/* Intel(R) Gigabit Ethernet Linux driver
 * Copyright(c) 2007-2014 Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, see <http://www.gnu.org/licenses/>.
 *
 * The full GNU General Public License is included in this distribution in
 * the file called "COPYING".
 *
 * Contact Information:
 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 */

/* ethtool support for igb */

#include <linux/vmalloc.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/ethtool.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/highmem.h>
#include <linux/mdio.h>

#include "igb.h"

struct igb_stats {
	char stat_string[ETH_GSTRING_LEN];
	int sizeof_stat;
	int stat_offset;
};

#define IGB_STAT(_name, _stat) { \
	.stat_string = _name, \
	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
	.stat_offset = offsetof(struct igb_adapter, _stat) \
}
static const struct igb_stats igb_gstrings_stats[] = {
	IGB_STAT("rx_packets", stats.gprc),
	IGB_STAT("tx_packets", stats.gptc),
	IGB_STAT("rx_bytes", stats.gorc),
	IGB_STAT("tx_bytes", stats.gotc),
	IGB_STAT("rx_broadcast", stats.bprc),
	IGB_STAT("tx_broadcast", stats.bptc),
	IGB_STAT("rx_multicast", stats.mprc),
	IGB_STAT("tx_multicast", stats.mptc),
	IGB_STAT("multicast", stats.mprc),
	IGB_STAT("collisions", stats.colc),
	IGB_STAT("rx_crc_errors", stats.crcerrs),
	IGB_STAT("rx_no_buffer_count", stats.rnbc),
	IGB_STAT("rx_missed_errors", stats.mpc),
	IGB_STAT("tx_aborted_errors", stats.ecol),
	IGB_STAT("tx_carrier_errors", stats.tncrs),
	IGB_STAT("tx_window_errors", stats.latecol),
	IGB_STAT("tx_abort_late_coll", stats.latecol),
	IGB_STAT("tx_deferred_ok", stats.dc),
	IGB_STAT("tx_single_coll_ok", stats.scc),
	IGB_STAT("tx_multi_coll_ok", stats.mcc),
	IGB_STAT("tx_timeout_count", tx_timeout_count),
	IGB_STAT("rx_long_length_errors", stats.roc),
	IGB_STAT("rx_short_length_errors", stats.ruc),
	IGB_STAT("rx_align_errors", stats.algnerrc),
	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
	IGB_STAT("tx_flow_control_xon", stats.xontxc),
	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
	IGB_STAT("rx_long_byte_count", stats.gorc),
	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
	IGB_STAT("tx_smbus", stats.mgptc),
	IGB_STAT("rx_smbus", stats.mgprc),
	IGB_STAT("dropped_smbus", stats.mgpdc),
	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
};

#define IGB_NETDEV_STAT(_net_stat) { \
	.stat_string = __stringify(_net_stat), \
	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
}
static const struct igb_stats igb_gstrings_net_stats[] = {
	IGB_NETDEV_STAT(rx_errors),
	IGB_NETDEV_STAT(tx_errors),
	IGB_NETDEV_STAT(tx_dropped),
	IGB_NETDEV_STAT(rx_length_errors),
	IGB_NETDEV_STAT(rx_over_errors),
	IGB_NETDEV_STAT(rx_frame_errors),
	IGB_NETDEV_STAT(rx_fifo_errors),
	IGB_NETDEV_STAT(tx_fifo_errors),
	IGB_NETDEV_STAT(tx_heartbeat_errors)
};

#define IGB_GLOBAL_STATS_LEN	\
	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
#define IGB_NETDEV_STATS_LEN	\
	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
#define IGB_RX_QUEUE_STATS_LEN \
	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))

#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */

#define IGB_QUEUE_STATS_LEN \
	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
	  IGB_RX_QUEUE_STATS_LEN) + \
	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
	  IGB_TX_QUEUE_STATS_LEN))
#define IGB_STATS_LEN \
	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)

static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
	"Register test  (offline)", "Eeprom test    (offline)",
	"Interrupt test (offline)", "Loopback test  (offline)",
	"Link test   (on/offline)"
};
#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)

static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
	u32 status;
	u32 speed;

	status = rd32(E1000_STATUS);
	if (hw->phy.media_type == e1000_media_type_copper) {

		ecmd->supported = (SUPPORTED_10baseT_Half |
				   SUPPORTED_10baseT_Full |
				   SUPPORTED_100baseT_Half |
				   SUPPORTED_100baseT_Full |
				   SUPPORTED_1000baseT_Full|
				   SUPPORTED_Autoneg |
				   SUPPORTED_TP |
				   SUPPORTED_Pause);
		ecmd->advertising = ADVERTISED_TP;

		if (hw->mac.autoneg == 1) {
			ecmd->advertising |= ADVERTISED_Autoneg;
			/* the e1000 autoneg seems to match ethtool nicely */
			ecmd->advertising |= hw->phy.autoneg_advertised;
		}

		ecmd->port = PORT_TP;
		ecmd->phy_address = hw->phy.addr;
		ecmd->transceiver = XCVR_INTERNAL;
	} else {
		ecmd->supported = (SUPPORTED_FIBRE |
				   SUPPORTED_1000baseKX_Full |
				   SUPPORTED_Autoneg |
				   SUPPORTED_Pause);
		ecmd->advertising = (ADVERTISED_FIBRE |
				     ADVERTISED_1000baseKX_Full);
		if (hw->mac.type == e1000_i354) {
			if ((hw->device_id ==
			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
				ecmd->supported |= SUPPORTED_2500baseX_Full;
				ecmd->supported &=
					~SUPPORTED_1000baseKX_Full;
				ecmd->advertising |= ADVERTISED_2500baseX_Full;
				ecmd->advertising &=
					~ADVERTISED_1000baseKX_Full;
			}
		}
		if (eth_flags->e100_base_fx) {
			ecmd->supported |= SUPPORTED_100baseT_Full;
			ecmd->advertising |= ADVERTISED_100baseT_Full;
		}
		if (hw->mac.autoneg == 1)
			ecmd->advertising |= ADVERTISED_Autoneg;

		ecmd->port = PORT_FIBRE;
		ecmd->transceiver = XCVR_EXTERNAL;
	}
	if (hw->mac.autoneg != 1)
		ecmd->advertising &= ~(ADVERTISED_Pause |
				       ADVERTISED_Asym_Pause);

	switch (hw->fc.requested_mode) {
	case e1000_fc_full:
		ecmd->advertising |= ADVERTISED_Pause;
		break;
	case e1000_fc_rx_pause:
		ecmd->advertising |= (ADVERTISED_Pause |
				      ADVERTISED_Asym_Pause);
		break;
	case e1000_fc_tx_pause:
		ecmd->advertising |=  ADVERTISED_Asym_Pause;
		break;
	default:
		ecmd->advertising &= ~(ADVERTISED_Pause |
				       ADVERTISED_Asym_Pause);
	}
	if (status & E1000_STATUS_LU) {
		if ((status & E1000_STATUS_2P5_SKU) &&
		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
			speed = SPEED_2500;
		} else if (status & E1000_STATUS_SPEED_1000) {
			speed = SPEED_1000;
		} else if (status & E1000_STATUS_SPEED_100) {
			speed = SPEED_100;
		} else {
			speed = SPEED_10;
		}
		if ((status & E1000_STATUS_FD) ||
		    hw->phy.media_type != e1000_media_type_copper)
			ecmd->duplex = DUPLEX_FULL;
		else
			ecmd->duplex = DUPLEX_HALF;
	} else {
		speed = SPEED_UNKNOWN;
		ecmd->duplex = DUPLEX_UNKNOWN;
	}
	ethtool_cmd_speed_set(ecmd, speed);
	if ((hw->phy.media_type == e1000_media_type_fiber) ||
	    hw->mac.autoneg)
		ecmd->autoneg = AUTONEG_ENABLE;
	else
		ecmd->autoneg = AUTONEG_DISABLE;

	/* MDI-X => 2; MDI =>1; Invalid =>0 */
	if (hw->phy.media_type == e1000_media_type_copper)
		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
						      ETH_TP_MDI;
	else
		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;

	if (hw->phy.mdix == AUTO_ALL_MODES)
		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
	else
		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;

	return 0;
}

static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* When SoL/IDER sessions are active, autoneg/speed/duplex
	 * cannot be changed
	 */
	if (igb_check_reset_block(hw)) {
		dev_err(&adapter->pdev->dev,
			"Cannot change link characteristics when SoL/IDER is active.\n");
		return -EINVAL;
	}

	/* MDI setting is only allowed when autoneg enabled because
	 * some hardware doesn't allow MDI setting when speed or
	 * duplex is forced.
	 */
	if (ecmd->eth_tp_mdix_ctrl) {
		if (hw->phy.media_type != e1000_media_type_copper)
			return -EOPNOTSUPP;

		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
		    (ecmd->autoneg != AUTONEG_ENABLE)) {
			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
			return -EINVAL;
		}
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		usleep_range(1000, 2000);

	if (ecmd->autoneg == AUTONEG_ENABLE) {
		hw->mac.autoneg = 1;
		if (hw->phy.media_type == e1000_media_type_fiber) {
			hw->phy.autoneg_advertised = ecmd->advertising |
						     ADVERTISED_FIBRE |
						     ADVERTISED_Autoneg;
			switch (adapter->link_speed) {
			case SPEED_2500:
				hw->phy.autoneg_advertised =
					ADVERTISED_2500baseX_Full;
				break;
			case SPEED_1000:
				hw->phy.autoneg_advertised =
					ADVERTISED_1000baseT_Full;
				break;
			case SPEED_100:
				hw->phy.autoneg_advertised =
					ADVERTISED_100baseT_Full;
				break;
			default:
				break;
			}
		} else {
			hw->phy.autoneg_advertised = ecmd->advertising |
						     ADVERTISED_TP |
						     ADVERTISED_Autoneg;
		}
		ecmd->advertising = hw->phy.autoneg_advertised;
		if (adapter->fc_autoneg)
			hw->fc.requested_mode = e1000_fc_default;
	} else {
		u32 speed = ethtool_cmd_speed(ecmd);
		/* calling this overrides forced MDI setting */
		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
			clear_bit(__IGB_RESETTING, &adapter->state);
			return -EINVAL;
		}
	}

	/* MDI-X => 2; MDI => 1; Auto => 3 */
	if (ecmd->eth_tp_mdix_ctrl) {
		/* fix up the value for auto (3 => 0) as zero is mapped
		 * internally to auto
		 */
		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
			hw->phy.mdix = AUTO_ALL_MODES;
		else
			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
	}

	/* reset the link */
	if (netif_running(adapter->netdev)) {
		igb_down(adapter);
		igb_up(adapter);
	} else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);
	return 0;
}

static u32 igb_get_link(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_mac_info *mac = &adapter->hw.mac;

	/* If the link is not reported up to netdev, interrupts are disabled,
	 * and so the physical link state may have changed since we last
	 * looked. Set get_link_status to make sure that the true link
	 * state is interrogated, rather than pulling a cached and possibly
	 * stale link state from the driver.
	 */
	if (!netif_carrier_ok(netdev))
		mac->get_link_status = 1;

	return igb_has_link(adapter);
}

static void igb_get_pauseparam(struct net_device *netdev,
			       struct ethtool_pauseparam *pause)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	pause->autoneg =
		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);

	if (hw->fc.current_mode == e1000_fc_rx_pause)
		pause->rx_pause = 1;
	else if (hw->fc.current_mode == e1000_fc_tx_pause)
		pause->tx_pause = 1;
	else if (hw->fc.current_mode == e1000_fc_full) {
		pause->rx_pause = 1;
		pause->tx_pause = 1;
	}
}

static int igb_set_pauseparam(struct net_device *netdev,
			      struct ethtool_pauseparam *pause)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int retval = 0;

	/* 100basefx does not support setting link flow control */
	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
		return -EINVAL;

	adapter->fc_autoneg = pause->autoneg;

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		usleep_range(1000, 2000);

	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
		hw->fc.requested_mode = e1000_fc_default;
		if (netif_running(adapter->netdev)) {
			igb_down(adapter);
			igb_up(adapter);
		} else {
			igb_reset(adapter);
		}
	} else {
		if (pause->rx_pause && pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_full;
		else if (pause->rx_pause && !pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_rx_pause;
		else if (!pause->rx_pause && pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_tx_pause;
		else if (!pause->rx_pause && !pause->tx_pause)
			hw->fc.requested_mode = e1000_fc_none;

		hw->fc.current_mode = hw->fc.requested_mode;

		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
			  igb_force_mac_fc(hw) : igb_setup_link(hw));
	}

	clear_bit(__IGB_RESETTING, &adapter->state);
	return retval;
}

static u32 igb_get_msglevel(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	return adapter->msg_enable;
}

static void igb_set_msglevel(struct net_device *netdev, u32 data)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	adapter->msg_enable = data;
}

static int igb_get_regs_len(struct net_device *netdev)
{
#define IGB_REGS_LEN 739
	return IGB_REGS_LEN * sizeof(u32);
}

static void igb_get_regs(struct net_device *netdev,
			 struct ethtool_regs *regs, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 *regs_buff = p;
	u8 i;

	memset(p, 0, IGB_REGS_LEN * sizeof(u32));

	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;

	/* General Registers */
	regs_buff[0] = rd32(E1000_CTRL);
	regs_buff[1] = rd32(E1000_STATUS);
	regs_buff[2] = rd32(E1000_CTRL_EXT);
	regs_buff[3] = rd32(E1000_MDIC);
	regs_buff[4] = rd32(E1000_SCTL);
	regs_buff[5] = rd32(E1000_CONNSW);
	regs_buff[6] = rd32(E1000_VET);
	regs_buff[7] = rd32(E1000_LEDCTL);
	regs_buff[8] = rd32(E1000_PBA);
	regs_buff[9] = rd32(E1000_PBS);
	regs_buff[10] = rd32(E1000_FRTIMER);
	regs_buff[11] = rd32(E1000_TCPTIMER);

	/* NVM Register */
	regs_buff[12] = rd32(E1000_EECD);

	/* Interrupt */
	/* Reading EICS for EICR because they read the
	 * same but EICS does not clear on read
	 */
	regs_buff[13] = rd32(E1000_EICS);
	regs_buff[14] = rd32(E1000_EICS);
	regs_buff[15] = rd32(E1000_EIMS);
	regs_buff[16] = rd32(E1000_EIMC);
	regs_buff[17] = rd32(E1000_EIAC);
	regs_buff[18] = rd32(E1000_EIAM);
	/* Reading ICS for ICR because they read the
	 * same but ICS does not clear on read
	 */
	regs_buff[19] = rd32(E1000_ICS);
	regs_buff[20] = rd32(E1000_ICS);
	regs_buff[21] = rd32(E1000_IMS);
	regs_buff[22] = rd32(E1000_IMC);
	regs_buff[23] = rd32(E1000_IAC);
	regs_buff[24] = rd32(E1000_IAM);
	regs_buff[25] = rd32(E1000_IMIRVP);

	/* Flow Control */
	regs_buff[26] = rd32(E1000_FCAL);
	regs_buff[27] = rd32(E1000_FCAH);
	regs_buff[28] = rd32(E1000_FCTTV);
	regs_buff[29] = rd32(E1000_FCRTL);
	regs_buff[30] = rd32(E1000_FCRTH);
	regs_buff[31] = rd32(E1000_FCRTV);

	/* Receive */
	regs_buff[32] = rd32(E1000_RCTL);
	regs_buff[33] = rd32(E1000_RXCSUM);
	regs_buff[34] = rd32(E1000_RLPML);
	regs_buff[35] = rd32(E1000_RFCTL);
	regs_buff[36] = rd32(E1000_MRQC);
	regs_buff[37] = rd32(E1000_VT_CTL);

	/* Transmit */
	regs_buff[38] = rd32(E1000_TCTL);
	regs_buff[39] = rd32(E1000_TCTL_EXT);
	regs_buff[40] = rd32(E1000_TIPG);
	regs_buff[41] = rd32(E1000_DTXCTL);

	/* Wake Up */
	regs_buff[42] = rd32(E1000_WUC);
	regs_buff[43] = rd32(E1000_WUFC);
	regs_buff[44] = rd32(E1000_WUS);
	regs_buff[45] = rd32(E1000_IPAV);
	regs_buff[46] = rd32(E1000_WUPL);

	/* MAC */
	regs_buff[47] = rd32(E1000_PCS_CFG0);
	regs_buff[48] = rd32(E1000_PCS_LCTL);
	regs_buff[49] = rd32(E1000_PCS_LSTAT);
	regs_buff[50] = rd32(E1000_PCS_ANADV);
	regs_buff[51] = rd32(E1000_PCS_LPAB);
	regs_buff[52] = rd32(E1000_PCS_NPTX);
	regs_buff[53] = rd32(E1000_PCS_LPABNP);

	/* Statistics */
	regs_buff[54] = adapter->stats.crcerrs;
	regs_buff[55] = adapter->stats.algnerrc;
	regs_buff[56] = adapter->stats.symerrs;
	regs_buff[57] = adapter->stats.rxerrc;
	regs_buff[58] = adapter->stats.mpc;
	regs_buff[59] = adapter->stats.scc;
	regs_buff[60] = adapter->stats.ecol;
	regs_buff[61] = adapter->stats.mcc;
	regs_buff[62] = adapter->stats.latecol;
	regs_buff[63] = adapter->stats.colc;
	regs_buff[64] = adapter->stats.dc;
	regs_buff[65] = adapter->stats.tncrs;
	regs_buff[66] = adapter->stats.sec;
	regs_buff[67] = adapter->stats.htdpmc;
	regs_buff[68] = adapter->stats.rlec;
	regs_buff[69] = adapter->stats.xonrxc;
	regs_buff[70] = adapter->stats.xontxc;
	regs_buff[71] = adapter->stats.xoffrxc;
	regs_buff[72] = adapter->stats.xofftxc;
	regs_buff[73] = adapter->stats.fcruc;
	regs_buff[74] = adapter->stats.prc64;
	regs_buff[75] = adapter->stats.prc127;
	regs_buff[76] = adapter->stats.prc255;
	regs_buff[77] = adapter->stats.prc511;
	regs_buff[78] = adapter->stats.prc1023;
	regs_buff[79] = adapter->stats.prc1522;
	regs_buff[80] = adapter->stats.gprc;
	regs_buff[81] = adapter->stats.bprc;
	regs_buff[82] = adapter->stats.mprc;
	regs_buff[83] = adapter->stats.gptc;
	regs_buff[84] = adapter->stats.gorc;
	regs_buff[86] = adapter->stats.gotc;
	regs_buff[88] = adapter->stats.rnbc;
	regs_buff[89] = adapter->stats.ruc;
	regs_buff[90] = adapter->stats.rfc;
	regs_buff[91] = adapter->stats.roc;
	regs_buff[92] = adapter->stats.rjc;
	regs_buff[93] = adapter->stats.mgprc;
	regs_buff[94] = adapter->stats.mgpdc;
	regs_buff[95] = adapter->stats.mgptc;
	regs_buff[96] = adapter->stats.tor;
	regs_buff[98] = adapter->stats.tot;
	regs_buff[100] = adapter->stats.tpr;
	regs_buff[101] = adapter->stats.tpt;
	regs_buff[102] = adapter->stats.ptc64;
	regs_buff[103] = adapter->stats.ptc127;
	regs_buff[104] = adapter->stats.ptc255;
	regs_buff[105] = adapter->stats.ptc511;
	regs_buff[106] = adapter->stats.ptc1023;
	regs_buff[107] = adapter->stats.ptc1522;
	regs_buff[108] = adapter->stats.mptc;
	regs_buff[109] = adapter->stats.bptc;
	regs_buff[110] = adapter->stats.tsctc;
	regs_buff[111] = adapter->stats.iac;
	regs_buff[112] = adapter->stats.rpthc;
	regs_buff[113] = adapter->stats.hgptc;
	regs_buff[114] = adapter->stats.hgorc;
	regs_buff[116] = adapter->stats.hgotc;
	regs_buff[118] = adapter->stats.lenerrs;
	regs_buff[119] = adapter->stats.scvpc;
	regs_buff[120] = adapter->stats.hrmpc;

	for (i = 0; i < 4; i++)
		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
	for (i = 0; i < 4; i++)
		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
	for (i = 0; i < 4; i++)
		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
	for (i = 0; i < 4; i++)
		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
	for (i = 0; i < 4; i++)
		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
	for (i = 0; i < 4; i++)
		regs_buff[141 + i] = rd32(E1000_RDH(i));
	for (i = 0; i < 4; i++)
		regs_buff[145 + i] = rd32(E1000_RDT(i));
	for (i = 0; i < 4; i++)
		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));

	for (i = 0; i < 10; i++)
		regs_buff[153 + i] = rd32(E1000_EITR(i));
	for (i = 0; i < 8; i++)
		regs_buff[163 + i] = rd32(E1000_IMIR(i));
	for (i = 0; i < 8; i++)
		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
	for (i = 0; i < 16; i++)
		regs_buff[179 + i] = rd32(E1000_RAL(i));
	for (i = 0; i < 16; i++)
		regs_buff[195 + i] = rd32(E1000_RAH(i));

	for (i = 0; i < 4; i++)
		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
	for (i = 0; i < 4; i++)
		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
	for (i = 0; i < 4; i++)
		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
	for (i = 0; i < 4; i++)
		regs_buff[223 + i] = rd32(E1000_TDH(i));
	for (i = 0; i < 4; i++)
		regs_buff[227 + i] = rd32(E1000_TDT(i));
	for (i = 0; i < 4; i++)
		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
	for (i = 0; i < 4; i++)
		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
	for (i = 0; i < 4; i++)
		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
	for (i = 0; i < 4; i++)
		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));

	for (i = 0; i < 4; i++)
		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
	for (i = 0; i < 4; i++)
		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
	for (i = 0; i < 32; i++)
		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
	for (i = 0; i < 128; i++)
		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
	for (i = 0; i < 128; i++)
		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
	for (i = 0; i < 4; i++)
		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));

	regs_buff[547] = rd32(E1000_TDFH);
	regs_buff[548] = rd32(E1000_TDFT);
	regs_buff[549] = rd32(E1000_TDFHS);
	regs_buff[550] = rd32(E1000_TDFPC);

	if (hw->mac.type > e1000_82580) {
		regs_buff[551] = adapter->stats.o2bgptc;
		regs_buff[552] = adapter->stats.b2ospc;
		regs_buff[553] = adapter->stats.o2bspc;
		regs_buff[554] = adapter->stats.b2ogprc;
	}

	if (hw->mac.type != e1000_82576)
		return;
	for (i = 0; i < 12; i++)
		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
	for (i = 0; i < 4; i++)
		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
	for (i = 0; i < 12; i++)
		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
	for (i = 0; i < 12; i++)
		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
	for (i = 0; i < 12; i++)
		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
	for (i = 0; i < 12; i++)
		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
	for (i = 0; i < 12; i++)
		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
	for (i = 0; i < 12; i++)
		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));

	for (i = 0; i < 12; i++)
		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
	for (i = 0; i < 12; i++)
		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
	for (i = 0; i < 12; i++)
		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
	for (i = 0; i < 12; i++)
		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
	for (i = 0; i < 12; i++)
		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
	for (i = 0; i < 12; i++)
		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
	for (i = 0; i < 12; i++)
		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
	for (i = 0; i < 12; i++)
		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
}

static int igb_get_eeprom_len(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	return adapter->hw.nvm.word_size * 2;
}

static int igb_get_eeprom(struct net_device *netdev,
			  struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u16 *eeprom_buff;
	int first_word, last_word;
	int ret_val = 0;
	u16 i;

	if (eeprom->len == 0)
		return -EINVAL;

	eeprom->magic = hw->vendor_id | (hw->device_id << 16);

	first_word = eeprom->offset >> 1;
	last_word = (eeprom->offset + eeprom->len - 1) >> 1;

	eeprom_buff = kmalloc(sizeof(u16) *
			(last_word - first_word + 1), GFP_KERNEL);
	if (!eeprom_buff)
		return -ENOMEM;

	if (hw->nvm.type == e1000_nvm_eeprom_spi)
		ret_val = hw->nvm.ops.read(hw, first_word,
					   last_word - first_word + 1,
					   eeprom_buff);
	else {
		for (i = 0; i < last_word - first_word + 1; i++) {
			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
						   &eeprom_buff[i]);
			if (ret_val)
				break;
		}
	}

	/* Device's eeprom is always little-endian, word addressable */
	for (i = 0; i < last_word - first_word + 1; i++)
		le16_to_cpus(&eeprom_buff[i]);

	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
			eeprom->len);
	kfree(eeprom_buff);

	return ret_val;
}

static int igb_set_eeprom(struct net_device *netdev,
			  struct ethtool_eeprom *eeprom, u8 *bytes)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u16 *eeprom_buff;
	void *ptr;
	int max_len, first_word, last_word, ret_val = 0;
	u16 i;

	if (eeprom->len == 0)
		return -EOPNOTSUPP;

	if ((hw->mac.type >= e1000_i210) &&
	    !igb_get_flash_presence_i210(hw)) {
		return -EOPNOTSUPP;
	}

	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
		return -EFAULT;

	max_len = hw->nvm.word_size * 2;

	first_word = eeprom->offset >> 1;
	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
	if (!eeprom_buff)
		return -ENOMEM;

	ptr = (void *)eeprom_buff;

	if (eeprom->offset & 1) {
		/* need read/modify/write of first changed EEPROM word
		 * only the second byte of the word is being modified
		 */
		ret_val = hw->nvm.ops.read(hw, first_word, 1,
					    &eeprom_buff[0]);
		ptr++;
	}
	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
		/* need read/modify/write of last changed EEPROM word
		 * only the first byte of the word is being modified
		 */
		ret_val = hw->nvm.ops.read(hw, last_word, 1,
				   &eeprom_buff[last_word - first_word]);
	}

	/* Device's eeprom is always little-endian, word addressable */
	for (i = 0; i < last_word - first_word + 1; i++)
		le16_to_cpus(&eeprom_buff[i]);

	memcpy(ptr, bytes, eeprom->len);

	for (i = 0; i < last_word - first_word + 1; i++)
		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);

	ret_val = hw->nvm.ops.write(hw, first_word,
				    last_word - first_word + 1, eeprom_buff);

	/* Update the checksum if nvm write succeeded */
	if (ret_val == 0)
		hw->nvm.ops.update(hw);

	igb_set_fw_version(adapter);
	kfree(eeprom_buff);
	return ret_val;
}

static void igb_get_drvinfo(struct net_device *netdev,
			    struct ethtool_drvinfo *drvinfo)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));

	/* EEPROM image version # is reported as firmware version # for
	 * 82575 controllers
	 */
	strlcpy(drvinfo->fw_version, adapter->fw_version,
		sizeof(drvinfo->fw_version));
	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
		sizeof(drvinfo->bus_info));
	drvinfo->n_stats = IGB_STATS_LEN;
	drvinfo->testinfo_len = IGB_TEST_LEN;
	drvinfo->regdump_len = igb_get_regs_len(netdev);
	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
}

static void igb_get_ringparam(struct net_device *netdev,
			      struct ethtool_ringparam *ring)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	ring->rx_max_pending = IGB_MAX_RXD;
	ring->tx_max_pending = IGB_MAX_TXD;
	ring->rx_pending = adapter->rx_ring_count;
	ring->tx_pending = adapter->tx_ring_count;
}

static int igb_set_ringparam(struct net_device *netdev,
			     struct ethtool_ringparam *ring)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct igb_ring *temp_ring;
	int i, err = 0;
	u16 new_rx_count, new_tx_count;

	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
		return -EINVAL;

	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);

	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);

	if ((new_tx_count == adapter->tx_ring_count) &&
	    (new_rx_count == adapter->rx_ring_count)) {
		/* nothing to do */
		return 0;
	}

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		usleep_range(1000, 2000);

	if (!netif_running(adapter->netdev)) {
		for (i = 0; i < adapter->num_tx_queues; i++)
			adapter->tx_ring[i]->count = new_tx_count;
		for (i = 0; i < adapter->num_rx_queues; i++)
			adapter->rx_ring[i]->count = new_rx_count;
		adapter->tx_ring_count = new_tx_count;
		adapter->rx_ring_count = new_rx_count;
		goto clear_reset;
	}

	if (adapter->num_tx_queues > adapter->num_rx_queues)
		temp_ring = vmalloc(adapter->num_tx_queues *
				    sizeof(struct igb_ring));
	else
		temp_ring = vmalloc(adapter->num_rx_queues *
				    sizeof(struct igb_ring));

	if (!temp_ring) {
		err = -ENOMEM;
		goto clear_reset;
	}

	igb_down(adapter);

	/* We can't just free everything and then setup again,
	 * because the ISRs in MSI-X mode get passed pointers
	 * to the Tx and Rx ring structs.
	 */
	if (new_tx_count != adapter->tx_ring_count) {
		for (i = 0; i < adapter->num_tx_queues; i++) {
			memcpy(&temp_ring[i], adapter->tx_ring[i],
			       sizeof(struct igb_ring));

			temp_ring[i].count = new_tx_count;
			err = igb_setup_tx_resources(&temp_ring[i]);
			if (err) {
				while (i) {
					i--;
					igb_free_tx_resources(&temp_ring[i]);
				}
				goto err_setup;
			}
		}

		for (i = 0; i < adapter->num_tx_queues; i++) {
			igb_free_tx_resources(adapter->tx_ring[i]);

			memcpy(adapter->tx_ring[i], &temp_ring[i],
			       sizeof(struct igb_ring));
		}

		adapter->tx_ring_count = new_tx_count;
	}

	if (new_rx_count != adapter->rx_ring_count) {
		for (i = 0; i < adapter->num_rx_queues; i++) {
			memcpy(&temp_ring[i], adapter->rx_ring[i],
			       sizeof(struct igb_ring));

			temp_ring[i].count = new_rx_count;
			err = igb_setup_rx_resources(&temp_ring[i]);
			if (err) {
				while (i) {
					i--;
					igb_free_rx_resources(&temp_ring[i]);
				}
				goto err_setup;
			}

		}

		for (i = 0; i < adapter->num_rx_queues; i++) {
			igb_free_rx_resources(adapter->rx_ring[i]);

			memcpy(adapter->rx_ring[i], &temp_ring[i],
			       sizeof(struct igb_ring));
		}

		adapter->rx_ring_count = new_rx_count;
	}
err_setup:
	igb_up(adapter);
	vfree(temp_ring);
clear_reset:
	clear_bit(__IGB_RESETTING, &adapter->state);
	return err;
}

/* ethtool register test data */
struct igb_reg_test {
	u16 reg;
	u16 reg_offset;
	u16 array_len;
	u16 test_type;
	u32 mask;
	u32 write;
};

/* In the hardware, registers are laid out either singly, in arrays
 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
 * most tests take place on arrays or single registers (handled
 * as a single-element array) and special-case the tables.
 * Table tests are always pattern tests.
 *
 * We also make provision for some required setup steps by specifying
 * registers to be written without any read-back testing.
 */

#define PATTERN_TEST	1
#define SET_READ_TEST	2
#define WRITE_NO_TEST	3
#define TABLE32_TEST	4
#define TABLE64_TEST_LO	5
#define TABLE64_TEST_HI	6

/* i210 reg test */
static struct igb_reg_test reg_test_i210[] = {
	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
	/* RDH is read-only for i210, only test RDT. */
	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
						0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
						0x900FFFFF, 0xFFFFFFFF },
	{ E1000_MTA,	   0, 128, TABLE32_TEST,
						0xFFFFFFFF, 0xFFFFFFFF },
	{ 0, 0, 0, 0, 0 }
};

/* i350 reg test */
static struct igb_reg_test reg_test_i350[] = {
	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
	/* RDH is read-only for i350, only test RDT. */
	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
						0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
						0xC3FFFFFF, 0xFFFFFFFF },
	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
						0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
						0xC3FFFFFF, 0xFFFFFFFF },
	{ E1000_MTA,	   0, 128, TABLE32_TEST,
						0xFFFFFFFF, 0xFFFFFFFF },
	{ 0, 0, 0, 0 }
};

/* 82580 reg test */
static struct igb_reg_test reg_test_82580[] = {
	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
	/* RDH is read-only for 82580, only test RDT. */
	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
						0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
						0x83FFFFFF, 0xFFFFFFFF },
	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
						0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
						0x83FFFFFF, 0xFFFFFFFF },
	{ E1000_MTA,	   0, 128, TABLE32_TEST,
						0xFFFFFFFF, 0xFFFFFFFF },
	{ 0, 0, 0, 0 }
};

/* 82576 reg test */
static struct igb_reg_test reg_test_82576[] = {
	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
	/* Enable all RX queues before testing. */
	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
	  E1000_RXDCTL_QUEUE_ENABLE },
	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
	  E1000_RXDCTL_QUEUE_ENABLE },
	/* RDH is read-only for 82576, only test RDT. */
	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ 0, 0, 0, 0 }
};

/* 82575 register test */
static struct igb_reg_test reg_test_82575[] = {
	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
	/* Enable all four RX queues before testing. */
	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
	  E1000_RXDCTL_QUEUE_ENABLE },
	/* RDH is read-only for 82575, only test RDT. */
	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
	{ 0, 0, 0, 0 }
};

static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
			     int reg, u32 mask, u32 write)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pat, val;
	static const u32 _test[] = {
		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
		wr32(reg, (_test[pat] & write));
		val = rd32(reg) & mask;
		if (val != (_test[pat] & write & mask)) {
			dev_err(&adapter->pdev->dev,
				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
				reg, val, (_test[pat] & write & mask));
			*data = reg;
			return true;
		}
	}

	return false;
}

static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
			      int reg, u32 mask, u32 write)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 val;

	wr32(reg, write & mask);
	val = rd32(reg);
	if ((write & mask) != (val & mask)) {
		dev_err(&adapter->pdev->dev,
			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
			reg, (val & mask), (write & mask));
		*data = reg;
		return true;
	}

	return false;
}

#define REG_PATTERN_TEST(reg, mask, write) \
	do { \
		if (reg_pattern_test(adapter, data, reg, mask, write)) \
			return 1; \
	} while (0)

#define REG_SET_AND_CHECK(reg, mask, write) \
	do { \
		if (reg_set_and_check(adapter, data, reg, mask, write)) \
			return 1; \
	} while (0)

static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
{
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_test *test;
	u32 value, before, after;
	u32 i, toggle;

	switch (adapter->hw.mac.type) {
	case e1000_i350:
	case e1000_i354:
		test = reg_test_i350;
		toggle = 0x7FEFF3FF;
		break;
	case e1000_i210:
	case e1000_i211:
		test = reg_test_i210;
		toggle = 0x7FEFF3FF;
		break;
	case e1000_82580:
		test = reg_test_82580;
		toggle = 0x7FEFF3FF;
		break;
	case e1000_82576:
		test = reg_test_82576;
		toggle = 0x7FFFF3FF;
		break;
	default:
		test = reg_test_82575;
		toggle = 0x7FFFF3FF;
		break;
	}

	/* Because the status register is such a special case,
	 * we handle it separately from the rest of the register
	 * tests.  Some bits are read-only, some toggle, and some
	 * are writable on newer MACs.
	 */
	before = rd32(E1000_STATUS);
	value = (rd32(E1000_STATUS) & toggle);
	wr32(E1000_STATUS, toggle);
	after = rd32(E1000_STATUS) & toggle;
	if (value != after) {
		dev_err(&adapter->pdev->dev,
			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
			after, value);
		*data = 1;
		return 1;
	}
	/* restore previous status */
	wr32(E1000_STATUS, before);

	/* Perform the remainder of the register test, looping through
	 * the test table until we either fail or reach the null entry.
	 */
	while (test->reg) {
		for (i = 0; i < test->array_len; i++) {
			switch (test->test_type) {
			case PATTERN_TEST:
				REG_PATTERN_TEST(test->reg +
						(i * test->reg_offset),
						test->mask,
						test->write);
				break;
			case SET_READ_TEST:
				REG_SET_AND_CHECK(test->reg +
						(i * test->reg_offset),
						test->mask,
						test->write);
				break;
			case WRITE_NO_TEST:
				writel(test->write,
				    (adapter->hw.hw_addr + test->reg)
					+ (i * test->reg_offset));
				break;
			case TABLE32_TEST:
				REG_PATTERN_TEST(test->reg + (i * 4),
						test->mask,
						test->write);
				break;
			case TABLE64_TEST_LO:
				REG_PATTERN_TEST(test->reg + (i * 8),
						test->mask,
						test->write);
				break;
			case TABLE64_TEST_HI:
				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
						test->mask,
						test->write);
				break;
			}
		}
		test++;
	}

	*data = 0;
	return 0;
}

static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
{
	struct e1000_hw *hw = &adapter->hw;

	*data = 0;

	/* Validate eeprom on all parts but flashless */
	switch (hw->mac.type) {
	case e1000_i210:
	case e1000_i211:
		if (igb_get_flash_presence_i210(hw)) {
			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
				*data = 2;
		}
		break;
	default:
		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
			*data = 2;
		break;
	}

	return *data;
}

static irqreturn_t igb_test_intr(int irq, void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *) data;
	struct e1000_hw *hw = &adapter->hw;

	adapter->test_icr |= rd32(E1000_ICR);

	return IRQ_HANDLED;
}

static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	u32 mask, ics_mask, i = 0, shared_int = true;
	u32 irq = adapter->pdev->irq;

	*data = 0;

	/* Hook up test interrupt handler just for this test */
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
		if (request_irq(adapter->msix_entries[0].vector,
				igb_test_intr, 0, netdev->name, adapter)) {
			*data = 1;
			return -1;
		}
	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
		shared_int = false;
		if (request_irq(irq,
				igb_test_intr, 0, netdev->name, adapter)) {
			*data = 1;
			return -1;
		}
	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
				netdev->name, adapter)) {
		shared_int = false;
	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
		 netdev->name, adapter)) {
		*data = 1;
		return -1;
	}
	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
		(shared_int ? "shared" : "unshared"));

	/* Disable all the interrupts */
	wr32(E1000_IMC, ~0);
	wrfl();
	usleep_range(10000, 11000);

	/* Define all writable bits for ICS */
	switch (hw->mac.type) {
	case e1000_82575:
		ics_mask = 0x37F47EDD;
		break;
	case e1000_82576:
		ics_mask = 0x77D4FBFD;
		break;
	case e1000_82580:
		ics_mask = 0x77DCFED5;
		break;
	case e1000_i350:
	case e1000_i354:
	case e1000_i210:
	case e1000_i211:
		ics_mask = 0x77DCFED5;
		break;
	default:
		ics_mask = 0x7FFFFFFF;
		break;
	}

	/* Test each interrupt */
	for (; i < 31; i++) {
		/* Interrupt to test */
		mask = 1 << i;

		if (!(mask & ics_mask))
			continue;

		if (!shared_int) {
			/* Disable the interrupt to be reported in
			 * the cause register and then force the same
			 * interrupt and see if one gets posted.  If
			 * an interrupt was posted to the bus, the
			 * test failed.
			 */
			adapter->test_icr = 0;

			/* Flush any pending interrupts */
			wr32(E1000_ICR, ~0);

			wr32(E1000_IMC, mask);
			wr32(E1000_ICS, mask);
			wrfl();
			usleep_range(10000, 11000);

			if (adapter->test_icr & mask) {
				*data = 3;
				break;
			}
		}

		/* Enable the interrupt to be reported in
		 * the cause register and then force the same
		 * interrupt and see if one gets posted.  If
		 * an interrupt was not posted to the bus, the
		 * test failed.
		 */
		adapter->test_icr = 0;

		/* Flush any pending interrupts */
		wr32(E1000_ICR, ~0);

		wr32(E1000_IMS, mask);
		wr32(E1000_ICS, mask);
		wrfl();
		usleep_range(10000, 11000);

		if (!(adapter->test_icr & mask)) {
			*data = 4;
			break;
		}

		if (!shared_int) {
			/* Disable the other interrupts to be reported in
			 * the cause register and then force the other
			 * interrupts and see if any get posted.  If
			 * an interrupt was posted to the bus, the
			 * test failed.
			 */
			adapter->test_icr = 0;

			/* Flush any pending interrupts */
			wr32(E1000_ICR, ~0);

			wr32(E1000_IMC, ~mask);
			wr32(E1000_ICS, ~mask);
			wrfl();
			usleep_range(10000, 11000);

			if (adapter->test_icr & mask) {
				*data = 5;
				break;
			}
		}
	}

	/* Disable all the interrupts */
	wr32(E1000_IMC, ~0);
	wrfl();
	usleep_range(10000, 11000);

	/* Unhook test interrupt handler */
	if (adapter->flags & IGB_FLAG_HAS_MSIX)
		free_irq(adapter->msix_entries[0].vector, adapter);
	else
		free_irq(irq, adapter);

	return *data;
}

static void igb_free_desc_rings(struct igb_adapter *adapter)
{
	igb_free_tx_resources(&adapter->test_tx_ring);
	igb_free_rx_resources(&adapter->test_rx_ring);
}

static int igb_setup_desc_rings(struct igb_adapter *adapter)
{
	struct igb_ring *tx_ring = &adapter->test_tx_ring;
	struct igb_ring *rx_ring = &adapter->test_rx_ring;
	struct e1000_hw *hw = &adapter->hw;
	int ret_val;

	/* Setup Tx descriptor ring and Tx buffers */
	tx_ring->count = IGB_DEFAULT_TXD;
	tx_ring->dev = &adapter->pdev->dev;
	tx_ring->netdev = adapter->netdev;
	tx_ring->reg_idx = adapter->vfs_allocated_count;

	if (igb_setup_tx_resources(tx_ring)) {
		ret_val = 1;
		goto err_nomem;
	}

	igb_setup_tctl(adapter);
	igb_configure_tx_ring(adapter, tx_ring);

	/* Setup Rx descriptor ring and Rx buffers */
	rx_ring->count = IGB_DEFAULT_RXD;
	rx_ring->dev = &adapter->pdev->dev;
	rx_ring->netdev = adapter->netdev;
	rx_ring->reg_idx = adapter->vfs_allocated_count;

	if (igb_setup_rx_resources(rx_ring)) {
		ret_val = 3;
		goto err_nomem;
	}

	/* set the default queue to queue 0 of PF */
	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);

	/* enable receive ring */
	igb_setup_rctl(adapter);
	igb_configure_rx_ring(adapter, rx_ring);

	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));

	return 0;

err_nomem:
	igb_free_desc_rings(adapter);
	return ret_val;
}

static void igb_phy_disable_receiver(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
	igb_write_phy_reg(hw, 29, 0x001F);
	igb_write_phy_reg(hw, 30, 0x8FFC);
	igb_write_phy_reg(hw, 29, 0x001A);
	igb_write_phy_reg(hw, 30, 0x8FF0);
}

static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_reg = 0;

	hw->mac.autoneg = false;

	if (hw->phy.type == e1000_phy_m88) {
		if (hw->phy.id != I210_I_PHY_ID) {
			/* Auto-MDI/MDIX Off */
			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
			/* reset to update Auto-MDI/MDIX */
			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
			/* autoneg off */
			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
		} else {
			/* force 1000, set loopback  */
			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
		}
	} else if (hw->phy.type == e1000_phy_82580) {
		/* enable MII loopback */
		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
	}

	/* add small delay to avoid loopback test failure */
	msleep(50);

	/* force 1000, set loopback */
	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);

	/* Now set up the MAC to the same speed/duplex as the PHY. */
	ctrl_reg = rd32(E1000_CTRL);
	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
		     E1000_CTRL_SLU);	 /* Set link up enable bit */

	if (hw->phy.type == e1000_phy_m88)
		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */

	wr32(E1000_CTRL, ctrl_reg);

	/* Disable the receiver on the PHY so when a cable is plugged in, the
	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
	 */
	if (hw->phy.type == e1000_phy_m88)
		igb_phy_disable_receiver(adapter);

	mdelay(500);
	return 0;
}

static int igb_set_phy_loopback(struct igb_adapter *adapter)
{
	return igb_integrated_phy_loopback(adapter);
}

static int igb_setup_loopback_test(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg;

	reg = rd32(E1000_CTRL_EXT);

	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
			/* Enable DH89xxCC MPHY for near end loopback */
			reg = rd32(E1000_MPHY_ADDR_CTL);
			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
			E1000_MPHY_PCS_CLK_REG_OFFSET;
			wr32(E1000_MPHY_ADDR_CTL, reg);

			reg = rd32(E1000_MPHY_DATA);
			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
			wr32(E1000_MPHY_DATA, reg);
		}

		reg = rd32(E1000_RCTL);
		reg |= E1000_RCTL_LBM_TCVR;
		wr32(E1000_RCTL, reg);

		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);

		reg = rd32(E1000_CTRL);
		reg &= ~(E1000_CTRL_RFCE |
			 E1000_CTRL_TFCE |
			 E1000_CTRL_LRST);
		reg |= E1000_CTRL_SLU |
		       E1000_CTRL_FD;
		wr32(E1000_CTRL, reg);

		/* Unset switch control to serdes energy detect */
		reg = rd32(E1000_CONNSW);
		reg &= ~E1000_CONNSW_ENRGSRC;
		wr32(E1000_CONNSW, reg);

		/* Unset sigdetect for SERDES loopback on
		 * 82580 and newer devices.
		 */
		if (hw->mac.type >= e1000_82580) {
			reg = rd32(E1000_PCS_CFG0);
			reg |= E1000_PCS_CFG_IGN_SD;
			wr32(E1000_PCS_CFG0, reg);
		}

		/* Set PCS register for forced speed */
		reg = rd32(E1000_PCS_LCTL);
		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
		       E1000_PCS_LCTL_FSD |           /* Force Speed */
		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
		wr32(E1000_PCS_LCTL, reg);

		return 0;
	}

	return igb_set_phy_loopback(adapter);
}

static void igb_loopback_cleanup(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;
	u16 phy_reg;

	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
		u32 reg;

		/* Disable near end loopback on DH89xxCC */
		reg = rd32(E1000_MPHY_ADDR_CTL);
		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
		E1000_MPHY_PCS_CLK_REG_OFFSET;
		wr32(E1000_MPHY_ADDR_CTL, reg);

		reg = rd32(E1000_MPHY_DATA);
		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
		wr32(E1000_MPHY_DATA, reg);
	}

	rctl = rd32(E1000_RCTL);
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
	wr32(E1000_RCTL, rctl);

	hw->mac.autoneg = true;
	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
	if (phy_reg & MII_CR_LOOPBACK) {
		phy_reg &= ~MII_CR_LOOPBACK;
		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
		igb_phy_sw_reset(hw);
	}
}

static void igb_create_lbtest_frame(struct sk_buff *skb,
				    unsigned int frame_size)
{
	memset(skb->data, 0xFF, frame_size);
	frame_size /= 2;
	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
	memset(&skb->data[frame_size + 10], 0xBE, 1);
	memset(&skb->data[frame_size + 12], 0xAF, 1);
}

static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
				  unsigned int frame_size)
{
	unsigned char *data;
	bool match = true;

	frame_size >>= 1;

	data = kmap(rx_buffer->page);

	if (data[3] != 0xFF ||
	    data[frame_size + 10] != 0xBE ||
	    data[frame_size + 12] != 0xAF)
		match = false;

	kunmap(rx_buffer->page);

	return match;
}

static int igb_clean_test_rings(struct igb_ring *rx_ring,
				struct igb_ring *tx_ring,
				unsigned int size)
{
	union e1000_adv_rx_desc *rx_desc;
	struct igb_rx_buffer *rx_buffer_info;
	struct igb_tx_buffer *tx_buffer_info;
	u16 rx_ntc, tx_ntc, count = 0;

	/* initialize next to clean and descriptor values */
	rx_ntc = rx_ring->next_to_clean;
	tx_ntc = tx_ring->next_to_clean;
	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);

	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
		/* check Rx buffer */
		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];

		/* sync Rx buffer for CPU read */
		dma_sync_single_for_cpu(rx_ring->dev,
					rx_buffer_info->dma,
					IGB_RX_BUFSZ,
					DMA_FROM_DEVICE);

		/* verify contents of skb */
		if (igb_check_lbtest_frame(rx_buffer_info, size))
			count++;

		/* sync Rx buffer for device write */
		dma_sync_single_for_device(rx_ring->dev,
					   rx_buffer_info->dma,
					   IGB_RX_BUFSZ,
					   DMA_FROM_DEVICE);

		/* unmap buffer on Tx side */
		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);

		/* increment Rx/Tx next to clean counters */
		rx_ntc++;
		if (rx_ntc == rx_ring->count)
			rx_ntc = 0;
		tx_ntc++;
		if (tx_ntc == tx_ring->count)
			tx_ntc = 0;

		/* fetch next descriptor */
		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
	}

	netdev_tx_reset_queue(txring_txq(tx_ring));

	/* re-map buffers to ring, store next to clean values */
	igb_alloc_rx_buffers(rx_ring, count);
	rx_ring->next_to_clean = rx_ntc;
	tx_ring->next_to_clean = tx_ntc;

	return count;
}

static int igb_run_loopback_test(struct igb_adapter *adapter)
{
	struct igb_ring *tx_ring = &adapter->test_tx_ring;
	struct igb_ring *rx_ring = &adapter->test_rx_ring;
	u16 i, j, lc, good_cnt;
	int ret_val = 0;
	unsigned int size = IGB_RX_HDR_LEN;
	netdev_tx_t tx_ret_val;
	struct sk_buff *skb;

	/* allocate test skb */
	skb = alloc_skb(size, GFP_KERNEL);
	if (!skb)
		return 11;

	/* place data into test skb */
	igb_create_lbtest_frame(skb, size);
	skb_put(skb, size);

	/* Calculate the loop count based on the largest descriptor ring
	 * The idea is to wrap the largest ring a number of times using 64
	 * send/receive pairs during each loop
	 */

	if (rx_ring->count <= tx_ring->count)
		lc = ((tx_ring->count / 64) * 2) + 1;
	else
		lc = ((rx_ring->count / 64) * 2) + 1;

	for (j = 0; j <= lc; j++) { /* loop count loop */
		/* reset count of good packets */
		good_cnt = 0;

		/* place 64 packets on the transmit queue*/
		for (i = 0; i < 64; i++) {
			skb_get(skb);
			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
			if (tx_ret_val == NETDEV_TX_OK)
				good_cnt++;
		}

		if (good_cnt != 64) {
			ret_val = 12;
			break;
		}

		/* allow 200 milliseconds for packets to go from Tx to Rx */
		msleep(200);

		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
		if (good_cnt != 64) {
			ret_val = 13;
			break;
		}
	} /* end loop count loop */

	/* free the original skb */
	kfree_skb(skb);

	return ret_val;
}

static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
{
	/* PHY loopback cannot be performed if SoL/IDER
	 * sessions are active
	 */
	if (igb_check_reset_block(&adapter->hw)) {
		dev_err(&adapter->pdev->dev,
			"Cannot do PHY loopback test when SoL/IDER is active.\n");
		*data = 0;
		goto out;
	}

	if (adapter->hw.mac.type == e1000_i354) {
		dev_info(&adapter->pdev->dev,
			"Loopback test not supported on i354.\n");
		*data = 0;
		goto out;
	}
	*data = igb_setup_desc_rings(adapter);
	if (*data)
		goto out;
	*data = igb_setup_loopback_test(adapter);
	if (*data)
		goto err_loopback;
	*data = igb_run_loopback_test(adapter);
	igb_loopback_cleanup(adapter);

err_loopback:
	igb_free_desc_rings(adapter);
out:
	return *data;
}

static int igb_link_test(struct igb_adapter *adapter, u64 *data)
{
	struct e1000_hw *hw = &adapter->hw;
	*data = 0;
	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
		int i = 0;

		hw->mac.serdes_has_link = false;

		/* On some blade server designs, link establishment
		 * could take as long as 2-3 minutes
		 */
		do {
			hw->mac.ops.check_for_link(&adapter->hw);
			if (hw->mac.serdes_has_link)
				return *data;
			msleep(20);
		} while (i++ < 3750);

		*data = 1;
	} else {
		hw->mac.ops.check_for_link(&adapter->hw);
		if (hw->mac.autoneg)
			msleep(5000);

		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
			*data = 1;
	}
	return *data;
}

static void igb_diag_test(struct net_device *netdev,
			  struct ethtool_test *eth_test, u64 *data)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	u16 autoneg_advertised;
	u8 forced_speed_duplex, autoneg;
	bool if_running = netif_running(netdev);

	set_bit(__IGB_TESTING, &adapter->state);

	/* can't do offline tests on media switching devices */
	if (adapter->hw.dev_spec._82575.mas_capable)
		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
		/* Offline tests */

		/* save speed, duplex, autoneg settings */
		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
		autoneg = adapter->hw.mac.autoneg;

		dev_info(&adapter->pdev->dev, "offline testing starting\n");

		/* power up link for link test */
		igb_power_up_link(adapter);

		/* Link test performed before hardware reset so autoneg doesn't
		 * interfere with test result
		 */
		if (igb_link_test(adapter, &data[4]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		if (if_running)
			/* indicate we're in test mode */
			dev_close(netdev);
		else
			igb_reset(adapter);

		if (igb_reg_test(adapter, &data[0]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		igb_reset(adapter);
		if (igb_eeprom_test(adapter, &data[1]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		igb_reset(adapter);
		if (igb_intr_test(adapter, &data[2]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		igb_reset(adapter);
		/* power up link for loopback test */
		igb_power_up_link(adapter);
		if (igb_loopback_test(adapter, &data[3]))
			eth_test->flags |= ETH_TEST_FL_FAILED;

		/* restore speed, duplex, autoneg settings */
		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
		adapter->hw.mac.autoneg = autoneg;

		/* force this routine to wait until autoneg complete/timeout */
		adapter->hw.phy.autoneg_wait_to_complete = true;
		igb_reset(adapter);
		adapter->hw.phy.autoneg_wait_to_complete = false;

		clear_bit(__IGB_TESTING, &adapter->state);
		if (if_running)
			dev_open(netdev);
	} else {
		dev_info(&adapter->pdev->dev, "online testing starting\n");

		/* PHY is powered down when interface is down */
		if (if_running && igb_link_test(adapter, &data[4]))
			eth_test->flags |= ETH_TEST_FL_FAILED;
		else
			data[4] = 0;

		/* Online tests aren't run; pass by default */
		data[0] = 0;
		data[1] = 0;
		data[2] = 0;
		data[3] = 0;

		clear_bit(__IGB_TESTING, &adapter->state);
	}
	msleep_interruptible(4 * 1000);
}

static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	wol->wolopts = 0;

	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
		return;

	wol->supported = WAKE_UCAST | WAKE_MCAST |
			 WAKE_BCAST | WAKE_MAGIC |
			 WAKE_PHY;

	/* apply any specific unsupported masks here */
	switch (adapter->hw.device_id) {
	default:
		break;
	}

	if (adapter->wol & E1000_WUFC_EX)
		wol->wolopts |= WAKE_UCAST;
	if (adapter->wol & E1000_WUFC_MC)
		wol->wolopts |= WAKE_MCAST;
	if (adapter->wol & E1000_WUFC_BC)
		wol->wolopts |= WAKE_BCAST;
	if (adapter->wol & E1000_WUFC_MAG)
		wol->wolopts |= WAKE_MAGIC;
	if (adapter->wol & E1000_WUFC_LNKC)
		wol->wolopts |= WAKE_PHY;
}

static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
		return -EOPNOTSUPP;

	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
		return wol->wolopts ? -EOPNOTSUPP : 0;

	/* these settings will always override what we currently have */
	adapter->wol = 0;

	if (wol->wolopts & WAKE_UCAST)
		adapter->wol |= E1000_WUFC_EX;
	if (wol->wolopts & WAKE_MCAST)
		adapter->wol |= E1000_WUFC_MC;
	if (wol->wolopts & WAKE_BCAST)
		adapter->wol |= E1000_WUFC_BC;
	if (wol->wolopts & WAKE_MAGIC)
		adapter->wol |= E1000_WUFC_MAG;
	if (wol->wolopts & WAKE_PHY)
		adapter->wol |= E1000_WUFC_LNKC;
	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);

	return 0;
}

/* bit defines for adapter->led_status */
#define IGB_LED_ON		0

static int igb_set_phys_id(struct net_device *netdev,
			   enum ethtool_phys_id_state state)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	switch (state) {
	case ETHTOOL_ID_ACTIVE:
		igb_blink_led(hw);
		return 2;
	case ETHTOOL_ID_ON:
		igb_blink_led(hw);
		break;
	case ETHTOOL_ID_OFF:
		igb_led_off(hw);
		break;
	case ETHTOOL_ID_INACTIVE:
		igb_led_off(hw);
		clear_bit(IGB_LED_ON, &adapter->led_status);
		igb_cleanup_led(hw);
		break;
	}

	return 0;
}

static int igb_set_coalesce(struct net_device *netdev,
			    struct ethtool_coalesce *ec)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	int i;

	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
	    ((ec->rx_coalesce_usecs > 3) &&
	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
	    (ec->rx_coalesce_usecs == 2))
		return -EINVAL;

	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
	    ((ec->tx_coalesce_usecs > 3) &&
	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
	    (ec->tx_coalesce_usecs == 2))
		return -EINVAL;

	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
		return -EINVAL;

	/* If ITR is disabled, disable DMAC */
	if (ec->rx_coalesce_usecs == 0) {
		if (adapter->flags & IGB_FLAG_DMAC)
			adapter->flags &= ~IGB_FLAG_DMAC;
	}

	/* convert to rate of irq's per second */
	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
	else
		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;

	/* convert to rate of irq's per second */
	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
		adapter->tx_itr_setting = adapter->rx_itr_setting;
	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
	else
		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];
		q_vector->tx.work_limit = adapter->tx_work_limit;
		if (q_vector->rx.ring)
			q_vector->itr_val = adapter->rx_itr_setting;
		else
			q_vector->itr_val = adapter->tx_itr_setting;
		if (q_vector->itr_val && q_vector->itr_val <= 3)
			q_vector->itr_val = IGB_START_ITR;
		q_vector->set_itr = 1;
	}

	return 0;
}

static int igb_get_coalesce(struct net_device *netdev,
			    struct ethtool_coalesce *ec)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (adapter->rx_itr_setting <= 3)
		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
	else
		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;

	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
		if (adapter->tx_itr_setting <= 3)
			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
		else
			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
	}

	return 0;
}

static int igb_nway_reset(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	return 0;
}

static int igb_get_sset_count(struct net_device *netdev, int sset)
{
	switch (sset) {
	case ETH_SS_STATS:
		return IGB_STATS_LEN;
	case ETH_SS_TEST:
		return IGB_TEST_LEN;
	default:
		return -ENOTSUPP;
	}
}

static void igb_get_ethtool_stats(struct net_device *netdev,
				  struct ethtool_stats *stats, u64 *data)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
	unsigned int start;
	struct igb_ring *ring;
	int i, j;
	char *p;

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter, net_stats);

	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
	}
	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
	}
	for (j = 0; j < adapter->num_tx_queues; j++) {
		u64	restart2;

		ring = adapter->tx_ring[j];
		do {
			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
			data[i]   = ring->tx_stats.packets;
			data[i+1] = ring->tx_stats.bytes;
			data[i+2] = ring->tx_stats.restart_queue;
		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
		do {
			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
			restart2  = ring->tx_stats.restart_queue2;
		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
		data[i+2] += restart2;

		i += IGB_TX_QUEUE_STATS_LEN;
	}
	for (j = 0; j < adapter->num_rx_queues; j++) {
		ring = adapter->rx_ring[j];
		do {
			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
			data[i]   = ring->rx_stats.packets;
			data[i+1] = ring->rx_stats.bytes;
			data[i+2] = ring->rx_stats.drops;
			data[i+3] = ring->rx_stats.csum_err;
			data[i+4] = ring->rx_stats.alloc_failed;
		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
		i += IGB_RX_QUEUE_STATS_LEN;
	}
	spin_unlock(&adapter->stats64_lock);
}

static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_TEST:
		memcpy(data, *igb_gstrings_test,
			IGB_TEST_LEN*ETH_GSTRING_LEN);
		break;
	case ETH_SS_STATS:
		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
			memcpy(p, igb_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
			memcpy(p, igb_gstrings_net_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
		for (i = 0; i < adapter->num_tx_queues; i++) {
			sprintf(p, "tx_queue_%u_packets", i);
			p += ETH_GSTRING_LEN;
			sprintf(p, "tx_queue_%u_bytes", i);
			p += ETH_GSTRING_LEN;
			sprintf(p, "tx_queue_%u_restart", i);
			p += ETH_GSTRING_LEN;
		}
		for (i = 0; i < adapter->num_rx_queues; i++) {
			sprintf(p, "rx_queue_%u_packets", i);
			p += ETH_GSTRING_LEN;
			sprintf(p, "rx_queue_%u_bytes", i);
			p += ETH_GSTRING_LEN;
			sprintf(p, "rx_queue_%u_drops", i);
			p += ETH_GSTRING_LEN;
			sprintf(p, "rx_queue_%u_csum_err", i);
			p += ETH_GSTRING_LEN;
			sprintf(p, "rx_queue_%u_alloc_failed", i);
			p += ETH_GSTRING_LEN;
		}
		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
		break;
	}
}

static int igb_get_ts_info(struct net_device *dev,
			   struct ethtool_ts_info *info)
{
	struct igb_adapter *adapter = netdev_priv(dev);

	if (adapter->ptp_clock)
		info->phc_index = ptp_clock_index(adapter->ptp_clock);
	else
		info->phc_index = -1;

	switch (adapter->hw.mac.type) {
	case e1000_82575:
		info->so_timestamping =
			SOF_TIMESTAMPING_TX_SOFTWARE |
			SOF_TIMESTAMPING_RX_SOFTWARE |
			SOF_TIMESTAMPING_SOFTWARE;
		return 0;
	case e1000_82576:
	case e1000_82580:
	case e1000_i350:
	case e1000_i354:
	case e1000_i210:
	case e1000_i211:
		info->so_timestamping =
			SOF_TIMESTAMPING_TX_SOFTWARE |
			SOF_TIMESTAMPING_RX_SOFTWARE |
			SOF_TIMESTAMPING_SOFTWARE |
			SOF_TIMESTAMPING_TX_HARDWARE |
			SOF_TIMESTAMPING_RX_HARDWARE |
			SOF_TIMESTAMPING_RAW_HARDWARE;

		info->tx_types =
			(1 << HWTSTAMP_TX_OFF) |
			(1 << HWTSTAMP_TX_ON);

		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;

		/* 82576 does not support timestamping all packets. */
		if (adapter->hw.mac.type >= e1000_82580)
			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
		else
			info->rx_filters |=
				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);

		return 0;
	default:
		return -EOPNOTSUPP;
	}
}

static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
				 struct ethtool_rxnfc *cmd)
{
	cmd->data = 0;

	/* Report default options for RSS on igb */
	switch (cmd->flow_type) {
	case TCP_V4_FLOW:
		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
		/* Fall through */
	case UDP_V4_FLOW:
		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
		/* Fall through */
	case SCTP_V4_FLOW:
	case AH_ESP_V4_FLOW:
	case AH_V4_FLOW:
	case ESP_V4_FLOW:
	case IPV4_FLOW:
		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
		break;
	case TCP_V6_FLOW:
		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
		/* Fall through */
	case UDP_V6_FLOW:
		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
		/* Fall through */
	case SCTP_V6_FLOW:
	case AH_ESP_V6_FLOW:
	case AH_V6_FLOW:
	case ESP_V6_FLOW:
	case IPV6_FLOW:
		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
			 u32 *rule_locs)
{
	struct igb_adapter *adapter = netdev_priv(dev);
	int ret = -EOPNOTSUPP;

	switch (cmd->cmd) {
	case ETHTOOL_GRXRINGS:
		cmd->data = adapter->num_rx_queues;
		ret = 0;
		break;
	case ETHTOOL_GRXFH:
		ret = igb_get_rss_hash_opts(adapter, cmd);
		break;
	default:
		break;
	}

	return ret;
}

#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
				struct ethtool_rxnfc *nfc)
{
	u32 flags = adapter->flags;

	/* RSS does not support anything other than hashing
	 * to queues on src and dst IPs and ports
	 */
	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
		return -EINVAL;

	switch (nfc->flow_type) {
	case TCP_V4_FLOW:
	case TCP_V6_FLOW:
		if (!(nfc->data & RXH_IP_SRC) ||
		    !(nfc->data & RXH_IP_DST) ||
		    !(nfc->data & RXH_L4_B_0_1) ||
		    !(nfc->data & RXH_L4_B_2_3))
			return -EINVAL;
		break;
	case UDP_V4_FLOW:
		if (!(nfc->data & RXH_IP_SRC) ||
		    !(nfc->data & RXH_IP_DST))
			return -EINVAL;
		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
		case 0:
			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
			break;
		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
			break;
		default:
			return -EINVAL;
		}
		break;
	case UDP_V6_FLOW:
		if (!(nfc->data & RXH_IP_SRC) ||
		    !(nfc->data & RXH_IP_DST))
			return -EINVAL;
		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
		case 0:
			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
			break;
		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
			break;
		default:
			return -EINVAL;
		}
		break;
	case AH_ESP_V4_FLOW:
	case AH_V4_FLOW:
	case ESP_V4_FLOW:
	case SCTP_V4_FLOW:
	case AH_ESP_V6_FLOW:
	case AH_V6_FLOW:
	case ESP_V6_FLOW:
	case SCTP_V6_FLOW:
		if (!(nfc->data & RXH_IP_SRC) ||
		    !(nfc->data & RXH_IP_DST) ||
		    (nfc->data & RXH_L4_B_0_1) ||
		    (nfc->data & RXH_L4_B_2_3))
			return -EINVAL;
		break;
	default:
		return -EINVAL;
	}

	/* if we changed something we need to update flags */
	if (flags != adapter->flags) {
		struct e1000_hw *hw = &adapter->hw;
		u32 mrqc = rd32(E1000_MRQC);

		if ((flags & UDP_RSS_FLAGS) &&
		    !(adapter->flags & UDP_RSS_FLAGS))
			dev_err(&adapter->pdev->dev,
				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");

		adapter->flags = flags;

		/* Perform hash on these packet types */
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
			E1000_MRQC_RSS_FIELD_IPV4_TCP |
			E1000_MRQC_RSS_FIELD_IPV6 |
			E1000_MRQC_RSS_FIELD_IPV6_TCP;

		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
			  E1000_MRQC_RSS_FIELD_IPV6_UDP);

		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;

		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;

		wr32(E1000_MRQC, mrqc);
	}

	return 0;
}

static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
{
	struct igb_adapter *adapter = netdev_priv(dev);
	int ret = -EOPNOTSUPP;

	switch (cmd->cmd) {
	case ETHTOOL_SRXFH:
		ret = igb_set_rss_hash_opt(adapter, cmd);
		break;
	default:
		break;
	}

	return ret;
}

static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ret_val;
	u16 phy_data;

	if ((hw->mac.type < e1000_i350) ||
	    (hw->phy.media_type != e1000_media_type_copper))
		return -EOPNOTSUPP;

	edata->supported = (SUPPORTED_1000baseT_Full |
			    SUPPORTED_100baseT_Full);
	if (!hw->dev_spec._82575.eee_disable)
		edata->advertised =
			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);

	/* The IPCNFG and EEER registers are not supported on I354. */
	if (hw->mac.type == e1000_i354) {
		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
	} else {
		u32 eeer;

		eeer = rd32(E1000_EEER);

		/* EEE status on negotiated link */
		if (eeer & E1000_EEER_EEE_NEG)
			edata->eee_active = true;

		if (eeer & E1000_EEER_TX_LPI_EN)
			edata->tx_lpi_enabled = true;
	}

	/* EEE Link Partner Advertised */
	switch (hw->mac.type) {
	case e1000_i350:
		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
					   &phy_data);
		if (ret_val)
			return -ENODATA;

		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
		break;
	case e1000_i354:
	case e1000_i210:
	case e1000_i211:
		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
					     E1000_EEE_LP_ADV_DEV_I210,
					     &phy_data);
		if (ret_val)
			return -ENODATA;

		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);

		break;
	default:
		break;
	}

	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;

	if ((hw->mac.type == e1000_i354) &&
	    (edata->eee_enabled))
		edata->tx_lpi_enabled = true;

	/* Report correct negotiated EEE status for devices that
	 * wrongly report EEE at half-duplex
	 */
	if (adapter->link_duplex == HALF_DUPLEX) {
		edata->eee_enabled = false;
		edata->eee_active = false;
		edata->tx_lpi_enabled = false;
		edata->advertised &= ~edata->advertised;
	}

	return 0;
}

static int igb_set_eee(struct net_device *netdev,
		       struct ethtool_eee *edata)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct ethtool_eee eee_curr;
	bool adv1g_eee = true, adv100m_eee = true;
	s32 ret_val;

	if ((hw->mac.type < e1000_i350) ||
	    (hw->phy.media_type != e1000_media_type_copper))
		return -EOPNOTSUPP;

	memset(&eee_curr, 0, sizeof(struct ethtool_eee));

	ret_val = igb_get_eee(netdev, &eee_curr);
	if (ret_val)
		return ret_val;

	if (eee_curr.eee_enabled) {
		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
			dev_err(&adapter->pdev->dev,
				"Setting EEE tx-lpi is not supported\n");
			return -EINVAL;
		}

		/* Tx LPI timer is not implemented currently */
		if (edata->tx_lpi_timer) {
			dev_err(&adapter->pdev->dev,
				"Setting EEE Tx LPI timer is not supported\n");
			return -EINVAL;
		}

		if (!edata->advertised || (edata->advertised &
		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
			dev_err(&adapter->pdev->dev,
				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
			return -EINVAL;
		}
		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);

	} else if (!edata->eee_enabled) {
		dev_err(&adapter->pdev->dev,
			"Setting EEE options are not supported with EEE disabled\n");
			return -EINVAL;
		}

	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
		adapter->flags |= IGB_FLAG_EEE;

		/* reset link */
		if (netif_running(netdev))
			igb_reinit_locked(adapter);
		else
			igb_reset(adapter);
	}

	if (hw->mac.type == e1000_i354)
		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
	else
		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);

	if (ret_val) {
		dev_err(&adapter->pdev->dev,
			"Problem setting EEE advertisement options\n");
		return -EINVAL;
	}

	return 0;
}

static int igb_get_module_info(struct net_device *netdev,
			       struct ethtool_modinfo *modinfo)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 status = 0;
	u16 sff8472_rev, addr_mode;
	bool page_swap = false;

	if ((hw->phy.media_type == e1000_media_type_copper) ||
	    (hw->phy.media_type == e1000_media_type_unknown))
		return -EOPNOTSUPP;

	/* Check whether we support SFF-8472 or not */
	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
	if (status)
		return -EIO;

	/* addressing mode is not supported */
	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
	if (status)
		return -EIO;

	/* addressing mode is not supported */
	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
		page_swap = true;
	}

	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
		/* We have an SFP, but it does not support SFF-8472 */
		modinfo->type = ETH_MODULE_SFF_8079;
		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
	} else {
		/* We have an SFP which supports a revision of SFF-8472 */
		modinfo->type = ETH_MODULE_SFF_8472;
		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
	}

	return 0;
}

static int igb_get_module_eeprom(struct net_device *netdev,
				 struct ethtool_eeprom *ee, u8 *data)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 status = 0;
	u16 *dataword;
	u16 first_word, last_word;
	int i = 0;

	if (ee->len == 0)
		return -EINVAL;

	first_word = ee->offset >> 1;
	last_word = (ee->offset + ee->len - 1) >> 1;

	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
			   GFP_KERNEL);
	if (!dataword)
		return -ENOMEM;

	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
	for (i = 0; i < last_word - first_word + 1; i++) {
		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
		if (status) {
			/* Error occurred while reading module */
			kfree(dataword);
			return -EIO;
		}

		be16_to_cpus(&dataword[i]);
	}

	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
	kfree(dataword);

	return 0;
}

static int igb_ethtool_begin(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	pm_runtime_get_sync(&adapter->pdev->dev);
	return 0;
}

static void igb_ethtool_complete(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	pm_runtime_put(&adapter->pdev->dev);
}

static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
{
	return IGB_RETA_SIZE;
}

static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
			u8 *hfunc)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	int i;

	if (hfunc)
		*hfunc = ETH_RSS_HASH_TOP;
	if (!indir)
		return 0;
	for (i = 0; i < IGB_RETA_SIZE; i++)
		indir[i] = adapter->rss_indir_tbl[i];

	return 0;
}

void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg = E1000_RETA(0);
	u32 shift = 0;
	int i = 0;

	switch (hw->mac.type) {
	case e1000_82575:
		shift = 6;
		break;
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
		if (adapter->vfs_allocated_count)
			shift = 3;
		break;
	default:
		break;
	}

	while (i < IGB_RETA_SIZE) {
		u32 val = 0;
		int j;

		for (j = 3; j >= 0; j--) {
			val <<= 8;
			val |= adapter->rss_indir_tbl[i + j];
		}

		wr32(reg, val << shift);
		reg += 4;
		i += 4;
	}
}

static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
			const u8 *key, const u8 hfunc)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int i;
	u32 num_queues;

	/* We do not allow change in unsupported parameters */
	if (key ||
	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
		return -EOPNOTSUPP;
	if (!indir)
		return 0;

	num_queues = adapter->rss_queues;

	switch (hw->mac.type) {
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
		if (adapter->vfs_allocated_count)
			num_queues = 2;
		break;
	default:
		break;
	}

	/* Verify user input. */
	for (i = 0; i < IGB_RETA_SIZE; i++)
		if (indir[i] >= num_queues)
			return -EINVAL;


	for (i = 0; i < IGB_RETA_SIZE; i++)
		adapter->rss_indir_tbl[i] = indir[i];

	igb_write_rss_indir_tbl(adapter);

	return 0;
}

static unsigned int igb_max_channels(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned int max_combined = 0;

	switch (hw->mac.type) {
	case e1000_i211:
		max_combined = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
	case e1000_i210:
		max_combined = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		if (!!adapter->vfs_allocated_count) {
			max_combined = 1;
			break;
		}
		/* fall through */
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_combined = 2;
			break;
		}
		/* fall through */
	case e1000_82580:
	case e1000_i354:
	default:
		max_combined = IGB_MAX_RX_QUEUES;
		break;
	}

	return max_combined;
}

static void igb_get_channels(struct net_device *netdev,
			     struct ethtool_channels *ch)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	/* Report maximum channels */
	ch->max_combined = igb_max_channels(adapter);

	/* Report info for other vector */
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
		ch->max_other = NON_Q_VECTORS;
		ch->other_count = NON_Q_VECTORS;
	}

	ch->combined_count = adapter->rss_queues;
}

static int igb_set_channels(struct net_device *netdev,
			    struct ethtool_channels *ch)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	unsigned int count = ch->combined_count;

	/* Verify they are not requesting separate vectors */
	if (!count || ch->rx_count || ch->tx_count)
		return -EINVAL;

	/* Verify other_count is valid and has not been changed */
	if (ch->other_count != NON_Q_VECTORS)
		return -EINVAL;

	/* Verify the number of channels doesn't exceed hw limits */
	if (count > igb_max_channels(adapter))
		return -EINVAL;

	if (count != adapter->rss_queues) {
		adapter->rss_queues = count;

		/* Hardware has to reinitialize queues and interrupts to
		 * match the new configuration.
		 */
		return igb_reinit_queues(adapter);
	}

	return 0;
}

static const struct ethtool_ops igb_ethtool_ops = {
	.get_settings		= igb_get_settings,
	.set_settings		= igb_set_settings,
	.get_drvinfo		= igb_get_drvinfo,
	.get_regs_len		= igb_get_regs_len,
	.get_regs		= igb_get_regs,
	.get_wol		= igb_get_wol,
	.set_wol		= igb_set_wol,
	.get_msglevel		= igb_get_msglevel,
	.set_msglevel		= igb_set_msglevel,
	.nway_reset		= igb_nway_reset,
	.get_link		= igb_get_link,
	.get_eeprom_len		= igb_get_eeprom_len,
	.get_eeprom		= igb_get_eeprom,
	.set_eeprom		= igb_set_eeprom,
	.get_ringparam		= igb_get_ringparam,
	.set_ringparam		= igb_set_ringparam,
	.get_pauseparam		= igb_get_pauseparam,
	.set_pauseparam		= igb_set_pauseparam,
	.self_test		= igb_diag_test,
	.get_strings		= igb_get_strings,
	.set_phys_id		= igb_set_phys_id,
	.get_sset_count		= igb_get_sset_count,
	.get_ethtool_stats	= igb_get_ethtool_stats,
	.get_coalesce		= igb_get_coalesce,
	.set_coalesce		= igb_set_coalesce,
	.get_ts_info		= igb_get_ts_info,
	.get_rxnfc		= igb_get_rxnfc,
	.set_rxnfc		= igb_set_rxnfc,
	.get_eee		= igb_get_eee,
	.set_eee		= igb_set_eee,
	.get_module_info	= igb_get_module_info,
	.get_module_eeprom	= igb_get_module_eeprom,
	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
	.get_rxfh		= igb_get_rxfh,
	.set_rxfh		= igb_set_rxfh,
	.get_channels		= igb_get_channels,
	.set_channels		= igb_set_channels,
	.begin			= igb_ethtool_begin,
	.complete		= igb_ethtool_complete,
};

void igb_set_ethtool_ops(struct net_device *netdev)
{
	netdev->ethtool_ops = &igb_ethtool_ops;
}