/* * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux. * * Based on skelton.c by Donald Becker. * * This driver is a replacement of older and less maintained version. * This is a header of the older version: * -----<snip>----- * Copyright 2001 MontaVista Software Inc. * Author: MontaVista Software, Inc. * ahennessy@mvista.com * Copyright (C) 2000-2001 Toshiba Corporation * static const char *version = * "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n"; * -----<snip>----- * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * (C) Copyright TOSHIBA CORPORATION 2004-2005 * All Rights Reserved. */ #define DRV_VERSION "1.39" static const char *version = "tc35815.c:v" DRV_VERSION "\n"; #define MODNAME "tc35815" #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/in.h> #include <linux/if_vlan.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/spinlock.h> #include <linux/errno.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/delay.h> #include <linux/pci.h> #include <linux/phy.h> #include <linux/workqueue.h> #include <linux/platform_device.h> #include <linux/prefetch.h> #include <asm/io.h> #include <asm/byteorder.h> enum tc35815_chiptype { TC35815CF = 0, TC35815_NWU, TC35815_TX4939, }; /* indexed by tc35815_chiptype, above */ static const struct { const char *name; } chip_info[] = { { "TOSHIBA TC35815CF 10/100BaseTX" }, { "TOSHIBA TC35815 with Wake on LAN" }, { "TOSHIBA TC35815/TX4939" }, }; static const struct pci_device_id tc35815_pci_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF }, {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU }, {PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 }, {0,} }; MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl); /* see MODULE_PARM_DESC */ static struct tc35815_options { int speed; int duplex; } options; /* * Registers */ struct tc35815_regs { __u32 DMA_Ctl; /* 0x00 */ __u32 TxFrmPtr; __u32 TxThrsh; __u32 TxPollCtr; __u32 BLFrmPtr; __u32 RxFragSize; __u32 Int_En; __u32 FDA_Bas; __u32 FDA_Lim; /* 0x20 */ __u32 Int_Src; __u32 unused0[2]; __u32 PauseCnt; __u32 RemPauCnt; __u32 TxCtlFrmStat; __u32 unused1; __u32 MAC_Ctl; /* 0x40 */ __u32 CAM_Ctl; __u32 Tx_Ctl; __u32 Tx_Stat; __u32 Rx_Ctl; __u32 Rx_Stat; __u32 MD_Data; __u32 MD_CA; __u32 CAM_Adr; /* 0x60 */ __u32 CAM_Data; __u32 CAM_Ena; __u32 PROM_Ctl; __u32 PROM_Data; __u32 Algn_Cnt; __u32 CRC_Cnt; __u32 Miss_Cnt; }; /* * Bit assignments */ /* DMA_Ctl bit assign ------------------------------------------------------- */ #define DMA_RxAlign 0x00c00000 /* 1:Reception Alignment */ #define DMA_RxAlign_1 0x00400000 #define DMA_RxAlign_2 0x00800000 #define DMA_RxAlign_3 0x00c00000 #define DMA_M66EnStat 0x00080000 /* 1:66MHz Enable State */ #define DMA_IntMask 0x00040000 /* 1:Interrupt mask */ #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */ #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */ #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */ #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */ #define DMA_TestMode 0x00002000 /* 1:Test Mode */ #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */ #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */ /* RxFragSize bit assign ---------------------------------------------------- */ #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */ #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */ /* MAC_Ctl bit assign ------------------------------------------------------- */ #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */ #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */ #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */ #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */ #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */ #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/ #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */ #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */ #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */ #define MAC_Reset 0x00000004 /* 1:Software Reset */ #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */ #define MAC_HaltReq 0x00000001 /* 1:Halt request */ /* PROM_Ctl bit assign ------------------------------------------------------ */ #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */ #define PROM_Read 0x00004000 /*10:Read operation */ #define PROM_Write 0x00002000 /*01:Write operation */ #define PROM_Erase 0x00006000 /*11:Erase operation */ /*00:Enable or Disable Writting, */ /* as specified in PROM_Addr. */ #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */ /*00xxxx: disable */ /* CAM_Ctl bit assign ------------------------------------------------------- */ #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */ #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/ /* accept other */ #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */ #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */ #define CAM_StationAcc 0x00000001 /* 1:unicast accept */ /* CAM_Ena bit assign ------------------------------------------------------- */ #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */ #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */ #define CAM_Ena_Bit(index) (1 << (index)) #define CAM_ENTRY_DESTINATION 0 #define CAM_ENTRY_SOURCE 1 #define CAM_ENTRY_MACCTL 20 /* Tx_Ctl bit assign -------------------------------------------------------- */ #define Tx_En 0x00000001 /* 1:Transmit enable */ #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */ #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */ #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */ #define Tx_FBack 0x00000010 /* 1:Fast Back-off */ #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */ #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */ #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */ #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */ #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */ #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */ #define Tx_EnComp 0x00004000 /* 1:Enable Completion */ /* Tx_Stat bit assign ------------------------------------------------------- */ #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */ #define Tx_ExColl 0x00000010 /* Excessive Collision */ #define Tx_TXDefer 0x00000020 /* Transmit Defered */ #define Tx_Paused 0x00000040 /* Transmit Paused */ #define Tx_IntTx 0x00000080 /* Interrupt on Tx */ #define Tx_Under 0x00000100 /* Underrun */ #define Tx_Defer 0x00000200 /* Deferral */ #define Tx_NCarr 0x00000400 /* No Carrier */ #define Tx_10Stat 0x00000800 /* 10Mbps Status */ #define Tx_LateColl 0x00001000 /* Late Collision */ #define Tx_TxPar 0x00002000 /* Tx Parity Error */ #define Tx_Comp 0x00004000 /* Completion */ #define Tx_Halted 0x00008000 /* Tx Halted */ #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */ /* Rx_Ctl bit assign -------------------------------------------------------- */ #define Rx_EnGood 0x00004000 /* 1:Enable Good */ #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */ #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */ #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */ #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */ #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */ #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */ #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */ #define Rx_ShortEn 0x00000008 /* 1:Short Enable */ #define Rx_LongEn 0x00000004 /* 1:Long Enable */ #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */ #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */ /* Rx_Stat bit assign ------------------------------------------------------- */ #define Rx_Halted 0x00008000 /* Rx Halted */ #define Rx_Good 0x00004000 /* Rx Good */ #define Rx_RxPar 0x00002000 /* Rx Parity Error */ #define Rx_TypePkt 0x00001000 /* Rx Type Packet */ #define Rx_LongErr 0x00000800 /* Rx Long Error */ #define Rx_Over 0x00000400 /* Rx Overflow */ #define Rx_CRCErr 0x00000200 /* Rx CRC Error */ #define Rx_Align 0x00000100 /* Rx Alignment Error */ #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */ #define Rx_IntRx 0x00000040 /* Rx Interrupt */ #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */ #define Rx_InLenErr 0x00000010 /* Rx In Range Frame Length Error */ #define Rx_Stat_Mask 0x0000FFF0 /* Rx All Status Mask */ /* Int_En bit assign -------------------------------------------------------- */ #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */ #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Ctl Complete Enable */ #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */ #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */ #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */ #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */ #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */ #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */ #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */ #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */ #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */ #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */ /* Exhausted Enable */ /* Int_Src bit assign ------------------------------------------------------- */ #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */ #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */ #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */ #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */ #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */ #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */ #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */ #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */ #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */ #define Int_SWInt 0x00000020 /* 1:Software request & Clear */ #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */ #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */ #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */ #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */ #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */ /* MD_CA bit assign --------------------------------------------------------- */ #define MD_CA_PreSup 0x00001000 /* 1:Preamble Suppress */ #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */ #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */ /* * Descriptors */ /* Frame descripter */ struct FDesc { volatile __u32 FDNext; volatile __u32 FDSystem; volatile __u32 FDStat; volatile __u32 FDCtl; }; /* Buffer descripter */ struct BDesc { volatile __u32 BuffData; volatile __u32 BDCtl; }; #define FD_ALIGN 16 /* Frame Descripter bit assign ---------------------------------------------- */ #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */ #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */ #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */ #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */ #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */ #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */ #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */ #define FD_FrmOpt_Packing 0x04000000 /* Rx only */ #define FD_CownsFD 0x80000000 /* FD Controller owner bit */ #define FD_Next_EOL 0x00000001 /* FD EOL indicator */ #define FD_BDCnt_SHIFT 16 /* Buffer Descripter bit assign --------------------------------------------- */ #define BD_BuffLength_MASK 0x0000FFFF /* Receive Data Size */ #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */ #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */ #define BD_CownsBD 0x80000000 /* BD Controller owner bit */ #define BD_RxBDID_SHIFT 16 #define BD_RxBDSeqN_SHIFT 24 /* Some useful constants. */ #define TX_CTL_CMD (Tx_EnTxPar | Tx_EnLateColl | \ Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \ Tx_En) /* maybe 0x7b01 */ /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */ #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \ | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */ #define INT_EN_CMD (Int_NRAbtEn | \ Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \ Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \ Int_STargAbtEn | \ Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/ #define DMA_CTL_CMD DMA_BURST_SIZE #define HAVE_DMA_RXALIGN(lp) likely((lp)->chiptype != TC35815CF) /* Tuning parameters */ #define DMA_BURST_SIZE 32 #define TX_THRESHOLD 1024 /* used threshold with packet max byte for low pci transfer ability.*/ #define TX_THRESHOLD_MAX 1536 /* setting threshold max value when overrun error occurred this count. */ #define TX_THRESHOLD_KEEP_LIMIT 10 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */ #define FD_PAGE_NUM 4 #define RX_BUF_NUM 128 /* < 256 */ #define RX_FD_NUM 256 /* >= 32 */ #define TX_FD_NUM 128 #if RX_CTL_CMD & Rx_LongEn #define RX_BUF_SIZE PAGE_SIZE #elif RX_CTL_CMD & Rx_StripCRC #define RX_BUF_SIZE \ L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN) #else #define RX_BUF_SIZE \ L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN) #endif #define RX_FD_RESERVE (2 / 2) /* max 2 BD per RxFD */ #define NAPI_WEIGHT 16 struct TxFD { struct FDesc fd; struct BDesc bd; struct BDesc unused; }; struct RxFD { struct FDesc fd; struct BDesc bd[0]; /* variable length */ }; struct FrFD { struct FDesc fd; struct BDesc bd[RX_BUF_NUM]; }; #define tc_readl(addr) ioread32(addr) #define tc_writel(d, addr) iowrite32(d, addr) #define TC35815_TX_TIMEOUT msecs_to_jiffies(400) /* Information that need to be kept for each controller. */ struct tc35815_local { struct pci_dev *pci_dev; struct net_device *dev; struct napi_struct napi; /* statistics */ struct { int max_tx_qlen; int tx_ints; int rx_ints; int tx_underrun; } lstats; /* Tx control lock. This protects the transmit buffer ring * state along with the "tx full" state of the driver. This * means all netif_queue flow control actions are protected * by this lock as well. */ spinlock_t lock; spinlock_t rx_lock; struct mii_bus *mii_bus; struct phy_device *phy_dev; int duplex; int speed; int link; struct work_struct restart_work; /* * Transmitting: Batch Mode. * 1 BD in 1 TxFD. * Receiving: Non-Packing Mode. * 1 circular FD for Free Buffer List. * RX_BUF_NUM BD in Free Buffer FD. * One Free Buffer BD has ETH_FRAME_LEN data buffer. */ void *fd_buf; /* for TxFD, RxFD, FrFD */ dma_addr_t fd_buf_dma; struct TxFD *tfd_base; unsigned int tfd_start; unsigned int tfd_end; struct RxFD *rfd_base; struct RxFD *rfd_limit; struct RxFD *rfd_cur; struct FrFD *fbl_ptr; unsigned int fbl_count; struct { struct sk_buff *skb; dma_addr_t skb_dma; } tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM]; u32 msg_enable; enum tc35815_chiptype chiptype; }; static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt) { return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf); } #ifdef DEBUG static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus) { return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma)); } #endif static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev, struct pci_dev *hwdev, dma_addr_t *dma_handle) { struct sk_buff *skb; skb = netdev_alloc_skb(dev, RX_BUF_SIZE); if (!skb) return NULL; *dma_handle = pci_map_single(hwdev, skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE); if (pci_dma_mapping_error(hwdev, *dma_handle)) { dev_kfree_skb_any(skb); return NULL; } skb_reserve(skb, 2); /* make IP header 4byte aligned */ return skb; } static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle) { pci_unmap_single(hwdev, dma_handle, RX_BUF_SIZE, PCI_DMA_FROMDEVICE); dev_kfree_skb_any(skb); } /* Index to functions, as function prototypes. */ static int tc35815_open(struct net_device *dev); static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev); static irqreturn_t tc35815_interrupt(int irq, void *dev_id); static int tc35815_rx(struct net_device *dev, int limit); static int tc35815_poll(struct napi_struct *napi, int budget); static void tc35815_txdone(struct net_device *dev); static int tc35815_close(struct net_device *dev); static struct net_device_stats *tc35815_get_stats(struct net_device *dev); static void tc35815_set_multicast_list(struct net_device *dev); static void tc35815_tx_timeout(struct net_device *dev); static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); #ifdef CONFIG_NET_POLL_CONTROLLER static void tc35815_poll_controller(struct net_device *dev); #endif static const struct ethtool_ops tc35815_ethtool_ops; /* Example routines you must write ;->. */ static void tc35815_chip_reset(struct net_device *dev); static void tc35815_chip_init(struct net_device *dev); #ifdef DEBUG static void panic_queues(struct net_device *dev); #endif static void tc35815_restart_work(struct work_struct *work); static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum) { struct net_device *dev = bus->priv; struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; unsigned long timeout = jiffies + HZ; tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA); udelay(12); /* it takes 32 x 400ns at least */ while (tc_readl(&tr->MD_CA) & MD_CA_Busy) { if (time_after(jiffies, timeout)) return -EIO; cpu_relax(); } return tc_readl(&tr->MD_Data) & 0xffff; } static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val) { struct net_device *dev = bus->priv; struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; unsigned long timeout = jiffies + HZ; tc_writel(val, &tr->MD_Data); tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA); udelay(12); /* it takes 32 x 400ns at least */ while (tc_readl(&tr->MD_CA) & MD_CA_Busy) { if (time_after(jiffies, timeout)) return -EIO; cpu_relax(); } return 0; } static void tc_handle_link_change(struct net_device *dev) { struct tc35815_local *lp = netdev_priv(dev); struct phy_device *phydev = lp->phy_dev; unsigned long flags; int status_change = 0; spin_lock_irqsave(&lp->lock, flags); if (phydev->link && (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; u32 reg; reg = tc_readl(&tr->MAC_Ctl); reg |= MAC_HaltReq; tc_writel(reg, &tr->MAC_Ctl); if (phydev->duplex == DUPLEX_FULL) reg |= MAC_FullDup; else reg &= ~MAC_FullDup; tc_writel(reg, &tr->MAC_Ctl); reg &= ~MAC_HaltReq; tc_writel(reg, &tr->MAC_Ctl); /* * TX4939 PCFG.SPEEDn bit will be changed on * NETDEV_CHANGE event. */ /* * WORKAROUND: enable LostCrS only if half duplex * operation. * (TX4939 does not have EnLCarr) */ if (phydev->duplex == DUPLEX_HALF && lp->chiptype != TC35815_TX4939) tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr, &tr->Tx_Ctl); lp->speed = phydev->speed; lp->duplex = phydev->duplex; status_change = 1; } if (phydev->link != lp->link) { if (phydev->link) { /* delayed promiscuous enabling */ if (dev->flags & IFF_PROMISC) tc35815_set_multicast_list(dev); } else { lp->speed = 0; lp->duplex = -1; } lp->link = phydev->link; status_change = 1; } spin_unlock_irqrestore(&lp->lock, flags); if (status_change && netif_msg_link(lp)) { phy_print_status(phydev); pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n", dev->name, phy_read(phydev, MII_BMCR), phy_read(phydev, MII_BMSR), phy_read(phydev, MII_LPA)); } } static int tc_mii_probe(struct net_device *dev) { struct tc35815_local *lp = netdev_priv(dev); struct phy_device *phydev = NULL; int phy_addr; u32 dropmask; /* find the first phy */ for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) { if (lp->mii_bus->phy_map[phy_addr]) { if (phydev) { printk(KERN_ERR "%s: multiple PHYs found\n", dev->name); return -EINVAL; } phydev = lp->mii_bus->phy_map[phy_addr]; break; } } if (!phydev) { printk(KERN_ERR "%s: no PHY found\n", dev->name); return -ENODEV; } /* attach the mac to the phy */ phydev = phy_connect(dev, dev_name(&phydev->dev), &tc_handle_link_change, lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII); if (IS_ERR(phydev)) { printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); return PTR_ERR(phydev); } printk(KERN_INFO "%s: attached PHY driver [%s] " "(mii_bus:phy_addr=%s, id=%x)\n", dev->name, phydev->drv->name, dev_name(&phydev->dev), phydev->phy_id); /* mask with MAC supported features */ phydev->supported &= PHY_BASIC_FEATURES; dropmask = 0; if (options.speed == 10) dropmask |= SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full; else if (options.speed == 100) dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full; if (options.duplex == 1) dropmask |= SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full; else if (options.duplex == 2) dropmask |= SUPPORTED_10baseT_Half | SUPPORTED_100baseT_Half; phydev->supported &= ~dropmask; phydev->advertising = phydev->supported; lp->link = 0; lp->speed = 0; lp->duplex = -1; lp->phy_dev = phydev; return 0; } static int tc_mii_init(struct net_device *dev) { struct tc35815_local *lp = netdev_priv(dev); int err; int i; lp->mii_bus = mdiobus_alloc(); if (lp->mii_bus == NULL) { err = -ENOMEM; goto err_out; } lp->mii_bus->name = "tc35815_mii_bus"; lp->mii_bus->read = tc_mdio_read; lp->mii_bus->write = tc_mdio_write; snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x", (lp->pci_dev->bus->number << 8) | lp->pci_dev->devfn); lp->mii_bus->priv = dev; lp->mii_bus->parent = &lp->pci_dev->dev; lp->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); if (!lp->mii_bus->irq) { err = -ENOMEM; goto err_out_free_mii_bus; } for (i = 0; i < PHY_MAX_ADDR; i++) lp->mii_bus->irq[i] = PHY_POLL; err = mdiobus_register(lp->mii_bus); if (err) goto err_out_free_mdio_irq; err = tc_mii_probe(dev); if (err) goto err_out_unregister_bus; return 0; err_out_unregister_bus: mdiobus_unregister(lp->mii_bus); err_out_free_mdio_irq: kfree(lp->mii_bus->irq); err_out_free_mii_bus: mdiobus_free(lp->mii_bus); err_out: return err; } #ifdef CONFIG_CPU_TX49XX /* * Find a platform_device providing a MAC address. The platform code * should provide a "tc35815-mac" device with a MAC address in its * platform_data. */ static int tc35815_mac_match(struct device *dev, void *data) { struct platform_device *plat_dev = to_platform_device(dev); struct pci_dev *pci_dev = data; unsigned int id = pci_dev->irq; return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id; } static int tc35815_read_plat_dev_addr(struct net_device *dev) { struct tc35815_local *lp = netdev_priv(dev); struct device *pd = bus_find_device(&platform_bus_type, NULL, lp->pci_dev, tc35815_mac_match); if (pd) { if (pd->platform_data) memcpy(dev->dev_addr, pd->platform_data, ETH_ALEN); put_device(pd); return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV; } return -ENODEV; } #else static int tc35815_read_plat_dev_addr(struct net_device *dev) { return -ENODEV; } #endif static int tc35815_init_dev_addr(struct net_device *dev) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; int i; while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) ; for (i = 0; i < 6; i += 2) { unsigned short data; tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl); while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) ; data = tc_readl(&tr->PROM_Data); dev->dev_addr[i] = data & 0xff; dev->dev_addr[i+1] = data >> 8; } if (!is_valid_ether_addr(dev->dev_addr)) return tc35815_read_plat_dev_addr(dev); return 0; } static const struct net_device_ops tc35815_netdev_ops = { .ndo_open = tc35815_open, .ndo_stop = tc35815_close, .ndo_start_xmit = tc35815_send_packet, .ndo_get_stats = tc35815_get_stats, .ndo_set_rx_mode = tc35815_set_multicast_list, .ndo_tx_timeout = tc35815_tx_timeout, .ndo_do_ioctl = tc35815_ioctl, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = eth_change_mtu, .ndo_set_mac_address = eth_mac_addr, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = tc35815_poll_controller, #endif }; static int tc35815_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { void __iomem *ioaddr = NULL; struct net_device *dev; struct tc35815_local *lp; int rc; static int printed_version; if (!printed_version++) { printk(version); dev_printk(KERN_DEBUG, &pdev->dev, "speed:%d duplex:%d\n", options.speed, options.duplex); } if (!pdev->irq) { dev_warn(&pdev->dev, "no IRQ assigned.\n"); return -ENODEV; } /* dev zeroed in alloc_etherdev */ dev = alloc_etherdev(sizeof(*lp)); if (dev == NULL) return -ENOMEM; SET_NETDEV_DEV(dev, &pdev->dev); lp = netdev_priv(dev); lp->dev = dev; /* enable device (incl. PCI PM wakeup), and bus-mastering */ rc = pcim_enable_device(pdev); if (rc) goto err_out; rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME); if (rc) goto err_out; pci_set_master(pdev); ioaddr = pcim_iomap_table(pdev)[1]; /* Initialize the device structure. */ dev->netdev_ops = &tc35815_netdev_ops; dev->ethtool_ops = &tc35815_ethtool_ops; dev->watchdog_timeo = TC35815_TX_TIMEOUT; netif_napi_add(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT); dev->irq = pdev->irq; dev->base_addr = (unsigned long)ioaddr; INIT_WORK(&lp->restart_work, tc35815_restart_work); spin_lock_init(&lp->lock); spin_lock_init(&lp->rx_lock); lp->pci_dev = pdev; lp->chiptype = ent->driver_data; lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK; pci_set_drvdata(pdev, dev); /* Soft reset the chip. */ tc35815_chip_reset(dev); /* Retrieve the ethernet address. */ if (tc35815_init_dev_addr(dev)) { dev_warn(&pdev->dev, "not valid ether addr\n"); eth_hw_addr_random(dev); } rc = register_netdev(dev); if (rc) goto err_out; printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n", dev->name, chip_info[ent->driver_data].name, dev->base_addr, dev->dev_addr, dev->irq); rc = tc_mii_init(dev); if (rc) goto err_out_unregister; return 0; err_out_unregister: unregister_netdev(dev); err_out: free_netdev(dev); return rc; } static void tc35815_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct tc35815_local *lp = netdev_priv(dev); phy_disconnect(lp->phy_dev); mdiobus_unregister(lp->mii_bus); kfree(lp->mii_bus->irq); mdiobus_free(lp->mii_bus); unregister_netdev(dev); free_netdev(dev); } static int tc35815_init_queues(struct net_device *dev) { struct tc35815_local *lp = netdev_priv(dev); int i; unsigned long fd_addr; if (!lp->fd_buf) { BUG_ON(sizeof(struct FDesc) + sizeof(struct BDesc) * RX_BUF_NUM + sizeof(struct FDesc) * RX_FD_NUM + sizeof(struct TxFD) * TX_FD_NUM > PAGE_SIZE * FD_PAGE_NUM); lp->fd_buf = pci_alloc_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM, &lp->fd_buf_dma); if (!lp->fd_buf) return -ENOMEM; for (i = 0; i < RX_BUF_NUM; i++) { lp->rx_skbs[i].skb = alloc_rxbuf_skb(dev, lp->pci_dev, &lp->rx_skbs[i].skb_dma); if (!lp->rx_skbs[i].skb) { while (--i >= 0) { free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb, lp->rx_skbs[i].skb_dma); lp->rx_skbs[i].skb = NULL; } pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM, lp->fd_buf, lp->fd_buf_dma); lp->fd_buf = NULL; return -ENOMEM; } } printk(KERN_DEBUG "%s: FD buf %p DataBuf", dev->name, lp->fd_buf); printk("\n"); } else { for (i = 0; i < FD_PAGE_NUM; i++) clear_page((void *)((unsigned long)lp->fd_buf + i * PAGE_SIZE)); } fd_addr = (unsigned long)lp->fd_buf; /* Free Descriptors (for Receive) */ lp->rfd_base = (struct RxFD *)fd_addr; fd_addr += sizeof(struct RxFD) * RX_FD_NUM; for (i = 0; i < RX_FD_NUM; i++) lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD); lp->rfd_cur = lp->rfd_base; lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1); /* Transmit Descriptors */ lp->tfd_base = (struct TxFD *)fd_addr; fd_addr += sizeof(struct TxFD) * TX_FD_NUM; for (i = 0; i < TX_FD_NUM; i++) { lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1])); lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0); } lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0])); lp->tfd_start = 0; lp->tfd_end = 0; /* Buffer List (for Receive) */ lp->fbl_ptr = (struct FrFD *)fd_addr; lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr)); lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD); /* * move all allocated skbs to head of rx_skbs[] array. * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in * tc35815_rx() had failed. */ lp->fbl_count = 0; for (i = 0; i < RX_BUF_NUM; i++) { if (lp->rx_skbs[i].skb) { if (i != lp->fbl_count) { lp->rx_skbs[lp->fbl_count].skb = lp->rx_skbs[i].skb; lp->rx_skbs[lp->fbl_count].skb_dma = lp->rx_skbs[i].skb_dma; } lp->fbl_count++; } } for (i = 0; i < RX_BUF_NUM; i++) { if (i >= lp->fbl_count) { lp->fbl_ptr->bd[i].BuffData = 0; lp->fbl_ptr->bd[i].BDCtl = 0; continue; } lp->fbl_ptr->bd[i].BuffData = cpu_to_le32(lp->rx_skbs[i].skb_dma); /* BDID is index of FrFD.bd[] */ lp->fbl_ptr->bd[i].BDCtl = cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) | RX_BUF_SIZE); } printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n", dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr); return 0; } static void tc35815_clear_queues(struct net_device *dev) { struct tc35815_local *lp = netdev_priv(dev); int i; for (i = 0; i < TX_FD_NUM; i++) { u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); struct sk_buff *skb = fdsystem != 0xffffffff ? lp->tx_skbs[fdsystem].skb : NULL; #ifdef DEBUG if (lp->tx_skbs[i].skb != skb) { printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); panic_queues(dev); } #else BUG_ON(lp->tx_skbs[i].skb != skb); #endif if (skb) { pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE); lp->tx_skbs[i].skb = NULL; lp->tx_skbs[i].skb_dma = 0; dev_kfree_skb_any(skb); } lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); } tc35815_init_queues(dev); } static void tc35815_free_queues(struct net_device *dev) { struct tc35815_local *lp = netdev_priv(dev); int i; if (lp->tfd_base) { for (i = 0; i < TX_FD_NUM; i++) { u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem); struct sk_buff *skb = fdsystem != 0xffffffff ? lp->tx_skbs[fdsystem].skb : NULL; #ifdef DEBUG if (lp->tx_skbs[i].skb != skb) { printk("%s: tx_skbs mismatch(%d).\n", dev->name, i); panic_queues(dev); } #else BUG_ON(lp->tx_skbs[i].skb != skb); #endif if (skb) { dev_kfree_skb(skb); pci_unmap_single(lp->pci_dev, lp->tx_skbs[i].skb_dma, skb->len, PCI_DMA_TODEVICE); lp->tx_skbs[i].skb = NULL; lp->tx_skbs[i].skb_dma = 0; } lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff); } } lp->rfd_base = NULL; lp->rfd_limit = NULL; lp->rfd_cur = NULL; lp->fbl_ptr = NULL; for (i = 0; i < RX_BUF_NUM; i++) { if (lp->rx_skbs[i].skb) { free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb, lp->rx_skbs[i].skb_dma); lp->rx_skbs[i].skb = NULL; } } if (lp->fd_buf) { pci_free_consistent(lp->pci_dev, PAGE_SIZE * FD_PAGE_NUM, lp->fd_buf, lp->fd_buf_dma); lp->fd_buf = NULL; } } static void dump_txfd(struct TxFD *fd) { printk("TxFD(%p): %08x %08x %08x %08x\n", fd, le32_to_cpu(fd->fd.FDNext), le32_to_cpu(fd->fd.FDSystem), le32_to_cpu(fd->fd.FDStat), le32_to_cpu(fd->fd.FDCtl)); printk("BD: "); printk(" %08x %08x", le32_to_cpu(fd->bd.BuffData), le32_to_cpu(fd->bd.BDCtl)); printk("\n"); } static int dump_rxfd(struct RxFD *fd) { int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; if (bd_count > 8) bd_count = 8; printk("RxFD(%p): %08x %08x %08x %08x\n", fd, le32_to_cpu(fd->fd.FDNext), le32_to_cpu(fd->fd.FDSystem), le32_to_cpu(fd->fd.FDStat), le32_to_cpu(fd->fd.FDCtl)); if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD) return 0; printk("BD: "); for (i = 0; i < bd_count; i++) printk(" %08x %08x", le32_to_cpu(fd->bd[i].BuffData), le32_to_cpu(fd->bd[i].BDCtl)); printk("\n"); return bd_count; } #ifdef DEBUG static void dump_frfd(struct FrFD *fd) { int i; printk("FrFD(%p): %08x %08x %08x %08x\n", fd, le32_to_cpu(fd->fd.FDNext), le32_to_cpu(fd->fd.FDSystem), le32_to_cpu(fd->fd.FDStat), le32_to_cpu(fd->fd.FDCtl)); printk("BD: "); for (i = 0; i < RX_BUF_NUM; i++) printk(" %08x %08x", le32_to_cpu(fd->bd[i].BuffData), le32_to_cpu(fd->bd[i].BDCtl)); printk("\n"); } static void panic_queues(struct net_device *dev) { struct tc35815_local *lp = netdev_priv(dev); int i; printk("TxFD base %p, start %u, end %u\n", lp->tfd_base, lp->tfd_start, lp->tfd_end); printk("RxFD base %p limit %p cur %p\n", lp->rfd_base, lp->rfd_limit, lp->rfd_cur); printk("FrFD %p\n", lp->fbl_ptr); for (i = 0; i < TX_FD_NUM; i++) dump_txfd(&lp->tfd_base[i]); for (i = 0; i < RX_FD_NUM; i++) { int bd_count = dump_rxfd(&lp->rfd_base[i]); i += (bd_count + 1) / 2; /* skip BDs */ } dump_frfd(lp->fbl_ptr); panic("%s: Illegal queue state.", dev->name); } #endif static void print_eth(const u8 *add) { printk(KERN_DEBUG "print_eth(%p)\n", add); printk(KERN_DEBUG " %pM => %pM : %02x%02x\n", add + 6, add, add[12], add[13]); } static int tc35815_tx_full(struct net_device *dev) { struct tc35815_local *lp = netdev_priv(dev); return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end; } static void tc35815_restart(struct net_device *dev) { struct tc35815_local *lp = netdev_priv(dev); int ret; if (lp->phy_dev) { ret = phy_init_hw(lp->phy_dev); if (ret) printk(KERN_ERR "%s: PHY init failed.\n", dev->name); } spin_lock_bh(&lp->rx_lock); spin_lock_irq(&lp->lock); tc35815_chip_reset(dev); tc35815_clear_queues(dev); tc35815_chip_init(dev); /* Reconfigure CAM again since tc35815_chip_init() initialize it. */ tc35815_set_multicast_list(dev); spin_unlock_irq(&lp->lock); spin_unlock_bh(&lp->rx_lock); netif_wake_queue(dev); } static void tc35815_restart_work(struct work_struct *work) { struct tc35815_local *lp = container_of(work, struct tc35815_local, restart_work); struct net_device *dev = lp->dev; tc35815_restart(dev); } static void tc35815_schedule_restart(struct net_device *dev) { struct tc35815_local *lp = netdev_priv(dev); struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; unsigned long flags; /* disable interrupts */ spin_lock_irqsave(&lp->lock, flags); tc_writel(0, &tr->Int_En); tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl); schedule_work(&lp->restart_work); spin_unlock_irqrestore(&lp->lock, flags); } static void tc35815_tx_timeout(struct net_device *dev) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; printk(KERN_WARNING "%s: transmit timed out, status %#x\n", dev->name, tc_readl(&tr->Tx_Stat)); /* Try to restart the adaptor. */ tc35815_schedule_restart(dev); dev->stats.tx_errors++; } /* * Open/initialize the controller. This is called (in the current kernel) * sometime after booting when the 'ifconfig' program is run. * * This routine should set everything up anew at each open, even * registers that "should" only need to be set once at boot, so that * there is non-reboot way to recover if something goes wrong. */ static int tc35815_open(struct net_device *dev) { struct tc35815_local *lp = netdev_priv(dev); /* * This is used if the interrupt line can turned off (shared). * See 3c503.c for an example of selecting the IRQ at config-time. */ if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED, dev->name, dev)) return -EAGAIN; tc35815_chip_reset(dev); if (tc35815_init_queues(dev) != 0) { free_irq(dev->irq, dev); return -EAGAIN; } napi_enable(&lp->napi); /* Reset the hardware here. Don't forget to set the station address. */ spin_lock_irq(&lp->lock); tc35815_chip_init(dev); spin_unlock_irq(&lp->lock); netif_carrier_off(dev); /* schedule a link state check */ phy_start(lp->phy_dev); /* We are now ready to accept transmit requeusts from * the queueing layer of the networking. */ netif_start_queue(dev); return 0; } /* This will only be invoked if your driver is _not_ in XOFF state. * What this means is that you need not check it, and that this * invariant will hold if you make sure that the netif_*_queue() * calls are done at the proper times. */ static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev) { struct tc35815_local *lp = netdev_priv(dev); struct TxFD *txfd; unsigned long flags; /* If some error occurs while trying to transmit this * packet, you should return '1' from this function. * In such a case you _may not_ do anything to the * SKB, it is still owned by the network queueing * layer when an error is returned. This means you * may not modify any SKB fields, you may not free * the SKB, etc. */ /* This is the most common case for modern hardware. * The spinlock protects this code from the TX complete * hardware interrupt handler. Queue flow control is * thus managed under this lock as well. */ spin_lock_irqsave(&lp->lock, flags); /* failsafe... (handle txdone now if half of FDs are used) */ if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM > TX_FD_NUM / 2) tc35815_txdone(dev); if (netif_msg_pktdata(lp)) print_eth(skb->data); #ifdef DEBUG if (lp->tx_skbs[lp->tfd_start].skb) { printk("%s: tx_skbs conflict.\n", dev->name); panic_queues(dev); } #else BUG_ON(lp->tx_skbs[lp->tfd_start].skb); #endif lp->tx_skbs[lp->tfd_start].skb = skb; lp->tx_skbs[lp->tfd_start].skb_dma = pci_map_single(lp->pci_dev, skb->data, skb->len, PCI_DMA_TODEVICE); /*add to ring */ txfd = &lp->tfd_base[lp->tfd_start]; txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma); txfd->bd.BDCtl = cpu_to_le32(skb->len); txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start); txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT)); if (lp->tfd_start == lp->tfd_end) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; /* Start DMA Transmitter. */ txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL); txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); if (netif_msg_tx_queued(lp)) { printk("%s: starting TxFD.\n", dev->name); dump_txfd(txfd); } tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); } else { txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL); if (netif_msg_tx_queued(lp)) { printk("%s: queueing TxFD.\n", dev->name); dump_txfd(txfd); } } lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM; /* If we just used up the very last entry in the * TX ring on this device, tell the queueing * layer to send no more. */ if (tc35815_tx_full(dev)) { if (netif_msg_tx_queued(lp)) printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name); netif_stop_queue(dev); } /* When the TX completion hw interrupt arrives, this * is when the transmit statistics are updated. */ spin_unlock_irqrestore(&lp->lock, flags); return NETDEV_TX_OK; } #define FATAL_ERROR_INT \ (Int_IntPCI | Int_DmParErr | Int_IntNRAbt) static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status) { static int count; printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):", dev->name, status); if (status & Int_IntPCI) printk(" IntPCI"); if (status & Int_DmParErr) printk(" DmParErr"); if (status & Int_IntNRAbt) printk(" IntNRAbt"); printk("\n"); if (count++ > 100) panic("%s: Too many fatal errors.", dev->name); printk(KERN_WARNING "%s: Resetting ...\n", dev->name); /* Try to restart the adaptor. */ tc35815_schedule_restart(dev); } static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit) { struct tc35815_local *lp = netdev_priv(dev); int ret = -1; /* Fatal errors... */ if (status & FATAL_ERROR_INT) { tc35815_fatal_error_interrupt(dev, status); return 0; } /* recoverable errors */ if (status & Int_IntFDAEx) { if (netif_msg_rx_err(lp)) dev_warn(&dev->dev, "Free Descriptor Area Exhausted (%#x).\n", status); dev->stats.rx_dropped++; ret = 0; } if (status & Int_IntBLEx) { if (netif_msg_rx_err(lp)) dev_warn(&dev->dev, "Buffer List Exhausted (%#x).\n", status); dev->stats.rx_dropped++; ret = 0; } if (status & Int_IntExBD) { if (netif_msg_rx_err(lp)) dev_warn(&dev->dev, "Excessive Buffer Descriptiors (%#x).\n", status); dev->stats.rx_length_errors++; ret = 0; } /* normal notification */ if (status & Int_IntMacRx) { /* Got a packet(s). */ ret = tc35815_rx(dev, limit); lp->lstats.rx_ints++; } if (status & Int_IntMacTx) { /* Transmit complete. */ lp->lstats.tx_ints++; spin_lock_irq(&lp->lock); tc35815_txdone(dev); spin_unlock_irq(&lp->lock); if (ret < 0) ret = 0; } return ret; } /* * The typical workload of the driver: * Handle the network interface interrupts. */ static irqreturn_t tc35815_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct tc35815_local *lp = netdev_priv(dev); struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; u32 dmactl = tc_readl(&tr->DMA_Ctl); if (!(dmactl & DMA_IntMask)) { /* disable interrupts */ tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl); if (napi_schedule_prep(&lp->napi)) __napi_schedule(&lp->napi); else { printk(KERN_ERR "%s: interrupt taken in poll\n", dev->name); BUG(); } (void)tc_readl(&tr->Int_Src); /* flush */ return IRQ_HANDLED; } return IRQ_NONE; } #ifdef CONFIG_NET_POLL_CONTROLLER static void tc35815_poll_controller(struct net_device *dev) { disable_irq(dev->irq); tc35815_interrupt(dev->irq, dev); enable_irq(dev->irq); } #endif /* We have a good packet(s), get it/them out of the buffers. */ static int tc35815_rx(struct net_device *dev, int limit) { struct tc35815_local *lp = netdev_priv(dev); unsigned int fdctl; int i; int received = 0; while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) { int status = le32_to_cpu(lp->rfd_cur->fd.FDStat); int pkt_len = fdctl & FD_FDLength_MASK; int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; #ifdef DEBUG struct RxFD *next_rfd; #endif #if (RX_CTL_CMD & Rx_StripCRC) == 0 pkt_len -= ETH_FCS_LEN; #endif if (netif_msg_rx_status(lp)) dump_rxfd(lp->rfd_cur); if (status & Rx_Good) { struct sk_buff *skb; unsigned char *data; int cur_bd; if (--limit < 0) break; BUG_ON(bd_count > 1); cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl) & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; #ifdef DEBUG if (cur_bd >= RX_BUF_NUM) { printk("%s: invalid BDID.\n", dev->name); panic_queues(dev); } BUG_ON(lp->rx_skbs[cur_bd].skb_dma != (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3)); if (!lp->rx_skbs[cur_bd].skb) { printk("%s: NULL skb.\n", dev->name); panic_queues(dev); } #else BUG_ON(cur_bd >= RX_BUF_NUM); #endif skb = lp->rx_skbs[cur_bd].skb; prefetch(skb->data); lp->rx_skbs[cur_bd].skb = NULL; pci_unmap_single(lp->pci_dev, lp->rx_skbs[cur_bd].skb_dma, RX_BUF_SIZE, PCI_DMA_FROMDEVICE); if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN) memmove(skb->data, skb->data - NET_IP_ALIGN, pkt_len); data = skb_put(skb, pkt_len); if (netif_msg_pktdata(lp)) print_eth(data); skb->protocol = eth_type_trans(skb, dev); netif_receive_skb(skb); received++; dev->stats.rx_packets++; dev->stats.rx_bytes += pkt_len; } else { dev->stats.rx_errors++; if (netif_msg_rx_err(lp)) dev_info(&dev->dev, "Rx error (status %x)\n", status & Rx_Stat_Mask); /* WORKAROUND: LongErr and CRCErr means Overflow. */ if ((status & Rx_LongErr) && (status & Rx_CRCErr)) { status &= ~(Rx_LongErr|Rx_CRCErr); status |= Rx_Over; } if (status & Rx_LongErr) dev->stats.rx_length_errors++; if (status & Rx_Over) dev->stats.rx_fifo_errors++; if (status & Rx_CRCErr) dev->stats.rx_crc_errors++; if (status & Rx_Align) dev->stats.rx_frame_errors++; } if (bd_count > 0) { /* put Free Buffer back to controller */ int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl); unsigned char id = (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; #ifdef DEBUG if (id >= RX_BUF_NUM) { printk("%s: invalid BDID.\n", dev->name); panic_queues(dev); } #else BUG_ON(id >= RX_BUF_NUM); #endif /* free old buffers */ lp->fbl_count--; while (lp->fbl_count < RX_BUF_NUM) { unsigned char curid = (id + 1 + lp->fbl_count) % RX_BUF_NUM; struct BDesc *bd = &lp->fbl_ptr->bd[curid]; #ifdef DEBUG bdctl = le32_to_cpu(bd->BDCtl); if (bdctl & BD_CownsBD) { printk("%s: Freeing invalid BD.\n", dev->name); panic_queues(dev); } #endif /* pass BD to controller */ if (!lp->rx_skbs[curid].skb) { lp->rx_skbs[curid].skb = alloc_rxbuf_skb(dev, lp->pci_dev, &lp->rx_skbs[curid].skb_dma); if (!lp->rx_skbs[curid].skb) break; /* try on next reception */ bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma); } /* Note: BDLength was modified by chip. */ bd->BDCtl = cpu_to_le32(BD_CownsBD | (curid << BD_RxBDID_SHIFT) | RX_BUF_SIZE); lp->fbl_count++; } } /* put RxFD back to controller */ #ifdef DEBUG next_rfd = fd_bus_to_virt(lp, le32_to_cpu(lp->rfd_cur->fd.FDNext)); if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) { printk("%s: RxFD FDNext invalid.\n", dev->name); panic_queues(dev); } #endif for (i = 0; i < (bd_count + 1) / 2 + 1; i++) { /* pass FD to controller */ #ifdef DEBUG lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead); #else lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL); #endif lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD); lp->rfd_cur++; } if (lp->rfd_cur > lp->rfd_limit) lp->rfd_cur = lp->rfd_base; #ifdef DEBUG if (lp->rfd_cur != next_rfd) printk("rfd_cur = %p, next_rfd %p\n", lp->rfd_cur, next_rfd); #endif } return received; } static int tc35815_poll(struct napi_struct *napi, int budget) { struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi); struct net_device *dev = lp->dev; struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; int received = 0, handled; u32 status; if (budget <= 0) return received; spin_lock(&lp->rx_lock); status = tc_readl(&tr->Int_Src); do { /* BLEx, FDAEx will be cleared later */ tc_writel(status & ~(Int_BLEx | Int_FDAEx), &tr->Int_Src); /* write to clear */ handled = tc35815_do_interrupt(dev, status, budget - received); if (status & (Int_BLEx | Int_FDAEx)) tc_writel(status & (Int_BLEx | Int_FDAEx), &tr->Int_Src); if (handled >= 0) { received += handled; if (received >= budget) break; } status = tc_readl(&tr->Int_Src); } while (status); spin_unlock(&lp->rx_lock); if (received < budget) { napi_complete(napi); /* enable interrupts */ tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl); } return received; } #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr) static void tc35815_check_tx_stat(struct net_device *dev, int status) { struct tc35815_local *lp = netdev_priv(dev); const char *msg = NULL; /* count collisions */ if (status & Tx_ExColl) dev->stats.collisions += 16; if (status & Tx_TxColl_MASK) dev->stats.collisions += status & Tx_TxColl_MASK; /* TX4939 does not have NCarr */ if (lp->chiptype == TC35815_TX4939) status &= ~Tx_NCarr; /* WORKAROUND: ignore LostCrS in full duplex operation */ if (!lp->link || lp->duplex == DUPLEX_FULL) status &= ~Tx_NCarr; if (!(status & TX_STA_ERR)) { /* no error. */ dev->stats.tx_packets++; return; } dev->stats.tx_errors++; if (status & Tx_ExColl) { dev->stats.tx_aborted_errors++; msg = "Excessive Collision."; } if (status & Tx_Under) { dev->stats.tx_fifo_errors++; msg = "Tx FIFO Underrun."; if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) { lp->lstats.tx_underrun++; if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh); msg = "Tx FIFO Underrun.Change Tx threshold to max."; } } } if (status & Tx_Defer) { dev->stats.tx_fifo_errors++; msg = "Excessive Deferral."; } if (status & Tx_NCarr) { dev->stats.tx_carrier_errors++; msg = "Lost Carrier Sense."; } if (status & Tx_LateColl) { dev->stats.tx_aborted_errors++; msg = "Late Collision."; } if (status & Tx_TxPar) { dev->stats.tx_fifo_errors++; msg = "Transmit Parity Error."; } if (status & Tx_SQErr) { dev->stats.tx_heartbeat_errors++; msg = "Signal Quality Error."; } if (msg && netif_msg_tx_err(lp)) printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status); } /* This handles TX complete events posted by the device * via interrupts. */ static void tc35815_txdone(struct net_device *dev) { struct tc35815_local *lp = netdev_priv(dev); struct TxFD *txfd; unsigned int fdctl; txfd = &lp->tfd_base[lp->tfd_end]; while (lp->tfd_start != lp->tfd_end && !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) { int status = le32_to_cpu(txfd->fd.FDStat); struct sk_buff *skb; unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext); u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem); if (netif_msg_tx_done(lp)) { printk("%s: complete TxFD.\n", dev->name); dump_txfd(txfd); } tc35815_check_tx_stat(dev, status); skb = fdsystem != 0xffffffff ? lp->tx_skbs[fdsystem].skb : NULL; #ifdef DEBUG if (lp->tx_skbs[lp->tfd_end].skb != skb) { printk("%s: tx_skbs mismatch.\n", dev->name); panic_queues(dev); } #else BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb); #endif if (skb) { dev->stats.tx_bytes += skb->len; pci_unmap_single(lp->pci_dev, lp->tx_skbs[lp->tfd_end].skb_dma, skb->len, PCI_DMA_TODEVICE); lp->tx_skbs[lp->tfd_end].skb = NULL; lp->tx_skbs[lp->tfd_end].skb_dma = 0; dev_kfree_skb_any(skb); } txfd->fd.FDSystem = cpu_to_le32(0xffffffff); lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM; txfd = &lp->tfd_base[lp->tfd_end]; #ifdef DEBUG if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) { printk("%s: TxFD FDNext invalid.\n", dev->name); panic_queues(dev); } #endif if (fdnext & FD_Next_EOL) { /* DMA Transmitter has been stopping... */ if (lp->tfd_end != lp->tfd_start) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM; struct TxFD *txhead = &lp->tfd_base[head]; int qlen = (lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM; #ifdef DEBUG if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) { printk("%s: TxFD FDCtl invalid.\n", dev->name); panic_queues(dev); } #endif /* log max queue length */ if (lp->lstats.max_tx_qlen < qlen) lp->lstats.max_tx_qlen = qlen; /* start DMA Transmitter again */ txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL); txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); if (netif_msg_tx_queued(lp)) { printk("%s: start TxFD on queue.\n", dev->name); dump_txfd(txfd); } tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr); } break; } } /* If we had stopped the queue due to a "tx full" * condition, and space has now been made available, * wake up the queue. */ if (netif_queue_stopped(dev) && !tc35815_tx_full(dev)) netif_wake_queue(dev); } /* The inverse routine to tc35815_open(). */ static int tc35815_close(struct net_device *dev) { struct tc35815_local *lp = netdev_priv(dev); netif_stop_queue(dev); napi_disable(&lp->napi); if (lp->phy_dev) phy_stop(lp->phy_dev); cancel_work_sync(&lp->restart_work); /* Flush the Tx and disable Rx here. */ tc35815_chip_reset(dev); free_irq(dev->irq, dev); tc35815_free_queues(dev); return 0; } /* * Get the current statistics. * This may be called with the card open or closed. */ static struct net_device_stats *tc35815_get_stats(struct net_device *dev) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; if (netif_running(dev)) /* Update the statistics from the device registers. */ dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt); return &dev->stats; } static void tc35815_set_cam_entry(struct net_device *dev, int index, unsigned char *addr) { struct tc35815_local *lp = netdev_priv(dev); struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; int cam_index = index * 6; u32 cam_data; u32 saved_addr; saved_addr = tc_readl(&tr->CAM_Adr); if (netif_msg_hw(lp)) printk(KERN_DEBUG "%s: CAM %d: %pM\n", dev->name, index, addr); if (index & 1) { /* read modify write */ tc_writel(cam_index - 2, &tr->CAM_Adr); cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000; cam_data |= addr[0] << 8 | addr[1]; tc_writel(cam_data, &tr->CAM_Data); /* write whole word */ tc_writel(cam_index + 2, &tr->CAM_Adr); cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]; tc_writel(cam_data, &tr->CAM_Data); } else { /* write whole word */ tc_writel(cam_index, &tr->CAM_Adr); cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3]; tc_writel(cam_data, &tr->CAM_Data); /* read modify write */ tc_writel(cam_index + 4, &tr->CAM_Adr); cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff; cam_data |= addr[4] << 24 | (addr[5] << 16); tc_writel(cam_data, &tr->CAM_Data); } tc_writel(saved_addr, &tr->CAM_Adr); } /* * Set or clear the multicast filter for this adaptor. * num_addrs == -1 Promiscuous mode, receive all packets * num_addrs == 0 Normal mode, clear multicast list * num_addrs > 0 Multicast mode, receive normal and MC packets, * and do best-effort filtering. */ static void tc35815_set_multicast_list(struct net_device *dev) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; if (dev->flags & IFF_PROMISC) { /* With some (all?) 100MHalf HUB, controller will hang * if we enabled promiscuous mode before linkup... */ struct tc35815_local *lp = netdev_priv(dev); if (!lp->link) return; /* Enable promiscuous mode */ tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl); } else if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) { /* CAM 0, 1, 20 are reserved. */ /* Disable promiscuous mode, use normal mode. */ tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl); } else if (!netdev_mc_empty(dev)) { struct netdev_hw_addr *ha; int i; int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE); tc_writel(0, &tr->CAM_Ctl); /* Walk the address list, and load the filter */ i = 0; netdev_for_each_mc_addr(ha, dev) { /* entry 0,1 is reserved. */ tc35815_set_cam_entry(dev, i + 2, ha->addr); ena_bits |= CAM_Ena_Bit(i + 2); i++; } tc_writel(ena_bits, &tr->CAM_Ena); tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); } else { tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); } } static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct tc35815_local *lp = netdev_priv(dev); strlcpy(info->driver, MODNAME, sizeof(info->driver)); strlcpy(info->version, DRV_VERSION, sizeof(info->version)); strlcpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info)); } static int tc35815_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct tc35815_local *lp = netdev_priv(dev); if (!lp->phy_dev) return -ENODEV; return phy_ethtool_gset(lp->phy_dev, cmd); } static int tc35815_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct tc35815_local *lp = netdev_priv(dev); if (!lp->phy_dev) return -ENODEV; return phy_ethtool_sset(lp->phy_dev, cmd); } static u32 tc35815_get_msglevel(struct net_device *dev) { struct tc35815_local *lp = netdev_priv(dev); return lp->msg_enable; } static void tc35815_set_msglevel(struct net_device *dev, u32 datum) { struct tc35815_local *lp = netdev_priv(dev); lp->msg_enable = datum; } static int tc35815_get_sset_count(struct net_device *dev, int sset) { struct tc35815_local *lp = netdev_priv(dev); switch (sset) { case ETH_SS_STATS: return sizeof(lp->lstats) / sizeof(int); default: return -EOPNOTSUPP; } } static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct tc35815_local *lp = netdev_priv(dev); data[0] = lp->lstats.max_tx_qlen; data[1] = lp->lstats.tx_ints; data[2] = lp->lstats.rx_ints; data[3] = lp->lstats.tx_underrun; } static struct { const char str[ETH_GSTRING_LEN]; } ethtool_stats_keys[] = { { "max_tx_qlen" }, { "tx_ints" }, { "rx_ints" }, { "tx_underrun" }, }; static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data) { memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys)); } static const struct ethtool_ops tc35815_ethtool_ops = { .get_drvinfo = tc35815_get_drvinfo, .get_settings = tc35815_get_settings, .set_settings = tc35815_set_settings, .get_link = ethtool_op_get_link, .get_msglevel = tc35815_get_msglevel, .set_msglevel = tc35815_set_msglevel, .get_strings = tc35815_get_strings, .get_sset_count = tc35815_get_sset_count, .get_ethtool_stats = tc35815_get_ethtool_stats, }; static int tc35815_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct tc35815_local *lp = netdev_priv(dev); if (!netif_running(dev)) return -EINVAL; if (!lp->phy_dev) return -ENODEV; return phy_mii_ioctl(lp->phy_dev, rq, cmd); } static void tc35815_chip_reset(struct net_device *dev) { struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; int i; /* reset the controller */ tc_writel(MAC_Reset, &tr->MAC_Ctl); udelay(4); /* 3200ns */ i = 0; while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) { if (i++ > 100) { printk(KERN_ERR "%s: MAC reset failed.\n", dev->name); break; } mdelay(1); } tc_writel(0, &tr->MAC_Ctl); /* initialize registers to default value */ tc_writel(0, &tr->DMA_Ctl); tc_writel(0, &tr->TxThrsh); tc_writel(0, &tr->TxPollCtr); tc_writel(0, &tr->RxFragSize); tc_writel(0, &tr->Int_En); tc_writel(0, &tr->FDA_Bas); tc_writel(0, &tr->FDA_Lim); tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */ tc_writel(0, &tr->CAM_Ctl); tc_writel(0, &tr->Tx_Ctl); tc_writel(0, &tr->Rx_Ctl); tc_writel(0, &tr->CAM_Ena); (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */ /* initialize internal SRAM */ tc_writel(DMA_TestMode, &tr->DMA_Ctl); for (i = 0; i < 0x1000; i += 4) { tc_writel(i, &tr->CAM_Adr); tc_writel(0, &tr->CAM_Data); } tc_writel(0, &tr->DMA_Ctl); } static void tc35815_chip_init(struct net_device *dev) { struct tc35815_local *lp = netdev_priv(dev); struct tc35815_regs __iomem *tr = (struct tc35815_regs __iomem *)dev->base_addr; unsigned long txctl = TX_CTL_CMD; /* load station address to CAM */ tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr); /* Enable CAM (broadcast and unicast) */ tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); /* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */ if (HAVE_DMA_RXALIGN(lp)) tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl); else tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl); tc_writel(0, &tr->TxPollCtr); /* Batch mode */ tc_writel(TX_THRESHOLD, &tr->TxThrsh); tc_writel(INT_EN_CMD, &tr->Int_En); /* set queues */ tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas); tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base, &tr->FDA_Lim); /* * Activation method: * First, enable the MAC Transmitter and the DMA Receive circuits. * Then enable the DMA Transmitter and the MAC Receive circuits. */ tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */ tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */ /* start MAC transmitter */ /* TX4939 does not have EnLCarr */ if (lp->chiptype == TC35815_TX4939) txctl &= ~Tx_EnLCarr; /* WORKAROUND: ignore LostCrS in full duplex operation */ if (!lp->phy_dev || !lp->link || lp->duplex == DUPLEX_FULL) txctl &= ~Tx_EnLCarr; tc_writel(txctl, &tr->Tx_Ctl); } #ifdef CONFIG_PM static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *dev = pci_get_drvdata(pdev); struct tc35815_local *lp = netdev_priv(dev); unsigned long flags; pci_save_state(pdev); if (!netif_running(dev)) return 0; netif_device_detach(dev); if (lp->phy_dev) phy_stop(lp->phy_dev); spin_lock_irqsave(&lp->lock, flags); tc35815_chip_reset(dev); spin_unlock_irqrestore(&lp->lock, flags); pci_set_power_state(pdev, PCI_D3hot); return 0; } static int tc35815_resume(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct tc35815_local *lp = netdev_priv(dev); pci_restore_state(pdev); if (!netif_running(dev)) return 0; pci_set_power_state(pdev, PCI_D0); tc35815_restart(dev); netif_carrier_off(dev); if (lp->phy_dev) phy_start(lp->phy_dev); netif_device_attach(dev); return 0; } #endif /* CONFIG_PM */ static struct pci_driver tc35815_pci_driver = { .name = MODNAME, .id_table = tc35815_pci_tbl, .probe = tc35815_init_one, .remove = tc35815_remove_one, #ifdef CONFIG_PM .suspend = tc35815_suspend, .resume = tc35815_resume, #endif }; module_param_named(speed, options.speed, int, 0); MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps"); module_param_named(duplex, options.duplex, int, 0); MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full"); module_pci_driver(tc35815_pci_driver); MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver"); MODULE_LICENSE("GPL");