/* * Copyright (C) 2014 Uwe Kleine-Koenig for Pengutronix * * This program is free software; you can redistribute it and/or modify it under * the terms of the GNU General Public License version 2 as published by the * Free Software Foundation. */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/i2c.h> #include <linux/io.h> #include <linux/interrupt.h> #include <linux/err.h> #include <linux/clk.h> #define DRIVER_NAME "efm32-i2c" #define MASK_VAL(mask, val) ((val << __ffs(mask)) & mask) #define REG_CTRL 0x00 #define REG_CTRL_EN 0x00001 #define REG_CTRL_SLAVE 0x00002 #define REG_CTRL_AUTOACK 0x00004 #define REG_CTRL_AUTOSE 0x00008 #define REG_CTRL_AUTOSN 0x00010 #define REG_CTRL_ARBDIS 0x00020 #define REG_CTRL_GCAMEN 0x00040 #define REG_CTRL_CLHR__MASK 0x00300 #define REG_CTRL_BITO__MASK 0x03000 #define REG_CTRL_BITO_OFF 0x00000 #define REG_CTRL_BITO_40PCC 0x01000 #define REG_CTRL_BITO_80PCC 0x02000 #define REG_CTRL_BITO_160PCC 0x03000 #define REG_CTRL_GIBITO 0x08000 #define REG_CTRL_CLTO__MASK 0x70000 #define REG_CTRL_CLTO_OFF 0x00000 #define REG_CMD 0x04 #define REG_CMD_START 0x00001 #define REG_CMD_STOP 0x00002 #define REG_CMD_ACK 0x00004 #define REG_CMD_NACK 0x00008 #define REG_CMD_CONT 0x00010 #define REG_CMD_ABORT 0x00020 #define REG_CMD_CLEARTX 0x00040 #define REG_CMD_CLEARPC 0x00080 #define REG_STATE 0x08 #define REG_STATE_BUSY 0x00001 #define REG_STATE_MASTER 0x00002 #define REG_STATE_TRANSMITTER 0x00004 #define REG_STATE_NACKED 0x00008 #define REG_STATE_BUSHOLD 0x00010 #define REG_STATE_STATE__MASK 0x000e0 #define REG_STATE_STATE_IDLE 0x00000 #define REG_STATE_STATE_WAIT 0x00020 #define REG_STATE_STATE_START 0x00040 #define REG_STATE_STATE_ADDR 0x00060 #define REG_STATE_STATE_ADDRACK 0x00080 #define REG_STATE_STATE_DATA 0x000a0 #define REG_STATE_STATE_DATAACK 0x000c0 #define REG_STATUS 0x0c #define REG_STATUS_PSTART 0x00001 #define REG_STATUS_PSTOP 0x00002 #define REG_STATUS_PACK 0x00004 #define REG_STATUS_PNACK 0x00008 #define REG_STATUS_PCONT 0x00010 #define REG_STATUS_PABORT 0x00020 #define REG_STATUS_TXC 0x00040 #define REG_STATUS_TXBL 0x00080 #define REG_STATUS_RXDATAV 0x00100 #define REG_CLKDIV 0x10 #define REG_CLKDIV_DIV__MASK 0x001ff #define REG_CLKDIV_DIV(div) MASK_VAL(REG_CLKDIV_DIV__MASK, (div)) #define REG_SADDR 0x14 #define REG_SADDRMASK 0x18 #define REG_RXDATA 0x1c #define REG_RXDATAP 0x20 #define REG_TXDATA 0x24 #define REG_IF 0x28 #define REG_IF_START 0x00001 #define REG_IF_RSTART 0x00002 #define REG_IF_ADDR 0x00004 #define REG_IF_TXC 0x00008 #define REG_IF_TXBL 0x00010 #define REG_IF_RXDATAV 0x00020 #define REG_IF_ACK 0x00040 #define REG_IF_NACK 0x00080 #define REG_IF_MSTOP 0x00100 #define REG_IF_ARBLOST 0x00200 #define REG_IF_BUSERR 0x00400 #define REG_IF_BUSHOLD 0x00800 #define REG_IF_TXOF 0x01000 #define REG_IF_RXUF 0x02000 #define REG_IF_BITO 0x04000 #define REG_IF_CLTO 0x08000 #define REG_IF_SSTOP 0x10000 #define REG_IFS 0x2c #define REG_IFC 0x30 #define REG_IFC__MASK 0x1ffcf #define REG_IEN 0x34 #define REG_ROUTE 0x38 #define REG_ROUTE_SDAPEN 0x00001 #define REG_ROUTE_SCLPEN 0x00002 #define REG_ROUTE_LOCATION__MASK 0x00700 #define REG_ROUTE_LOCATION(n) MASK_VAL(REG_ROUTE_LOCATION__MASK, (n)) struct efm32_i2c_ddata { struct i2c_adapter adapter; struct clk *clk; void __iomem *base; unsigned int irq; u8 location; unsigned long frequency; /* transfer data */ struct completion done; struct i2c_msg *msgs; size_t num_msgs; size_t current_word, current_msg; int retval; }; static u32 efm32_i2c_read32(struct efm32_i2c_ddata *ddata, unsigned offset) { return readl(ddata->base + offset); } static void efm32_i2c_write32(struct efm32_i2c_ddata *ddata, unsigned offset, u32 value) { writel(value, ddata->base + offset); } static void efm32_i2c_send_next_msg(struct efm32_i2c_ddata *ddata) { struct i2c_msg *cur_msg = &ddata->msgs[ddata->current_msg]; efm32_i2c_write32(ddata, REG_CMD, REG_CMD_START); efm32_i2c_write32(ddata, REG_TXDATA, cur_msg->addr << 1 | (cur_msg->flags & I2C_M_RD ? 1 : 0)); } static void efm32_i2c_send_next_byte(struct efm32_i2c_ddata *ddata) { struct i2c_msg *cur_msg = &ddata->msgs[ddata->current_msg]; if (ddata->current_word >= cur_msg->len) { /* cur_msg completely transferred */ ddata->current_word = 0; ddata->current_msg += 1; if (ddata->current_msg >= ddata->num_msgs) { efm32_i2c_write32(ddata, REG_CMD, REG_CMD_STOP); complete(&ddata->done); } else { efm32_i2c_send_next_msg(ddata); } } else { efm32_i2c_write32(ddata, REG_TXDATA, cur_msg->buf[ddata->current_word++]); } } static void efm32_i2c_recv_next_byte(struct efm32_i2c_ddata *ddata) { struct i2c_msg *cur_msg = &ddata->msgs[ddata->current_msg]; cur_msg->buf[ddata->current_word] = efm32_i2c_read32(ddata, REG_RXDATA); ddata->current_word += 1; if (ddata->current_word >= cur_msg->len) { /* cur_msg completely transferred */ ddata->current_word = 0; ddata->current_msg += 1; efm32_i2c_write32(ddata, REG_CMD, REG_CMD_NACK); if (ddata->current_msg >= ddata->num_msgs) { efm32_i2c_write32(ddata, REG_CMD, REG_CMD_STOP); complete(&ddata->done); } else { efm32_i2c_send_next_msg(ddata); } } else { efm32_i2c_write32(ddata, REG_CMD, REG_CMD_ACK); } } static irqreturn_t efm32_i2c_irq(int irq, void *dev_id) { struct efm32_i2c_ddata *ddata = dev_id; struct i2c_msg *cur_msg = &ddata->msgs[ddata->current_msg]; u32 irqflag = efm32_i2c_read32(ddata, REG_IF); u32 state = efm32_i2c_read32(ddata, REG_STATE); efm32_i2c_write32(ddata, REG_IFC, irqflag & REG_IFC__MASK); switch (state & REG_STATE_STATE__MASK) { case REG_STATE_STATE_IDLE: /* arbitration lost? */ ddata->retval = -EAGAIN; complete(&ddata->done); break; case REG_STATE_STATE_WAIT: /* * huh, this shouldn't happen. * Reset hardware state and get out */ ddata->retval = -EIO; efm32_i2c_write32(ddata, REG_CMD, REG_CMD_STOP | REG_CMD_ABORT | REG_CMD_CLEARTX | REG_CMD_CLEARPC); complete(&ddata->done); break; case REG_STATE_STATE_START: /* "caller" is expected to send an address */ break; case REG_STATE_STATE_ADDR: /* wait for Ack or NAck of slave */ break; case REG_STATE_STATE_ADDRACK: if (state & REG_STATE_NACKED) { efm32_i2c_write32(ddata, REG_CMD, REG_CMD_STOP); ddata->retval = -ENXIO; complete(&ddata->done); } else if (cur_msg->flags & I2C_M_RD) { /* wait for slave to send first data byte */ } else { efm32_i2c_send_next_byte(ddata); } break; case REG_STATE_STATE_DATA: if (cur_msg->flags & I2C_M_RD) { efm32_i2c_recv_next_byte(ddata); } else { /* wait for Ack or Nack of slave */ } break; case REG_STATE_STATE_DATAACK: if (state & REG_STATE_NACKED) { efm32_i2c_write32(ddata, REG_CMD, REG_CMD_STOP); complete(&ddata->done); } else { efm32_i2c_send_next_byte(ddata); } } return IRQ_HANDLED; } static int efm32_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct efm32_i2c_ddata *ddata = i2c_get_adapdata(adap); int ret; if (ddata->msgs) return -EBUSY; ddata->msgs = msgs; ddata->num_msgs = num; ddata->current_word = 0; ddata->current_msg = 0; ddata->retval = -EIO; reinit_completion(&ddata->done); dev_dbg(&ddata->adapter.dev, "state: %08x, status: %08x\n", efm32_i2c_read32(ddata, REG_STATE), efm32_i2c_read32(ddata, REG_STATUS)); efm32_i2c_send_next_msg(ddata); wait_for_completion(&ddata->done); if (ddata->current_msg >= ddata->num_msgs) ret = ddata->num_msgs; else ret = ddata->retval; return ret; } static u32 efm32_i2c_functionality(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm efm32_i2c_algo = { .master_xfer = efm32_i2c_master_xfer, .functionality = efm32_i2c_functionality, }; static u32 efm32_i2c_get_configured_location(struct efm32_i2c_ddata *ddata) { u32 reg = efm32_i2c_read32(ddata, REG_ROUTE); return (reg & REG_ROUTE_LOCATION__MASK) >> __ffs(REG_ROUTE_LOCATION__MASK); } static int efm32_i2c_probe(struct platform_device *pdev) { struct efm32_i2c_ddata *ddata; struct resource *res; unsigned long rate; struct device_node *np = pdev->dev.of_node; u32 location, frequency; int ret; u32 clkdiv; if (!np) return -EINVAL; ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL); if (!ddata) return -ENOMEM; platform_set_drvdata(pdev, ddata); init_completion(&ddata->done); strlcpy(ddata->adapter.name, pdev->name, sizeof(ddata->adapter.name)); ddata->adapter.owner = THIS_MODULE; ddata->adapter.algo = &efm32_i2c_algo; ddata->adapter.dev.parent = &pdev->dev; ddata->adapter.dev.of_node = pdev->dev.of_node; i2c_set_adapdata(&ddata->adapter, ddata); ddata->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(ddata->clk)) { ret = PTR_ERR(ddata->clk); dev_err(&pdev->dev, "failed to get clock: %d\n", ret); return ret; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&pdev->dev, "failed to determine base address\n"); return -ENODEV; } if (resource_size(res) < 0x42) { dev_err(&pdev->dev, "memory resource too small\n"); return -EINVAL; } ddata->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(ddata->base)) return PTR_ERR(ddata->base); ret = platform_get_irq(pdev, 0); if (ret <= 0) { dev_err(&pdev->dev, "failed to get irq (%d)\n", ret); if (!ret) ret = -EINVAL; return ret; } ddata->irq = ret; ret = clk_prepare_enable(ddata->clk); if (ret < 0) { dev_err(&pdev->dev, "failed to enable clock (%d)\n", ret); return ret; } ret = of_property_read_u32(np, "energymicro,location", &location); if (ret) /* fall back to wrongly namespaced property */ ret = of_property_read_u32(np, "efm32,location", &location); if (!ret) { dev_dbg(&pdev->dev, "using location %u\n", location); } else { /* default to location configured in hardware */ location = efm32_i2c_get_configured_location(ddata); dev_info(&pdev->dev, "fall back to location %u\n", location); } ddata->location = location; ret = of_property_read_u32(np, "clock-frequency", &frequency); if (!ret) { dev_dbg(&pdev->dev, "using frequency %u\n", frequency); } else { frequency = 100000; dev_info(&pdev->dev, "defaulting to 100 kHz\n"); } ddata->frequency = frequency; rate = clk_get_rate(ddata->clk); if (!rate) { dev_err(&pdev->dev, "there is no input clock available\n"); ret = -EINVAL; goto err_disable_clk; } clkdiv = DIV_ROUND_UP(rate, 8 * ddata->frequency) - 1; if (clkdiv >= 0x200) { dev_err(&pdev->dev, "input clock too fast (%lu) to divide down to bus freq (%lu)", rate, ddata->frequency); ret = -EINVAL; goto err_disable_clk; } dev_dbg(&pdev->dev, "input clock = %lu, bus freq = %lu, clkdiv = %lu\n", rate, ddata->frequency, (unsigned long)clkdiv); efm32_i2c_write32(ddata, REG_CLKDIV, REG_CLKDIV_DIV(clkdiv)); efm32_i2c_write32(ddata, REG_ROUTE, REG_ROUTE_SDAPEN | REG_ROUTE_SCLPEN | REG_ROUTE_LOCATION(ddata->location)); efm32_i2c_write32(ddata, REG_CTRL, REG_CTRL_EN | REG_CTRL_BITO_160PCC | 0 * REG_CTRL_GIBITO); efm32_i2c_write32(ddata, REG_IFC, REG_IFC__MASK); efm32_i2c_write32(ddata, REG_IEN, REG_IF_TXC | REG_IF_ACK | REG_IF_NACK | REG_IF_ARBLOST | REG_IF_BUSERR | REG_IF_RXDATAV); /* to make bus idle */ efm32_i2c_write32(ddata, REG_CMD, REG_CMD_ABORT); ret = request_irq(ddata->irq, efm32_i2c_irq, 0, DRIVER_NAME, ddata); if (ret < 0) { dev_err(&pdev->dev, "failed to request irq (%d)\n", ret); return ret; } ret = i2c_add_adapter(&ddata->adapter); if (ret) { dev_err(&pdev->dev, "failed to add i2c adapter (%d)\n", ret); free_irq(ddata->irq, ddata); err_disable_clk: clk_disable_unprepare(ddata->clk); } return ret; } static int efm32_i2c_remove(struct platform_device *pdev) { struct efm32_i2c_ddata *ddata = platform_get_drvdata(pdev); i2c_del_adapter(&ddata->adapter); free_irq(ddata->irq, ddata); clk_disable_unprepare(ddata->clk); return 0; } static const struct of_device_id efm32_i2c_dt_ids[] = { { .compatible = "energymicro,efm32-i2c", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, efm32_i2c_dt_ids); static struct platform_driver efm32_i2c_driver = { .probe = efm32_i2c_probe, .remove = efm32_i2c_remove, .driver = { .name = DRIVER_NAME, .of_match_table = efm32_i2c_dt_ids, }, }; module_platform_driver(efm32_i2c_driver); MODULE_AUTHOR("Uwe Kleine-Koenig <u.kleine-koenig@pengutronix.de>"); MODULE_DESCRIPTION("EFM32 i2c driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:" DRIVER_NAME);