priv, data, size, head, outp); case NV50_DISP_MTHD_V1_SOR_HDA_ELD: if (!priv->sor.hda_eld) return -ENODEV; return priv->sor.hda_eld(object, priv, data, size, head, outp); case NV50_DISP_MTHD_V1_SOR_HDMI_PWR: if (!priv->sor.hdmi) return -ENODEV; return priv->sor.hdmi(object, priv, data, size, head, outp); case NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT: { union { struct nv50_disp_sor_lvds_script_v0 v0; } *args = data; nv_ioctl(object, "disp sor lvds script size %d\n", size); if (nvif_unpack(args->v0, 0, 0, false)) { nv_ioctl(object, "disp sor lvds script " "vers %d name %04x\n", args->v0.version, args->v0.script); priv->sor.lvdsconf = args->v0.script; return 0; } else return ret; } break; case NV50_DISP_MTHD_V1_SOR_DP_PWR: { struct nvkm_output_dp *outpdp = (void *)outp; union { struct nv50_disp_sor_dp_pwr_v0 v0; } *args = data; nv_ioctl(object, "disp sor dp pwr size %d\n", size); if (nvif_unpack(args->v0, 0, 0, false)) { nv_ioctl(object, "disp sor dp pwr vers %d state %d\n", args->v0.version, args->v0.state); if (args->v0.state == 0) { nvkm_notify_put(&outpdp->irq); ((struct nvkm_output_dp_impl *)nv_oclass(outp)) ->lnk_pwr(outpdp, 0); atomic_set(&outpdp->lt.done, 0); return 0; } else if (args->v0.state != 0) { nvkm_output_dp_train(&outpdp->base, 0, true); return 0; } } else return ret; } break; case NV50_DISP_MTHD_V1_PIOR_PWR: if (!priv->pior.power) return -ENODEV; return priv->pior.power(object, priv, data, size, head, outp); default: break; } return -EINVAL; } int nv50_disp_main_ctor(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, void *data, u32 size, struct nvkm_object **pobject) { struct nv50_disp_priv *priv = (void *)engine; struct nv50_disp_base *base; int ret; ret = nvkm_parent_create(parent, engine, oclass, 0, priv->sclass, 0, &base); *pobject = nv_object(base); if (ret) return ret; return nvkm_ramht_new(nv_object(base), nv_object(base), 0x1000, 0, &base->ramht); } void nv50_disp_main_dtor(struct nvkm_object *object) { struct nv50_disp_base *base = (void *)object; nvkm_ramht_ref(NULL, &base->ramht); nvkm_parent_destroy(&base->base); } static int nv50_disp_main_init(struct nvkm_object *object) { struct nv50_disp_priv *priv = (void *)object->engine; struct nv50_disp_base *base = (void *)object; int ret, i; u32 tmp; ret = nvkm_parent_init(&base->base); if (ret) return ret; /* The below segments of code copying values from one register to * another appear to inform EVO of the display capabilities or * something similar. NFI what the 0x614004 caps are for.. */ tmp = nv_rd32(priv, 0x614004); nv_wr32(priv, 0x610184, tmp); /* ... CRTC caps */ for (i = 0; i < priv->head.nr; i++) { tmp = nv_rd32(priv, 0x616100 + (i * 0x800)); nv_wr32(priv, 0x610190 + (i * 0x10), tmp); tmp = nv_rd32(priv, 0x616104 + (i * 0x800)); nv_wr32(priv, 0x610194 + (i * 0x10), tmp); tmp = nv_rd32(priv, 0x616108 + (i * 0x800)); nv_wr32(priv, 0x610198 + (i * 0x10), tmp); tmp = nv_rd32(priv, 0x61610c + (i * 0x800)); nv_wr32(priv, 0x61019c + (i * 0x10), tmp); } /* ... DAC caps */ for (i = 0; i < priv->dac.nr; i++) { tmp = nv_rd32(priv, 0x61a000 + (i * 0x800)); nv_wr32(priv, 0x6101d0 + (i * 0x04), tmp); } /* ... SOR caps */ for (i = 0; i < priv->sor.nr; i++) { tmp = nv_rd32(priv, 0x61c000 + (i * 0x800)); nv_wr32(priv, 0x6101e0 + (i * 0x04), tmp); } /* ... PIOR caps */ for (i = 0; i < priv->pior.nr; i++) { tmp = nv_rd32(priv, 0x61e000 + (i * 0x800)); nv_wr32(priv, 0x6101f0 + (i * 0x04), tmp); } /* steal display away from vbios, or something like that */ if (nv_rd32(priv, 0x610024) & 0x00000100) { nv_wr32(priv, 0x610024, 0x00000100); nv_mask(priv, 0x6194e8, 0x00000001, 0x00000000); if (!nv_wait(priv, 0x6194e8, 0x00000002, 0x00000000)) { nv_error(priv, "timeout acquiring display\n"); return -EBUSY; } } /* point at display engine memory area (hash table, objects) */ nv_wr32(priv, 0x610010, (nv_gpuobj(base->ramht)->addr >> 8) | 9); /* enable supervisor interrupts, disable everything else */ nv_wr32(priv, 0x61002c, 0x00000370); nv_wr32(priv, 0x610028, 0x00000000); return 0; } static int nv50_disp_main_fini(struct nvkm_object *object, bool suspend) { struct nv50_disp_priv *priv = (void *)object->engine; struct nv50_disp_base *base = (void *)object; /* disable all interrupts */ nv_wr32(priv, 0x610024, 0x00000000); nv_wr32(priv, 0x610020, 0x00000000); return nvkm_parent_fini(&base->base, suspend); } struct nvkm_ofuncs nv50_disp_main_ofuncs = { .ctor = nv50_disp_main_ctor, .dtor = nv50_disp_main_dtor, .init = nv50_disp_main_init, .fini = nv50_disp_main_fini, .mthd = nv50_disp_main_mthd, .ntfy = nvkm_disp_ntfy, }; static struct nvkm_oclass nv50_disp_main_oclass[] = { { NV50_DISP, &nv50_disp_main_ofuncs }, {} }; static struct nvkm_oclass nv50_disp_sclass[] = { { NV50_DISP_CORE_CHANNEL_DMA, &nv50_disp_core_ofuncs.base }, { NV50_DISP_BASE_CHANNEL_DMA, &nv50_disp_base_ofuncs.base }, { NV50_DISP_OVERLAY_CHANNEL_DMA, &nv50_disp_ovly_ofuncs.base }, { NV50_DISP_OVERLAY, &nv50_disp_oimm_ofuncs.base }, { NV50_DISP_CURSOR, &nv50_disp_curs_ofuncs.base }, {} }; /******************************************************************************* * Display context, tracks instmem allocation and prevents more than one * client using the display hardware at any time. ******************************************************************************/ static int nv50_disp_data_ctor(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, void *data, u32 size, struct nvkm_object **pobject) { struct nv50_disp_priv *priv = (void *)engine; struct nvkm_engctx *ectx; int ret = -EBUSY; /* no context needed for channel objects... */ if (nv_mclass(parent) != NV_DEVICE) { atomic_inc(&parent->refcount); *pobject = parent; return 1; } /* allocate display hardware to client */ mutex_lock(&nv_subdev(priv)->mutex); if (list_empty(&nv_engine(priv)->contexts)) { ret = nvkm_engctx_create(parent, engine, oclass, NULL, 0x10000, 0x10000, NVOBJ_FLAG_HEAP, &ectx); *pobject = nv_object(ectx); } mutex_unlock(&nv_subdev(priv)->mutex); return ret; } struct nvkm_oclass nv50_disp_cclass = { .handle = NV_ENGCTX(DISP, 0x50), .ofuncs = &(struct nvkm_ofuncs) { .ctor = nv50_disp_data_ctor, .dtor = _nvkm_engctx_dtor, .init = _nvkm_engctx_init, .fini = _nvkm_engctx_fini, .rd32 = _nvkm_engctx_rd32, .wr32 = _nvkm_engctx_wr32, }, }; /******************************************************************************* * Display engine implementation ******************************************************************************/ static void nv50_disp_vblank_fini(struct nvkm_event *event, int type, int head) { struct nvkm_disp *disp = container_of(event, typeof(*disp), vblank); nv_mask(disp, 0x61002c, (4 << head), 0); } static void nv50_disp_vblank_init(struct nvkm_event *event, int type, int head) { struct nvkm_disp *disp = container_of(event, typeof(*disp), vblank); nv_mask(disp, 0x61002c, (4 << head), (4 << head)); } const struct nvkm_event_func nv50_disp_vblank_func = { .ctor = nvkm_disp_vblank_ctor, .init = nv50_disp_vblank_init, .fini = nv50_disp_vblank_fini, }; static const struct nvkm_enum nv50_disp_intr_error_type[] = { { 3, "ILLEGAL_MTHD" }, { 4, "INVALID_VALUE" }, { 5, "INVALID_STATE" }, { 7, "INVALID_HANDLE" }, {} }; static const struct nvkm_enum nv50_disp_intr_error_code[] = { { 0x00, "" }, {} }; static void nv50_disp_intr_error(struct nv50_disp_priv *priv, int chid) { struct nv50_disp_impl *impl = (void *)nv_object(priv)->oclass; u32 data = nv_rd32(priv, 0x610084 + (chid * 0x08)); u32 addr = nv_rd32(priv, 0x610080 + (chid * 0x08)); u32 code = (addr & 0x00ff0000) >> 16; u32 type = (addr & 0x00007000) >> 12; u32 mthd = (addr & 0x00000ffc); const struct nvkm_enum *ec, *et; char ecunk[6], etunk[6]; et = nvkm_enum_find(nv50_disp_intr_error_type, type); if (!et) snprintf(etunk, sizeof(etunk), "UNK%02X", type); ec = nvkm_enum_find(nv50_disp_intr_error_code, code); if (!ec) snprintf(ecunk, sizeof(ecunk), "UNK%02X", code); nv_error(priv, "%s [%s] chid %d mthd 0x%04x data 0x%08x\n", et ? et->name : etunk, ec ? ec->name : ecunk, chid, mthd, data); if (chid == 0) { switch (mthd) { case 0x0080: nv50_disp_mthd_chan(priv, NV_DBG_ERROR, chid - 0, impl->mthd.core); break; default: break; } } else if (chid <= 2) { switch (mthd) { case 0x0080: nv50_disp_mthd_chan(priv, NV_DBG_ERROR, chid - 1, impl->mthd.base); break; default: break; } } else if (chid <= 4) { switch (mthd) { case 0x0080: nv50_disp_mthd_chan(priv, NV_DBG_ERROR, chid - 3, impl->mthd.ovly); break; default: break; } } nv_wr32(priv, 0x610020, 0x00010000 << chid); nv_wr32(priv, 0x610080 + (chid * 0x08), 0x90000000); } static struct nvkm_output * exec_lookup(struct nv50_disp_priv *priv, int head, int or, u32 ctrl, u32 *data, u8 *ver, u8 *hdr, u8 *cnt, u8 *len, struct nvbios_outp *info) { struct nvkm_bios *bios = nvkm_bios(priv); struct nvkm_output *outp; u16 mask, type; if (or < 4) { type = DCB_OUTPUT_ANALOG; mask = 0; } else if (or < 8) { switch (ctrl & 0x00000f00) { case 0x00000000: type = DCB_OUTPUT_LVDS; mask = 1; break; case 0x00000100: type = DCB_OUTPUT_TMDS; mask = 1; break; case 0x00000200: type = DCB_OUTPUT_TMDS; mask = 2; break; case 0x00000500: type = DCB_OUTPUT_TMDS; mask = 3; break; case 0x00000800: type = DCB_OUTPUT_DP; mask = 1; break; case 0x00000900: type = DCB_OUTPUT_DP; mask = 2; break; default: nv_error(priv, "unknown SOR mc 0x%08x\n", ctrl); return NULL; } or -= 4; } else { or = or - 8; type = 0x0010; mask = 0; switch (ctrl & 0x00000f00) { case 0x00000000: type |= priv->pior.type[or]; break; default: nv_error(priv, "unknown PIOR mc 0x%08x\n", ctrl); return NULL; } } mask = 0x00c0 & (mask << 6); mask |= 0x0001 << or; mask |= 0x0100 << head; list_for_each_entry(outp, &priv->base.outp, head) { if ((outp->info.hasht & 0xff) == type && (outp->info.hashm & mask) == mask) { *data = nvbios_outp_match(bios, outp->info.hasht, outp->info.hashm, ver, hdr, cnt, len, info); if (!*data) return NULL; return outp; } } return NULL; } static struct nvkm_output * exec_script(struct nv50_disp_priv *priv, int head, int id) { struct nvkm_bios *bios = nvkm_bios(priv); struct nvkm_output *outp; struct nvbios_outp info; u8 ver, hdr, cnt, len; u32 data, ctrl = 0; u32 reg; int i; /* DAC */ for (i = 0; !(ctrl & (1 << head)) && i < priv->dac.nr; i++) ctrl = nv_rd32(priv, 0x610b5c + (i * 8)); /* SOR */ if (!(ctrl & (1 << head))) { if (nv_device(priv)->chipset < 0x90 || nv_device(priv)->chipset == 0x92 || nv_device(priv)->chipset == 0xa0) { reg = 0x610b74; } else { reg = 0x610798; } for (i = 0; !(ctrl & (1 << head)) && i < priv->sor.nr; i++) ctrl = nv_rd32(priv, reg + (i * 8)); i += 4; } /* PIOR */ if (!(ctrl & (1 << head))) { for (i = 0; !(ctrl & (1 << head)) && i < priv->pior.nr; i++) ctrl = nv_rd32(priv, 0x610b84 + (i * 8)); i += 8; } if (!(ctrl & (1 << head))) return NULL; i--; outp = exec_lookup(priv, head, i, ctrl, &data, &ver, &hdr, &cnt, &len, &info); if (outp) { struct nvbios_init init = { .subdev = nv_subdev(priv), .bios = bios, .offset = info.script[id], .outp = &outp->info, .crtc = head, .execute = 1, }; nvbios_exec(&init); } return outp; } static struct nvkm_output * exec_clkcmp(struct nv50_disp_priv *priv, int head, int id, u32 pclk, u32 *conf) { struct nvkm_bios *bios = nvkm_bios(priv); struct nvkm_output *outp; struct nvbios_outp info1; struct nvbios_ocfg info2; u8 ver, hdr, cnt, len; u32 data, ctrl = 0; u32 reg; int i; /* DAC */ for (i = 0; !(ctrl & (1 << head)) && i < priv->dac.nr; i++) ctrl = nv_rd32(priv, 0x610b58 + (i * 8)); /* SOR */ if (!(ctrl & (1 << head))) { if (nv_device(priv)->chipset < 0x90 || nv_device(priv)->chipset == 0x92 || nv_device(priv)->chipset == 0xa0) { reg = 0x610b70; } else { reg = 0x610794; } for (i = 0; !(ctrl & (1 << head)) && i < priv->sor.nr; i++) ctrl = nv_rd32(priv, reg + (i * 8)); i += 4; } /* PIOR */ if (!(ctrl & (1 << head))) { for (i = 0; !(ctrl & (1 << head)) && i < priv->pior.nr; i++) ctrl = nv_rd32(priv, 0x610b80 + (i * 8)); i += 8; } if (!(ctrl & (1 << head))) return NULL; i--; outp = exec_lookup(priv, head, i, ctrl, &data, &ver, &hdr, &cnt, &len, &info1); if (!outp) return NULL; if (outp->info.location == 0) { switch (outp->info.type) { case DCB_OUTPUT_TMDS: *conf = (ctrl & 0x00000f00) >> 8; if (pclk >= 165000) *conf |= 0x0100; break; case DCB_OUTPUT_LVDS: *conf = priv->sor.lvdsconf; break; case DCB_OUTPUT_DP: *conf = (ctrl & 0x00000f00) >> 8; break; case DCB_OUTPUT_ANALOG: default: *conf = 0x00ff; break; } } else { *conf = (ctrl & 0x00000f00) >> 8; pclk = pclk / 2; } data = nvbios_ocfg_match(bios, data, *conf, &ver, &hdr, &cnt, &len, &info2); if (data && id < 0xff) { data = nvbios_oclk_match(bios, info2.clkcmp[id], pclk); if (data) { struct nvbios_init init = { .subdev = nv_subdev(priv), .bios = bios, .offset = data, .outp = &outp->info, .crtc = head, .execute = 1, }; nvbios_exec(&init); } } return outp; } static void nv50_disp_intr_unk10_0(struct nv50_disp_priv *priv, int head) { exec_script(priv, head, 1); } static void nv50_disp_intr_unk20_0(struct nv50_disp_priv *priv, int head) { struct nvkm_output *outp = exec_script(priv, head, 2); /* the binary driver does this outside of the supervisor handling * (after the third supervisor from a detach). we (currently?) * allow both detach/attach to happen in the same set of * supervisor interrupts, so it would make sense to execute this * (full power down?) script after all the detach phases of the * supervisor handling. like with training if needed from the * second supervisor, nvidia doesn't do this, so who knows if it's * entirely safe, but it does appear to work.. * * without this script being run, on some configurations i've * seen, switching from DP to TMDS on a DP connector may result * in a blank screen (SOR_PWR off/on can restore it) */ if (outp && outp->info.type == DCB_OUTPUT_DP) { struct nvkm_output_dp *outpdp = (void *)outp; struct nvbios_init init = { .subdev = nv_subdev(priv), .bios = nvkm_bios(priv), .outp = &outp->info, .crtc = head, .offset = outpdp->info.script[4], .execute = 1, }; nvbios_exec(&init); atomic_set(&outpdp->lt.done, 0); } } static void nv50_disp_intr_unk20_1(struct nv50_disp_priv *priv, int head) { struct nvkm_devinit *devinit = nvkm_devinit(priv); u32 pclk = nv_rd32(priv, 0x610ad0 + (head * 0x540)) & 0x3fffff; if (pclk) devinit->pll_set(devinit, PLL_VPLL0 + head, pclk); } static void nv50_disp_intr_unk20_2_dp(struct nv50_disp_priv *priv, int head, struct dcb_output *outp, u32 pclk) { const int link = !(outp->sorconf.link & 1); const int or = ffs(outp->or) - 1; const u32 soff = ( or * 0x800); const u32 loff = (link * 0x080) + soff; const u32 ctrl = nv_rd32(priv, 0x610794 + (or * 8)); const u32 symbol = 100000; const s32 vactive = nv_rd32(priv, 0x610af8 + (head * 0x540)) & 0xffff; const s32 vblanke = nv_rd32(priv, 0x610ae8 + (head * 0x540)) & 0xffff; const s32 vblanks = nv_rd32(priv, 0x610af0 + (head * 0x540)) & 0xffff; u32 dpctrl = nv_rd32(priv, 0x61c10c + loff); u32 clksor = nv_rd32(priv, 0x614300 + soff); int bestTU = 0, bestVTUi = 0, bestVTUf = 0, bestVTUa = 0; int TU, VTUi, VTUf, VTUa; u64 link_data_rate, link_ratio, unk; u32 best_diff = 64 * symbol; u32 link_nr, link_bw, bits; u64 value; link_bw = (clksor & 0x000c0000) ? 270000 : 162000; link_nr = hweight32(dpctrl & 0x000f0000); /* symbols/hblank - algorithm taken from comments in tegra driver */ value = vblanke + vactive - vblanks - 7; value = value * link_bw; do_div(value, pclk); value = value - (3 * !!(dpctrl & 0x00004000)) - (12 / link_nr); nv_mask(priv, 0x61c1e8 + soff, 0x0000ffff, value); /* symbols/vblank - algorithm taken from comments in tegra driver */ value = vblanks - vblanke - 25; value = value * link_bw; do_div(value, pclk); value = value - ((36 / link_nr) + 3) - 1; nv_mask(priv, 0x61c1ec + soff, 0x00ffffff, value); /* watermark / activesym */ if ((ctrl & 0xf0000) == 0x60000) bits = 30; else if ((ctrl & 0xf0000) == 0x50000) bits = 24; else bits = 18; link_data_rate = (pclk * bits / 8) / link_nr; /* calculate ratio of packed data rate to link symbol rate */ link_ratio = link_data_rate * symbol; do_div(link_ratio, link_bw); for (TU = 64; TU >= 32; TU--) { /* calculate average number of valid symbols in each TU */ u32 tu_valid = link_ratio * TU; u32 calc, diff; /* find a hw representation for the fraction.. */ VTUi = tu_valid / symbol; calc = VTUi * symbol; diff = tu_valid - calc; if (diff) { if (diff >= (symbol / 2)) { VTUf = symbol / (symbol - diff); if (symbol - (VTUf * diff)) VTUf++; if (VTUf <= 15) { VTUa = 1; calc += symbol - (symbol / VTUf); } else { VTUa = 0; VTUf = 1; calc += symbol; } } else { VTUa = 0; VTUf = min((int)(symbol / diff), 15); calc += symbol / VTUf; } diff = calc - tu_valid; } else { /* no remainder, but the hw doesn't like the fractional * part to be zero. decrement the integer part and * have the fraction add a whole symbol back */ VTUa = 0; VTUf = 1; VTUi--; } if (diff < best_diff) { best_diff = diff; bestTU = TU; bestVTUa = VTUa; bestVTUf = VTUf; bestVTUi = VTUi; if (diff == 0) break; } } if (!bestTU) { nv_error(priv, "unable to find suitable dp config\n"); return; } /* XXX close to vbios numbers, but not right */ unk = (symbol - link_ratio) * bestTU; unk *= link_ratio; do_div(unk, symbol); do_div(unk, symbol); unk += 6; nv_mask(priv, 0x61c10c + loff, 0x000001fc, bestTU << 2); nv_mask(priv, 0x61c128 + loff, 0x010f7f3f, bestVTUa << 24 | bestVTUf << 16 | bestVTUi << 8 | unk); } static void nv50_disp_intr_unk20_2(struct nv50_disp_priv *priv, int head) { struct nvkm_output *outp; u32 pclk = nv_rd32(priv, 0x610ad0 + (head * 0x540)) & 0x3fffff; u32 hval, hreg = 0x614200 + (head * 0x800); u32 oval, oreg; u32 mask, conf; outp = exec_clkcmp(priv, head, 0xff, pclk, &conf); if (!outp) return; /* we allow both encoder attach and detach operations to occur * within a single supervisor (ie. modeset) sequence. the * encoder detach scripts quite often switch off power to the * lanes, which requires the link to be re-trained. * * this is not generally an issue as the sink "must" (heh) * signal an irq when it's lost sync so the driver can * re-train. * * however, on some boards, if one does not configure at least * the gpu side of the link *before* attaching, then various * things can go horribly wrong (PDISP disappearing from mmio, * third supervisor never happens, etc). * * the solution is simply to retrain here, if necessary. last * i checked, the binary driver userspace does not appear to * trigger this situation (it forces an UPDATE between steps). */ if (outp->info.type == DCB_OUTPUT_DP) { u32 soff = (ffs(outp->info.or) - 1) * 0x08; u32 ctrl, datarate; if (outp->info.location == 0) { ctrl = nv_rd32(priv, 0x610794 + soff); soff = 1; } else { ctrl = nv_rd32(priv, 0x610b80 + soff); soff = 2; } switch ((ctrl & 0x000f0000) >> 16) { case 6: datarate = pclk * 30; break; case 5: datarate = pclk * 24; break; case 2: default: datarate = pclk * 18; break; } if (nvkm_output_dp_train(outp, datarate / soff, true)) ERR("link not trained before attach\n"); } exec_clkcmp(priv, head, 0, pclk, &conf); if (!outp->info.location && outp->info.type == DCB_OUTPUT_ANALOG) { oreg = 0x614280 + (ffs(outp->info.or) - 1) * 0x800; oval = 0x00000000; hval = 0x00000000; mask = 0xffffffff; } else if (!outp->info.location) { if (outp->info.type == DCB_OUTPUT_DP) nv50_disp_intr_unk20_2_dp(priv, head, &outp->info, pclk); oreg = 0x614300 + (ffs(outp->info.or) - 1) * 0x800; oval = (conf & 0x0100) ? 0x00000101 : 0x00000000; hval = 0x00000000; mask = 0x00000707; } else { oreg = 0x614380 + (ffs(outp->info.or) - 1) * 0x800; oval = 0x00000001; hval = 0x00000001; mask = 0x00000707; } nv_mask(priv, hreg, 0x0000000f, hval); nv_mask(priv, oreg, mask, oval); } /* If programming a TMDS output on a SOR that can also be configured for * DisplayPort, make sure NV50_SOR_DP_CTRL_ENABLE is forced off. * * It looks like the VBIOS TMDS scripts make an attempt at this, however, * the VBIOS scripts on at least one board I have only switch it off on * link 0, causing a blank display if the output has previously been * programmed for DisplayPort. */ static void nv50_disp_intr_unk40_0_tmds(struct nv50_disp_priv *priv, struct dcb_output *outp) { struct nvkm_bios *bios = nvkm_bios(priv); const int link = !(outp->sorconf.link & 1); const int or = ffs(outp->or) - 1; const u32 loff = (or * 0x800) + (link * 0x80); const u16 mask = (outp->sorconf.link << 6) | outp->or; struct dcb_output match; u8 ver, hdr; if (dcb_outp_match(bios, DCB_OUTPUT_DP, mask, &ver, &hdr, &match)) nv_mask(priv, 0x61c10c + loff, 0x00000001, 0x00000000); } static void nv50_disp_intr_unk40_0(struct nv50_disp_priv *priv, int head) { struct nvkm_output *outp; u32 pclk = nv_rd32(priv, 0x610ad0 + (head * 0x540)) & 0x3fffff; u32 conf; outp = exec_clkcmp(priv, head, 1, pclk, &conf); if (!outp) return; if (outp->info.location == 0 && outp->info.type == DCB_OUTPUT_TMDS) nv50_disp_intr_unk40_0_tmds(priv, &outp->info); } void nv50_disp_intr_supervisor(struct work_struct *work) { struct nv50_disp_priv *priv = container_of(work, struct nv50_disp_priv, supervisor); struct nv50_disp_impl *impl = (void *)nv_object(priv)->oclass; u32 super = nv_rd32(priv, 0x610030); int head; nv_debug(priv, "supervisor 0x%08x 0x%08x\n", priv->super, super); if (priv->super & 0x00000010) { nv50_disp_mthd_chan(priv, NV_DBG_DEBUG, 0, impl->mthd.core); for (head = 0; head < priv->head.nr; head++) { if (!(super & (0x00000020 << head))) continue; if (!(super & (0x00000080 << head))) continue; nv50_disp_intr_unk10_0(priv, head); } } else if (priv->super & 0x00000020) { for (head = 0; head < priv->head.nr; head++) { if (!(super & (0x00000080 << head))) continue; nv50_disp_intr_unk20_0(priv, head); } for (head = 0; head < priv->head.nr; head++) { if (!(super & (0x00000200 << head))) continue; nv50_disp_intr_unk20_1(priv, head); } for (head = 0; head < priv->head.nr; head++) { if (!(super & (0x00000080 << head))) continue; nv50_disp_intr_unk20_2(priv, head); } } else if (priv->super & 0x00000040) { for (head = 0; head < priv->head.nr; head++) { if (!(super & (0x00000080 << head))) continue; nv50_disp_intr_unk40_0(priv, head); } } nv_wr32(priv, 0x610030, 0x80000000); } void nv50_disp_intr(struct nvkm_subdev *subdev) { struct nv50_disp_priv *priv = (void *)subdev; u32 intr0 = nv_rd32(priv, 0x610020); u32 intr1 = nv_rd32(priv, 0x610024); while (intr0 & 0x001f0000) { u32 chid = __ffs(intr0 & 0x001f0000) - 16; nv50_disp_intr_error(priv, chid); intr0 &= ~(0x00010000 << chid); } while (intr0 & 0x0000001f) { u32 chid = __ffs(intr0 & 0x0000001f); nv50_disp_chan_uevent_send(priv, chid); intr0 &= ~(0x00000001 << chid); } if (intr1 & 0x00000004) { nvkm_disp_vblank(&priv->base, 0); nv_wr32(priv, 0x610024, 0x00000004); intr1 &= ~0x00000004; } if (intr1 & 0x00000008) { nvkm_disp_vblank(&priv->base, 1); nv_wr32(priv, 0x610024, 0x00000008); intr1 &= ~0x00000008; } if (intr1 & 0x00000070) { priv->super = (intr1 & 0x00000070); schedule_work(&priv->supervisor); nv_wr32(priv, 0x610024, priv->super); intr1 &= ~0x00000070; } } static int nv50_disp_ctor(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, void *data, u32 size, struct nvkm_object **pobject) { struct nv50_disp_priv *priv; int ret; ret = nvkm_disp_create(parent, engine, oclass, 2, "PDISP", "display", &priv); *pobject = nv_object(priv); if (ret) return ret; ret = nvkm_event_init(&nv50_disp_chan_uevent, 1, 9, &priv->uevent); if (ret) return ret; nv_engine(priv)->sclass = nv50_disp_main_oclass; nv_engine(priv)->cclass = &nv50_disp_cclass; nv_subdev(priv)->intr = nv50_disp_intr; INIT_WORK(&priv->supervisor, nv50_disp_intr_supervisor); priv->sclass = nv50_disp_sclass; priv->head.nr = 2; priv->dac.nr = 3; priv->sor.nr = 2; priv->pior.nr = 3; priv->dac.power = nv50_dac_power; priv->dac.sense = nv50_dac_sense; priv->sor.power = nv50_sor_power; priv->pior.power = nv50_pior_power; return 0; } struct nvkm_oclass * nv50_disp_outp_sclass[] = { &nv50_pior_dp_impl.base.base, NULL }; struct nvkm_oclass * nv50_disp_oclass = &(struct nv50_disp_impl) { .base.base.handle = NV_ENGINE(DISP, 0x50), .base.base.ofuncs = &(struct nvkm_ofuncs) { .ctor = nv50_disp_ctor, .dtor = _nvkm_disp_dtor, .init = _nvkm_disp_init, .fini = _nvkm_disp_fini, }, .base.vblank = &nv50_disp_vblank_func, .base.outp = nv50_disp_outp_sclass, .mthd.core = &nv50_disp_core_mthd_chan, .mthd.base = &nv50_disp_base_mthd_chan, .mthd.ovly = &nv50_disp_ovly_mthd_chan, .mthd.prev = 0x000004, .head.scanoutpos = nv50_disp_main_scanoutpos, }.base.base;