/* * Driver for SMM665 Power Controller / Monitor * * Copyright (C) 2010 Ericsson AB. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This driver should also work for SMM465, SMM764, and SMM766, but is untested * for those chips. Only monitoring functionality is implemented. * * Datasheets: * http://www.summitmicro.com/prod_select/summary/SMM665/SMM665B_2089_20.pdf * http://www.summitmicro.com/prod_select/summary/SMM766B/SMM766B_2122.pdf */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/delay.h> #include <linux/jiffies.h> /* Internal reference voltage (VREF, x 1000 */ #define SMM665_VREF_ADC_X1000 1250 /* module parameters */ static int vref = SMM665_VREF_ADC_X1000; module_param(vref, int, 0); MODULE_PARM_DESC(vref, "Reference voltage in mV"); enum chips { smm465, smm665, smm665c, smm764, smm766 }; /* * ADC channel addresses */ #define SMM665_MISC16_ADC_DATA_A 0x00 #define SMM665_MISC16_ADC_DATA_B 0x01 #define SMM665_MISC16_ADC_DATA_C 0x02 #define SMM665_MISC16_ADC_DATA_D 0x03 #define SMM665_MISC16_ADC_DATA_E 0x04 #define SMM665_MISC16_ADC_DATA_F 0x05 #define SMM665_MISC16_ADC_DATA_VDD 0x06 #define SMM665_MISC16_ADC_DATA_12V 0x07 #define SMM665_MISC16_ADC_DATA_INT_TEMP 0x08 #define SMM665_MISC16_ADC_DATA_AIN1 0x09 #define SMM665_MISC16_ADC_DATA_AIN2 0x0a /* * Command registers */ #define SMM665_MISC8_CMD_STS 0x80 #define SMM665_MISC8_STATUS1 0x81 #define SMM665_MISC8_STATUSS2 0x82 #define SMM665_MISC8_IO_POLARITY 0x83 #define SMM665_MISC8_PUP_POLARITY 0x84 #define SMM665_MISC8_ADOC_STATUS1 0x85 #define SMM665_MISC8_ADOC_STATUS2 0x86 #define SMM665_MISC8_WRITE_PROT 0x87 #define SMM665_MISC8_STS_TRACK 0x88 /* * Configuration registers and register groups */ #define SMM665_ADOC_ENABLE 0x0d #define SMM665_LIMIT_BASE 0x80 /* First limit register */ /* * Limit register bit masks */ #define SMM665_TRIGGER_RST 0x8000 #define SMM665_TRIGGER_HEALTHY 0x4000 #define SMM665_TRIGGER_POWEROFF 0x2000 #define SMM665_TRIGGER_SHUTDOWN 0x1000 #define SMM665_ADC_MASK 0x03ff #define smm665_is_critical(lim) ((lim) & (SMM665_TRIGGER_RST \ | SMM665_TRIGGER_POWEROFF \ | SMM665_TRIGGER_SHUTDOWN)) /* * Fault register bit definitions * Values are merged from status registers 1/2, * with status register 1 providing the upper 8 bits. */ #define SMM665_FAULT_A 0x0001 #define SMM665_FAULT_B 0x0002 #define SMM665_FAULT_C 0x0004 #define SMM665_FAULT_D 0x0008 #define SMM665_FAULT_E 0x0010 #define SMM665_FAULT_F 0x0020 #define SMM665_FAULT_VDD 0x0040 #define SMM665_FAULT_12V 0x0080 #define SMM665_FAULT_TEMP 0x0100 #define SMM665_FAULT_AIN1 0x0200 #define SMM665_FAULT_AIN2 0x0400 /* * I2C Register addresses * * The configuration register needs to be the configured base register. * The command/status register address is derived from it. */ #define SMM665_REGMASK 0x78 #define SMM665_CMDREG_BASE 0x48 #define SMM665_CONFREG_BASE 0x50 /* * Equations given by chip manufacturer to calculate voltage/temperature values * vref = Reference voltage on VREF_ADC pin (module parameter) * adc = 10bit ADC value read back from registers */ /* Voltage A-F and VDD */ #define SMM665_VMON_ADC_TO_VOLTS(adc) ((adc) * vref / 256) /* Voltage 12VIN */ #define SMM665_12VIN_ADC_TO_VOLTS(adc) ((adc) * vref * 3 / 256) /* Voltage AIN1, AIN2 */ #define SMM665_AIN_ADC_TO_VOLTS(adc) ((adc) * vref / 512) /* Temp Sensor */ #define SMM665_TEMP_ADC_TO_CELSIUS(adc) (((adc) <= 511) ? \ ((int)(adc) * 1000 / 4) : \ (((int)(adc) - 0x400) * 1000 / 4)) #define SMM665_NUM_ADC 11 /* * Chip dependent ADC conversion time, in uS */ #define SMM665_ADC_WAIT_SMM665 70 #define SMM665_ADC_WAIT_SMM766 185 struct smm665_data { enum chips type; int conversion_time; /* ADC conversion time */ struct i2c_client *client; struct mutex update_lock; bool valid; unsigned long last_updated; /* in jiffies */ u16 adc[SMM665_NUM_ADC]; /* adc values (raw) */ u16 faults; /* fault status */ /* The following values are in mV */ int critical_min_limit[SMM665_NUM_ADC]; int alarm_min_limit[SMM665_NUM_ADC]; int critical_max_limit[SMM665_NUM_ADC]; int alarm_max_limit[SMM665_NUM_ADC]; struct i2c_client *cmdreg; }; /* * smm665_read16() * * Read 16 bit value from <reg>, <reg+1>. Upper 8 bits are in <reg>. */ static int smm665_read16(struct i2c_client *client, int reg) { int rv, val; rv = i2c_smbus_read_byte_data(client, reg); if (rv < 0) return rv; val = rv << 8; rv = i2c_smbus_read_byte_data(client, reg + 1); if (rv < 0) return rv; val |= rv; return val; } /* * Read adc value. */ static int smm665_read_adc(struct smm665_data *data, int adc) { struct i2c_client *client = data->cmdreg; int rv; int radc; /* * Algorithm for reading ADC, per SMM665 datasheet * * {[S][addr][W][Ack]} {[offset][Ack]} {[S][addr][R][Nack]} * [wait conversion time] * {[S][addr][R][Ack]} {[datahi][Ack]} {[datalo][Ack][P]} * * To implement the first part of this exchange, * do a full read transaction and expect a failure/Nack. * This sets up the address pointer on the SMM665 * and starts the ADC conversion. * Then do a two-byte read transaction. */ rv = i2c_smbus_read_byte_data(client, adc << 3); if (rv != -ENXIO) { /* * We expect ENXIO to reflect NACK * (per Documentation/i2c/fault-codes). * Everything else is an error. */ dev_dbg(&client->dev, "Unexpected return code %d when setting ADC index", rv); return (rv < 0) ? rv : -EIO; } udelay(data->conversion_time); /* * Now read two bytes. * * Neither i2c_smbus_read_byte() nor * i2c_smbus_read_block_data() worked here, * so use i2c_smbus_read_word_swapped() instead. * We could also try to use i2c_master_recv(), * but that is not always supported. */ rv = i2c_smbus_read_word_swapped(client, 0); if (rv < 0) { dev_dbg(&client->dev, "Failed to read ADC value: error %d", rv); return rv; } /* * Validate/verify readback adc channel (in bit 11..14). */ radc = (rv >> 11) & 0x0f; if (radc != adc) { dev_dbg(&client->dev, "Unexpected RADC: Expected %d got %d", adc, radc); return -EIO; } return rv & SMM665_ADC_MASK; } static struct smm665_data *smm665_update_device(struct device *dev) { struct smm665_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; struct smm665_data *ret = data; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ) || !data->valid) { int i, val; /* * read status registers */ val = smm665_read16(client, SMM665_MISC8_STATUS1); if (unlikely(val < 0)) { ret = ERR_PTR(val); goto abort; } data->faults = val; /* Read adc registers */ for (i = 0; i < SMM665_NUM_ADC; i++) { val = smm665_read_adc(data, i); if (unlikely(val < 0)) { ret = ERR_PTR(val); goto abort; } data->adc[i] = val; } data->last_updated = jiffies; data->valid = 1; } abort: mutex_unlock(&data->update_lock); return ret; } /* Return converted value from given adc */ static int smm665_convert(u16 adcval, int index) { int val = 0; switch (index) { case SMM665_MISC16_ADC_DATA_12V: val = SMM665_12VIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK); break; case SMM665_MISC16_ADC_DATA_VDD: case SMM665_MISC16_ADC_DATA_A: case SMM665_MISC16_ADC_DATA_B: case SMM665_MISC16_ADC_DATA_C: case SMM665_MISC16_ADC_DATA_D: case SMM665_MISC16_ADC_DATA_E: case SMM665_MISC16_ADC_DATA_F: val = SMM665_VMON_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK); break; case SMM665_MISC16_ADC_DATA_AIN1: case SMM665_MISC16_ADC_DATA_AIN2: val = SMM665_AIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK); break; case SMM665_MISC16_ADC_DATA_INT_TEMP: val = SMM665_TEMP_ADC_TO_CELSIUS(adcval & SMM665_ADC_MASK); break; default: /* If we get here, the developer messed up */ WARN_ON_ONCE(1); break; } return val; } static int smm665_get_min(struct device *dev, int index) { struct smm665_data *data = dev_get_drvdata(dev); return data->alarm_min_limit[index]; } static int smm665_get_max(struct device *dev, int index) { struct smm665_data *data = dev_get_drvdata(dev); return data->alarm_max_limit[index]; } static int smm665_get_lcrit(struct device *dev, int index) { struct smm665_data *data = dev_get_drvdata(dev); return data->critical_min_limit[index]; } static int smm665_get_crit(struct device *dev, int index) { struct smm665_data *data = dev_get_drvdata(dev); return data->critical_max_limit[index]; } static ssize_t smm665_show_crit_alarm(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct smm665_data *data = smm665_update_device(dev); int val = 0; if (IS_ERR(data)) return PTR_ERR(data); if (data->faults & (1 << attr->index)) val = 1; return snprintf(buf, PAGE_SIZE, "%d\n", val); } static ssize_t smm665_show_input(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct smm665_data *data = smm665_update_device(dev); int adc = attr->index; int val; if (IS_ERR(data)) return PTR_ERR(data); val = smm665_convert(data->adc[adc], adc); return snprintf(buf, PAGE_SIZE, "%d\n", val); } #define SMM665_SHOW(what) \ static ssize_t smm665_show_##what(struct device *dev, \ struct device_attribute *da, char *buf) \ { \ struct sensor_device_attribute *attr = to_sensor_dev_attr(da); \ const int val = smm665_get_##what(dev, attr->index); \ return snprintf(buf, PAGE_SIZE, "%d\n", val); \ } SMM665_SHOW(min); SMM665_SHOW(max); SMM665_SHOW(lcrit); SMM665_SHOW(crit); /* * These macros are used below in constructing device attribute objects * for use with sysfs_create_group() to make a sysfs device file * for each register. */ #define SMM665_ATTR(name, type, cmd_idx) \ static SENSOR_DEVICE_ATTR(name##_##type, S_IRUGO, \ smm665_show_##type, NULL, cmd_idx) /* Construct a sensor_device_attribute structure for each register */ /* Input voltages */ SMM665_ATTR(in1, input, SMM665_MISC16_ADC_DATA_12V); SMM665_ATTR(in2, input, SMM665_MISC16_ADC_DATA_VDD); SMM665_ATTR(in3, input, SMM665_MISC16_ADC_DATA_A); SMM665_ATTR(in4, input, SMM665_MISC16_ADC_DATA_B); SMM665_ATTR(in5, input, SMM665_MISC16_ADC_DATA_C); SMM665_ATTR(in6, input, SMM665_MISC16_ADC_DATA_D); SMM665_ATTR(in7, input, SMM665_MISC16_ADC_DATA_E); SMM665_ATTR(in8, input, SMM665_MISC16_ADC_DATA_F); SMM665_ATTR(in9, input, SMM665_MISC16_ADC_DATA_AIN1); SMM665_ATTR(in10, input, SMM665_MISC16_ADC_DATA_AIN2); /* Input voltages min */ SMM665_ATTR(in1, min, SMM665_MISC16_ADC_DATA_12V); SMM665_ATTR(in2, min, SMM665_MISC16_ADC_DATA_VDD); SMM665_ATTR(in3, min, SMM665_MISC16_ADC_DATA_A); SMM665_ATTR(in4, min, SMM665_MISC16_ADC_DATA_B); SMM665_ATTR(in5, min, SMM665_MISC16_ADC_DATA_C); SMM665_ATTR(in6, min, SMM665_MISC16_ADC_DATA_D); SMM665_ATTR(in7, min, SMM665_MISC16_ADC_DATA_E); SMM665_ATTR(in8, min, SMM665_MISC16_ADC_DATA_F); SMM665_ATTR(in9, min, SMM665_MISC16_ADC_DATA_AIN1); SMM665_ATTR(in10, min, SMM665_MISC16_ADC_DATA_AIN2); /* Input voltages max */ SMM665_ATTR(in1, max, SMM665_MISC16_ADC_DATA_12V); SMM665_ATTR(in2, max, SMM665_MISC16_ADC_DATA_VDD); SMM665_ATTR(in3, max, SMM665_MISC16_ADC_DATA_A); SMM665_ATTR(in4, max, SMM665_MISC16_ADC_DATA_B); SMM665_ATTR(in5, max, SMM665_MISC16_ADC_DATA_C); SMM665_ATTR(in6, max, SMM665_MISC16_ADC_DATA_D); SMM665_ATTR(in7, max, SMM665_MISC16_ADC_DATA_E); SMM665_ATTR(in8, max, SMM665_MISC16_ADC_DATA_F); SMM665_ATTR(in9, max, SMM665_MISC16_ADC_DATA_AIN1); SMM665_ATTR(in10, max, SMM665_MISC16_ADC_DATA_AIN2); /* Input voltages lcrit */ SMM665_ATTR(in1, lcrit, SMM665_MISC16_ADC_DATA_12V); SMM665_ATTR(in2, lcrit, SMM665_MISC16_ADC_DATA_VDD); SMM665_ATTR(in3, lcrit, SMM665_MISC16_ADC_DATA_A); SMM665_ATTR(in4, lcrit, SMM665_MISC16_ADC_DATA_B); SMM665_ATTR(in5, lcrit, SMM665_MISC16_ADC_DATA_C); SMM665_ATTR(in6, lcrit, SMM665_MISC16_ADC_DATA_D); SMM665_ATTR(in7, lcrit, SMM665_MISC16_ADC_DATA_E); SMM665_ATTR(in8, lcrit, SMM665_MISC16_ADC_DATA_F); SMM665_ATTR(in9, lcrit, SMM665_MISC16_ADC_DATA_AIN1); SMM665_ATTR(in10, lcrit, SMM665_MISC16_ADC_DATA_AIN2); /* Input voltages crit */ SMM665_ATTR(in1, crit, SMM665_MISC16_ADC_DATA_12V); SMM665_ATTR(in2, crit, SMM665_MISC16_ADC_DATA_VDD); SMM665_ATTR(in3, crit, SMM665_MISC16_ADC_DATA_A); SMM665_ATTR(in4, crit, SMM665_MISC16_ADC_DATA_B); SMM665_ATTR(in5, crit, SMM665_MISC16_ADC_DATA_C); SMM665_ATTR(in6, crit, SMM665_MISC16_ADC_DATA_D); SMM665_ATTR(in7, crit, SMM665_MISC16_ADC_DATA_E); SMM665_ATTR(in8, crit, SMM665_MISC16_ADC_DATA_F); SMM665_ATTR(in9, crit, SMM665_MISC16_ADC_DATA_AIN1); SMM665_ATTR(in10, crit, SMM665_MISC16_ADC_DATA_AIN2); /* critical alarms */ SMM665_ATTR(in1, crit_alarm, SMM665_FAULT_12V); SMM665_ATTR(in2, crit_alarm, SMM665_FAULT_VDD); SMM665_ATTR(in3, crit_alarm, SMM665_FAULT_A); SMM665_ATTR(in4, crit_alarm, SMM665_FAULT_B); SMM665_ATTR(in5, crit_alarm, SMM665_FAULT_C); SMM665_ATTR(in6, crit_alarm, SMM665_FAULT_D); SMM665_ATTR(in7, crit_alarm, SMM665_FAULT_E); SMM665_ATTR(in8, crit_alarm, SMM665_FAULT_F); SMM665_ATTR(in9, crit_alarm, SMM665_FAULT_AIN1); SMM665_ATTR(in10, crit_alarm, SMM665_FAULT_AIN2); /* Temperature */ SMM665_ATTR(temp1, input, SMM665_MISC16_ADC_DATA_INT_TEMP); SMM665_ATTR(temp1, min, SMM665_MISC16_ADC_DATA_INT_TEMP); SMM665_ATTR(temp1, max, SMM665_MISC16_ADC_DATA_INT_TEMP); SMM665_ATTR(temp1, lcrit, SMM665_MISC16_ADC_DATA_INT_TEMP); SMM665_ATTR(temp1, crit, SMM665_MISC16_ADC_DATA_INT_TEMP); SMM665_ATTR(temp1, crit_alarm, SMM665_FAULT_TEMP); /* * Finally, construct an array of pointers to members of the above objects, * as required for sysfs_create_group() */ static struct attribute *smm665_attrs[] = { &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in1_lcrit.dev_attr.attr, &sensor_dev_attr_in1_crit.dev_attr.attr, &sensor_dev_attr_in1_crit_alarm.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in2_lcrit.dev_attr.attr, &sensor_dev_attr_in2_crit.dev_attr.attr, &sensor_dev_attr_in2_crit_alarm.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in3_lcrit.dev_attr.attr, &sensor_dev_attr_in3_crit.dev_attr.attr, &sensor_dev_attr_in3_crit_alarm.dev_attr.attr, &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in4_lcrit.dev_attr.attr, &sensor_dev_attr_in4_crit.dev_attr.attr, &sensor_dev_attr_in4_crit_alarm.dev_attr.attr, &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in5_lcrit.dev_attr.attr, &sensor_dev_attr_in5_crit.dev_attr.attr, &sensor_dev_attr_in5_crit_alarm.dev_attr.attr, &sensor_dev_attr_in6_input.dev_attr.attr, &sensor_dev_attr_in6_min.dev_attr.attr, &sensor_dev_attr_in6_max.dev_attr.attr, &sensor_dev_attr_in6_lcrit.dev_attr.attr, &sensor_dev_attr_in6_crit.dev_attr.attr, &sensor_dev_attr_in6_crit_alarm.dev_attr.attr, &sensor_dev_attr_in7_input.dev_attr.attr, &sensor_dev_attr_in7_min.dev_attr.attr, &sensor_dev_attr_in7_max.dev_attr.attr, &sensor_dev_attr_in7_lcrit.dev_attr.attr, &sensor_dev_attr_in7_crit.dev_attr.attr, &sensor_dev_attr_in7_crit_alarm.dev_attr.attr, &sensor_dev_attr_in8_input.dev_attr.attr, &sensor_dev_attr_in8_min.dev_attr.attr, &sensor_dev_attr_in8_max.dev_attr.attr, &sensor_dev_attr_in8_lcrit.dev_attr.attr, &sensor_dev_attr_in8_crit.dev_attr.attr, &sensor_dev_attr_in8_crit_alarm.dev_attr.attr, &sensor_dev_attr_in9_input.dev_attr.attr, &sensor_dev_attr_in9_min.dev_attr.attr, &sensor_dev_attr_in9_max.dev_attr.attr, &sensor_dev_attr_in9_lcrit.dev_attr.attr, &sensor_dev_attr_in9_crit.dev_attr.attr, &sensor_dev_attr_in9_crit_alarm.dev_attr.attr, &sensor_dev_attr_in10_input.dev_attr.attr, &sensor_dev_attr_in10_min.dev_attr.attr, &sensor_dev_attr_in10_max.dev_attr.attr, &sensor_dev_attr_in10_lcrit.dev_attr.attr, &sensor_dev_attr_in10_crit.dev_attr.attr, &sensor_dev_attr_in10_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_lcrit.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, NULL, }; ATTRIBUTE_GROUPS(smm665); static int smm665_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct i2c_adapter *adapter = client->adapter; struct smm665_data *data; struct device *hwmon_dev; int i, ret; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA)) return -ENODEV; if (i2c_smbus_read_byte_data(client, SMM665_ADOC_ENABLE) < 0) return -ENODEV; data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; i2c_set_clientdata(client, data); mutex_init(&data->update_lock); data->client = client; data->type = id->driver_data; data->cmdreg = i2c_new_dummy(adapter, (client->addr & ~SMM665_REGMASK) | SMM665_CMDREG_BASE); if (!data->cmdreg) return -ENOMEM; switch (data->type) { case smm465: case smm665: data->conversion_time = SMM665_ADC_WAIT_SMM665; break; case smm665c: case smm764: case smm766: data->conversion_time = SMM665_ADC_WAIT_SMM766; break; } ret = -ENODEV; if (i2c_smbus_read_byte_data(data->cmdreg, SMM665_MISC8_CMD_STS) < 0) goto out_unregister; /* * Read limits. * * Limit registers start with register SMM665_LIMIT_BASE. * Each channel uses 8 registers, providing four limit values * per channel. Each limit value requires two registers, with the * high byte in the first register and the low byte in the second * register. The first two limits are under limit values, followed * by two over limit values. * * Limit register order matches the ADC register order, so we use * ADC register defines throughout the code to index limit registers. * * We save the first retrieved value both as "critical" and "alarm" * value. The second value overwrites either the critical or the * alarm value, depending on its configuration. This ensures that both * critical and alarm values are initialized, even if both registers are * configured as critical or non-critical. */ for (i = 0; i < SMM665_NUM_ADC; i++) { int val; val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8); if (unlikely(val < 0)) goto out_unregister; data->critical_min_limit[i] = data->alarm_min_limit[i] = smm665_convert(val, i); val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 2); if (unlikely(val < 0)) goto out_unregister; if (smm665_is_critical(val)) data->critical_min_limit[i] = smm665_convert(val, i); else data->alarm_min_limit[i] = smm665_convert(val, i); val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 4); if (unlikely(val < 0)) goto out_unregister; data->critical_max_limit[i] = data->alarm_max_limit[i] = smm665_convert(val, i); val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 6); if (unlikely(val < 0)) goto out_unregister; if (smm665_is_critical(val)) data->critical_max_limit[i] = smm665_convert(val, i); else data->alarm_max_limit[i] = smm665_convert(val, i); } hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev, client->name, data, smm665_groups); if (IS_ERR(hwmon_dev)) { ret = PTR_ERR(hwmon_dev); goto out_unregister; } return 0; out_unregister: i2c_unregister_device(data->cmdreg); return ret; } static int smm665_remove(struct i2c_client *client) { struct smm665_data *data = i2c_get_clientdata(client); i2c_unregister_device(data->cmdreg); return 0; } static const struct i2c_device_id smm665_id[] = { {"smm465", smm465}, {"smm665", smm665}, {"smm665c", smm665c}, {"smm764", smm764}, {"smm766", smm766}, {} }; MODULE_DEVICE_TABLE(i2c, smm665_id); /* This is the driver that will be inserted */ static struct i2c_driver smm665_driver = { .driver = { .name = "smm665", }, .probe = smm665_probe, .remove = smm665_remove, .id_table = smm665_id, }; module_i2c_driver(smm665_driver); MODULE_AUTHOR("Guenter Roeck"); MODULE_DESCRIPTION("SMM665 driver"); MODULE_LICENSE("GPL");