/* * Copyright (c) 2009, Microsoft Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 Temple * Place - Suite 330, Boston, MA 02111-1307 USA. * * Authors: * Haiyang Zhang <haiyangz@microsoft.com> * Hank Janssen <hjanssen@microsoft.com> * K. Y. Srinivasan <kys@microsoft.com> */ #include <linux/kernel.h> #include <linux/wait.h> #include <linux/sched.h> #include <linux/completion.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/device.h> #include <linux/hyperv.h> #include <linux/blkdev.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_host.h> #include <scsi/scsi_device.h> #include <scsi/scsi_tcq.h> #include <scsi/scsi_eh.h> #include <scsi/scsi_devinfo.h> #include <scsi/scsi_dbg.h> /* * All wire protocol details (storage protocol between the guest and the host) * are consolidated here. * * Begin protocol definitions. */ /* * Version history: * V1 Beta: 0.1 * V1 RC < 2008/1/31: 1.0 * V1 RC > 2008/1/31: 2.0 * Win7: 4.2 * Win8: 5.1 */ #define VMSTOR_WIN7_MAJOR 4 #define VMSTOR_WIN7_MINOR 2 #define VMSTOR_WIN8_MAJOR 5 #define VMSTOR_WIN8_MINOR 1 /* Packet structure describing virtual storage requests. */ enum vstor_packet_operation { VSTOR_OPERATION_COMPLETE_IO = 1, VSTOR_OPERATION_REMOVE_DEVICE = 2, VSTOR_OPERATION_EXECUTE_SRB = 3, VSTOR_OPERATION_RESET_LUN = 4, VSTOR_OPERATION_RESET_ADAPTER = 5, VSTOR_OPERATION_RESET_BUS = 6, VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, VSTOR_OPERATION_END_INITIALIZATION = 8, VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, VSTOR_OPERATION_QUERY_PROPERTIES = 10, VSTOR_OPERATION_ENUMERATE_BUS = 11, VSTOR_OPERATION_FCHBA_DATA = 12, VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, VSTOR_OPERATION_MAXIMUM = 13 }; /* * WWN packet for Fibre Channel HBA */ struct hv_fc_wwn_packet { bool primary_active; u8 reserved1; u8 reserved2; u8 primary_port_wwn[8]; u8 primary_node_wwn[8]; u8 secondary_port_wwn[8]; u8 secondary_node_wwn[8]; }; /* * SRB Flag Bits */ #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 #define SRB_FLAGS_DATA_IN 0x00000040 #define SRB_FLAGS_DATA_OUT 0x00000080 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 /* * This flag indicates the request is part of the workflow for processing a D3. */ #define SRB_FLAGS_D3_PROCESSING 0x00000800 #define SRB_FLAGS_IS_ACTIVE 0x00010000 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 /* * Platform neutral description of a scsi request - * this remains the same across the write regardless of 32/64 bit * note: it's patterned off the SCSI_PASS_THROUGH structure */ #define STORVSC_MAX_CMD_LEN 0x10 #define POST_WIN7_STORVSC_SENSE_BUFFER_SIZE 0x14 #define PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE 0x12 #define STORVSC_SENSE_BUFFER_SIZE 0x14 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 /* * Sense buffer size changed in win8; have a run-time * variable to track the size we should use. */ static int sense_buffer_size; /* * The size of the vmscsi_request has changed in win8. The * additional size is because of new elements added to the * structure. These elements are valid only when we are talking * to a win8 host. * Track the correction to size we need to apply. */ static int vmscsi_size_delta; static int vmstor_current_major; static int vmstor_current_minor; struct vmscsi_win8_extension { /* * The following were added in Windows 8 */ u16 reserve; u8 queue_tag; u8 queue_action; u32 srb_flags; u32 time_out_value; u32 queue_sort_ey; } __packed; struct vmscsi_request { u16 length; u8 srb_status; u8 scsi_status; u8 port_number; u8 path_id; u8 target_id; u8 lun; u8 cdb_length; u8 sense_info_length; u8 data_in; u8 reserved; u32 data_transfer_length; union { u8 cdb[STORVSC_MAX_CMD_LEN]; u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; }; /* * The following was added in win8. */ struct vmscsi_win8_extension win8_extension; } __attribute((packed)); /* * This structure is sent during the intialization phase to get the different * properties of the channel. */ #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 struct vmstorage_channel_properties { u32 reserved; u16 max_channel_cnt; u16 reserved1; u32 flags; u32 max_transfer_bytes; u64 reserved2; } __packed; /* This structure is sent during the storage protocol negotiations. */ struct vmstorage_protocol_version { /* Major (MSW) and minor (LSW) version numbers. */ u16 major_minor; /* * Revision number is auto-incremented whenever this file is changed * (See FILL_VMSTOR_REVISION macro above). Mismatch does not * definitely indicate incompatibility--but it does indicate mismatched * builds. * This is only used on the windows side. Just set it to 0. */ u16 revision; } __packed; /* Channel Property Flags */ #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 struct vstor_packet { /* Requested operation type */ enum vstor_packet_operation operation; /* Flags - see below for values */ u32 flags; /* Status of the request returned from the server side. */ u32 status; /* Data payload area */ union { /* * Structure used to forward SCSI commands from the * client to the server. */ struct vmscsi_request vm_srb; /* Structure used to query channel properties. */ struct vmstorage_channel_properties storage_channel_properties; /* Used during version negotiations. */ struct vmstorage_protocol_version version; /* Fibre channel address packet */ struct hv_fc_wwn_packet wwn_packet; /* Number of sub-channels to create */ u16 sub_channel_count; /* This will be the maximum of the union members */ u8 buffer[0x34]; }; } __packed; /* * Packet Flags: * * This flag indicates that the server should send back a completion for this * packet. */ #define REQUEST_COMPLETION_FLAG 0x1 /* Matches Windows-end */ enum storvsc_request_type { WRITE_TYPE = 0, READ_TYPE, UNKNOWN_TYPE, }; /* * SRB status codes and masks; a subset of the codes used here. */ #define SRB_STATUS_AUTOSENSE_VALID 0x80 #define SRB_STATUS_INVALID_LUN 0x20 #define SRB_STATUS_SUCCESS 0x01 #define SRB_STATUS_ABORTED 0x02 #define SRB_STATUS_ERROR 0x04 /* * This is the end of Protocol specific defines. */ static int storvsc_ringbuffer_size = (256 * PAGE_SIZE); static u32 max_outstanding_req_per_channel; static int storvsc_vcpus_per_sub_channel = 4; module_param(storvsc_ringbuffer_size, int, S_IRUGO); MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); MODULE_PARM_DESC(vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); /* * Timeout in seconds for all devices managed by this driver. */ static int storvsc_timeout = 180; static int msft_blist_flags = BLIST_TRY_VPD_PAGES; static void storvsc_on_channel_callback(void *context); #define STORVSC_MAX_LUNS_PER_TARGET 255 #define STORVSC_MAX_TARGETS 2 #define STORVSC_MAX_CHANNELS 8 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 #define STORVSC_FC_MAX_TARGETS 128 #define STORVSC_FC_MAX_CHANNELS 8 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 #define STORVSC_IDE_MAX_TARGETS 1 #define STORVSC_IDE_MAX_CHANNELS 1 struct storvsc_cmd_request { struct scsi_cmnd *cmd; unsigned int bounce_sgl_count; struct scatterlist *bounce_sgl; struct hv_device *device; /* Synchronize the request/response if needed */ struct completion wait_event; struct vmbus_channel_packet_multipage_buffer mpb; struct vmbus_packet_mpb_array *payload; u32 payload_sz; struct vstor_packet vstor_packet; }; /* A storvsc device is a device object that contains a vmbus channel */ struct storvsc_device { struct hv_device *device; bool destroy; bool drain_notify; bool open_sub_channel; atomic_t num_outstanding_req; struct Scsi_Host *host; wait_queue_head_t waiting_to_drain; /* * Each unique Port/Path/Target represents 1 channel ie scsi * controller. In reality, the pathid, targetid is always 0 * and the port is set by us */ unsigned int port_number; unsigned char path_id; unsigned char target_id; /* * Max I/O, the device can support. */ u32 max_transfer_bytes; /* Used for vsc/vsp channel reset process */ struct storvsc_cmd_request init_request; struct storvsc_cmd_request reset_request; }; struct hv_host_device { struct hv_device *dev; unsigned int port; unsigned char path; unsigned char target; }; struct storvsc_scan_work { struct work_struct work; struct Scsi_Host *host; uint lun; }; static void storvsc_device_scan(struct work_struct *work) { struct storvsc_scan_work *wrk; uint lun; struct scsi_device *sdev; wrk = container_of(work, struct storvsc_scan_work, work); lun = wrk->lun; sdev = scsi_device_lookup(wrk->host, 0, 0, lun); if (!sdev) goto done; scsi_rescan_device(&sdev->sdev_gendev); scsi_device_put(sdev); done: kfree(wrk); } static void storvsc_host_scan(struct work_struct *work) { struct storvsc_scan_work *wrk; struct Scsi_Host *host; struct scsi_device *sdev; unsigned long flags; wrk = container_of(work, struct storvsc_scan_work, work); host = wrk->host; /* * Before scanning the host, first check to see if any of the * currrently known devices have been hot removed. We issue a * "unit ready" command against all currently known devices. * This I/O will result in an error for devices that have been * removed. As part of handling the I/O error, we remove the device. * * When a LUN is added or removed, the host sends us a signal to * scan the host. Thus we are forced to discover the LUNs that * may have been removed this way. */ mutex_lock(&host->scan_mutex); spin_lock_irqsave(host->host_lock, flags); list_for_each_entry(sdev, &host->__devices, siblings) { spin_unlock_irqrestore(host->host_lock, flags); scsi_test_unit_ready(sdev, 1, 1, NULL); spin_lock_irqsave(host->host_lock, flags); continue; } spin_unlock_irqrestore(host->host_lock, flags); mutex_unlock(&host->scan_mutex); /* * Now scan the host to discover LUNs that may have been added. */ scsi_scan_host(host); kfree(wrk); } static void storvsc_remove_lun(struct work_struct *work) { struct storvsc_scan_work *wrk; struct scsi_device *sdev; wrk = container_of(work, struct storvsc_scan_work, work); if (!scsi_host_get(wrk->host)) goto done; sdev = scsi_device_lookup(wrk->host, 0, 0, wrk->lun); if (sdev) { scsi_remove_device(sdev); scsi_device_put(sdev); } scsi_host_put(wrk->host); done: kfree(wrk); } /* * Major/minor macros. Minor version is in LSB, meaning that earlier flat * version numbers will be interpreted as "0.x" (i.e., 1 becomes 0.1). */ static inline u16 storvsc_get_version(u8 major, u8 minor) { u16 version; version = ((major << 8) | minor); return version; } /* * We can get incoming messages from the host that are not in response to * messages that we have sent out. An example of this would be messages * received by the guest to notify dynamic addition/removal of LUNs. To * deal with potential race conditions where the driver may be in the * midst of being unloaded when we might receive an unsolicited message * from the host, we have implemented a mechanism to gurantee sequential * consistency: * * 1) Once the device is marked as being destroyed, we will fail all * outgoing messages. * 2) We permit incoming messages when the device is being destroyed, * only to properly account for messages already sent out. */ static inline struct storvsc_device *get_out_stor_device( struct hv_device *device) { struct storvsc_device *stor_device; stor_device = hv_get_drvdata(device); if (stor_device && stor_device->destroy) stor_device = NULL; return stor_device; } static inline void storvsc_wait_to_drain(struct storvsc_device *dev) { dev->drain_notify = true; wait_event(dev->waiting_to_drain, atomic_read(&dev->num_outstanding_req) == 0); dev->drain_notify = false; } static inline struct storvsc_device *get_in_stor_device( struct hv_device *device) { struct storvsc_device *stor_device; stor_device = hv_get_drvdata(device); if (!stor_device) goto get_in_err; /* * If the device is being destroyed; allow incoming * traffic only to cleanup outstanding requests. */ if (stor_device->destroy && (atomic_read(&stor_device->num_outstanding_req) == 0)) stor_device = NULL; get_in_err: return stor_device; } static void destroy_bounce_buffer(struct scatterlist *sgl, unsigned int sg_count) { int i; struct page *page_buf; for (i = 0; i < sg_count; i++) { page_buf = sg_page((&sgl[i])); if (page_buf != NULL) __free_page(page_buf); } kfree(sgl); } static int do_bounce_buffer(struct scatterlist *sgl, unsigned int sg_count) { int i; /* No need to check */ if (sg_count < 2) return -1; /* We have at least 2 sg entries */ for (i = 0; i < sg_count; i++) { if (i == 0) { /* make sure 1st one does not have hole */ if (sgl[i].offset + sgl[i].length != PAGE_SIZE) return i; } else if (i == sg_count - 1) { /* make sure last one does not have hole */ if (sgl[i].offset != 0) return i; } else { /* make sure no hole in the middle */ if (sgl[i].length != PAGE_SIZE || sgl[i].offset != 0) return i; } } return -1; } static struct scatterlist *create_bounce_buffer(struct scatterlist *sgl, unsigned int sg_count, unsigned int len, int write) { int i; int num_pages; struct scatterlist *bounce_sgl; struct page *page_buf; unsigned int buf_len = ((write == WRITE_TYPE) ? 0 : PAGE_SIZE); num_pages = ALIGN(len, PAGE_SIZE) >> PAGE_SHIFT; bounce_sgl = kcalloc(num_pages, sizeof(struct scatterlist), GFP_ATOMIC); if (!bounce_sgl) return NULL; sg_init_table(bounce_sgl, num_pages); for (i = 0; i < num_pages; i++) { page_buf = alloc_page(GFP_ATOMIC); if (!page_buf) goto cleanup; sg_set_page(&bounce_sgl[i], page_buf, buf_len, 0); } return bounce_sgl; cleanup: destroy_bounce_buffer(bounce_sgl, num_pages); return NULL; } /* Assume the original sgl has enough room */ static unsigned int copy_from_bounce_buffer(struct scatterlist *orig_sgl, struct scatterlist *bounce_sgl, unsigned int orig_sgl_count, unsigned int bounce_sgl_count) { int i; int j = 0; unsigned long src, dest; unsigned int srclen, destlen, copylen; unsigned int total_copied = 0; unsigned long bounce_addr = 0; unsigned long dest_addr = 0; unsigned long flags; struct scatterlist *cur_dest_sgl; struct scatterlist *cur_src_sgl; local_irq_save(flags); cur_dest_sgl = orig_sgl; cur_src_sgl = bounce_sgl; for (i = 0; i < orig_sgl_count; i++) { dest_addr = (unsigned long) kmap_atomic(sg_page(cur_dest_sgl)) + cur_dest_sgl->offset; dest = dest_addr; destlen = cur_dest_sgl->length; if (bounce_addr == 0) bounce_addr = (unsigned long)kmap_atomic( sg_page(cur_src_sgl)); while (destlen) { src = bounce_addr + cur_src_sgl->offset; srclen = cur_src_sgl->length - cur_src_sgl->offset; copylen = min(srclen, destlen); memcpy((void *)dest, (void *)src, copylen); total_copied += copylen; cur_src_sgl->offset += copylen; destlen -= copylen; dest += copylen; if (cur_src_sgl->offset == cur_src_sgl->length) { /* full */ kunmap_atomic((void *)bounce_addr); j++; /* * It is possible that the number of elements * in the bounce buffer may not be equal to * the number of elements in the original * scatter list. Handle this correctly. */ if (j == bounce_sgl_count) { /* * We are done; cleanup and return. */ kunmap_atomic((void *)(dest_addr - cur_dest_sgl->offset)); local_irq_restore(flags); return total_copied; } /* if we need to use another bounce buffer */ if (destlen || i != orig_sgl_count - 1) { cur_src_sgl = sg_next(cur_src_sgl); bounce_addr = (unsigned long) kmap_atomic( sg_page(cur_src_sgl)); } } else if (destlen == 0 && i == orig_sgl_count - 1) { /* unmap the last bounce that is < PAGE_SIZE */ kunmap_atomic((void *)bounce_addr); } } kunmap_atomic((void *)(dest_addr - cur_dest_sgl->offset)); cur_dest_sgl = sg_next(cur_dest_sgl); } local_irq_restore(flags); return total_copied; } /* Assume the bounce_sgl has enough room ie using the create_bounce_buffer() */ static unsigned int copy_to_bounce_buffer(struct scatterlist *orig_sgl, struct scatterlist *bounce_sgl, unsigned int orig_sgl_count) { int i; int j = 0; unsigned long src, dest; unsigned int srclen, destlen, copylen; unsigned int total_copied = 0; unsigned long bounce_addr = 0; unsigned long src_addr = 0; unsigned long flags; struct scatterlist *cur_src_sgl; struct scatterlist *cur_dest_sgl; local_irq_save(flags); cur_src_sgl = orig_sgl; cur_dest_sgl = bounce_sgl; for (i = 0; i < orig_sgl_count; i++) { src_addr = (unsigned long) kmap_atomic(sg_page(cur_src_sgl)) + cur_src_sgl->offset; src = src_addr; srclen = cur_src_sgl->length; if (bounce_addr == 0) bounce_addr = (unsigned long) kmap_atomic(sg_page(cur_dest_sgl)); while (srclen) { /* assume bounce offset always == 0 */ dest = bounce_addr + cur_dest_sgl->length; destlen = PAGE_SIZE - cur_dest_sgl->length; copylen = min(srclen, destlen); memcpy((void *)dest, (void *)src, copylen); total_copied += copylen; cur_dest_sgl->length += copylen; srclen -= copylen; src += copylen; if (cur_dest_sgl->length == PAGE_SIZE) { /* full..move to next entry */ kunmap_atomic((void *)bounce_addr); bounce_addr = 0; j++; } /* if we need to use another bounce buffer */ if (srclen && bounce_addr == 0) { cur_dest_sgl = sg_next(cur_dest_sgl); bounce_addr = (unsigned long) kmap_atomic( sg_page(cur_dest_sgl)); } } kunmap_atomic((void *)(src_addr - cur_src_sgl->offset)); cur_src_sgl = sg_next(cur_src_sgl); } if (bounce_addr) kunmap_atomic((void *)bounce_addr); local_irq_restore(flags); return total_copied; } static void handle_sc_creation(struct vmbus_channel *new_sc) { struct hv_device *device = new_sc->primary_channel->device_obj; struct storvsc_device *stor_device; struct vmstorage_channel_properties props; stor_device = get_out_stor_device(device); if (!stor_device) return; if (stor_device->open_sub_channel == false) return; memset(&props, 0, sizeof(struct vmstorage_channel_properties)); vmbus_open(new_sc, storvsc_ringbuffer_size, storvsc_ringbuffer_size, (void *)&props, sizeof(struct vmstorage_channel_properties), storvsc_on_channel_callback, new_sc); } static void handle_multichannel_storage(struct hv_device *device, int max_chns) { struct storvsc_device *stor_device; int num_cpus = num_online_cpus(); int num_sc; struct storvsc_cmd_request *request; struct vstor_packet *vstor_packet; int ret, t; num_sc = ((max_chns > num_cpus) ? num_cpus : max_chns); stor_device = get_out_stor_device(device); if (!stor_device) return; request = &stor_device->init_request; vstor_packet = &request->vstor_packet; stor_device->open_sub_channel = true; /* * Establish a handler for dealing with subchannels. */ vmbus_set_sc_create_callback(device->channel, handle_sc_creation); /* * Check to see if sub-channels have already been created. This * can happen when this driver is re-loaded after unloading. */ if (vmbus_are_subchannels_present(device->channel)) return; stor_device->open_sub_channel = false; /* * Request the host to create sub-channels. */ memset(request, 0, sizeof(struct storvsc_cmd_request)); init_completion(&request->wait_event); vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; vstor_packet->flags = REQUEST_COMPLETION_FLAG; vstor_packet->sub_channel_count = num_sc; ret = vmbus_sendpacket(device->channel, vstor_packet, (sizeof(struct vstor_packet) - vmscsi_size_delta), (unsigned long)request, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (ret != 0) return; t = wait_for_completion_timeout(&request->wait_event, 10*HZ); if (t == 0) return; if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || vstor_packet->status != 0) return; /* * Now that we created the sub-channels, invoke the check; this * may trigger the callback. */ stor_device->open_sub_channel = true; vmbus_are_subchannels_present(device->channel); } static int storvsc_channel_init(struct hv_device *device) { struct storvsc_device *stor_device; struct storvsc_cmd_request *request; struct vstor_packet *vstor_packet; int ret, t; int max_chns; bool process_sub_channels = false; stor_device = get_out_stor_device(device); if (!stor_device) return -ENODEV; request = &stor_device->init_request; vstor_packet = &request->vstor_packet; /* * Now, initiate the vsc/vsp initialization protocol on the open * channel */ memset(request, 0, sizeof(struct storvsc_cmd_request)); init_completion(&request->wait_event); vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; vstor_packet->flags = REQUEST_COMPLETION_FLAG; ret = vmbus_sendpacket(device->channel, vstor_packet, (sizeof(struct vstor_packet) - vmscsi_size_delta), (unsigned long)request, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (ret != 0) goto cleanup; t = wait_for_completion_timeout(&request->wait_event, 5*HZ); if (t == 0) { ret = -ETIMEDOUT; goto cleanup; } if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || vstor_packet->status != 0) goto cleanup; /* reuse the packet for version range supported */ memset(vstor_packet, 0, sizeof(struct vstor_packet)); vstor_packet->operation = VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; vstor_packet->flags = REQUEST_COMPLETION_FLAG; vstor_packet->version.major_minor = storvsc_get_version(vmstor_current_major, vmstor_current_minor); /* * The revision number is only used in Windows; set it to 0. */ vstor_packet->version.revision = 0; ret = vmbus_sendpacket(device->channel, vstor_packet, (sizeof(struct vstor_packet) - vmscsi_size_delta), (unsigned long)request, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (ret != 0) goto cleanup; t = wait_for_completion_timeout(&request->wait_event, 5*HZ); if (t == 0) { ret = -ETIMEDOUT; goto cleanup; } if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || vstor_packet->status != 0) goto cleanup; memset(vstor_packet, 0, sizeof(struct vstor_packet)); vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; vstor_packet->flags = REQUEST_COMPLETION_FLAG; ret = vmbus_sendpacket(device->channel, vstor_packet, (sizeof(struct vstor_packet) - vmscsi_size_delta), (unsigned long)request, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (ret != 0) goto cleanup; t = wait_for_completion_timeout(&request->wait_event, 5*HZ); if (t == 0) { ret = -ETIMEDOUT; goto cleanup; } if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || vstor_packet->status != 0) goto cleanup; /* * Check to see if multi-channel support is there. * Hosts that implement protocol version of 5.1 and above * support multi-channel. */ max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; if ((vmbus_proto_version != VERSION_WIN7) && (vmbus_proto_version != VERSION_WS2008)) { if (vstor_packet->storage_channel_properties.flags & STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) process_sub_channels = true; } stor_device->max_transfer_bytes = vstor_packet->storage_channel_properties.max_transfer_bytes; memset(vstor_packet, 0, sizeof(struct vstor_packet)); vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; vstor_packet->flags = REQUEST_COMPLETION_FLAG; ret = vmbus_sendpacket(device->channel, vstor_packet, (sizeof(struct vstor_packet) - vmscsi_size_delta), (unsigned long)request, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (ret != 0) goto cleanup; t = wait_for_completion_timeout(&request->wait_event, 5*HZ); if (t == 0) { ret = -ETIMEDOUT; goto cleanup; } if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || vstor_packet->status != 0) goto cleanup; if (process_sub_channels) handle_multichannel_storage(device, max_chns); cleanup: return ret; } static void storvsc_handle_error(struct vmscsi_request *vm_srb, struct scsi_cmnd *scmnd, struct Scsi_Host *host, u8 asc, u8 ascq) { struct storvsc_scan_work *wrk; void (*process_err_fn)(struct work_struct *work); bool do_work = false; switch (vm_srb->srb_status) { case SRB_STATUS_ERROR: /* * If there is an error; offline the device since all * error recovery strategies would have already been * deployed on the host side. However, if the command * were a pass-through command deal with it appropriately. */ switch (scmnd->cmnd[0]) { case ATA_16: case ATA_12: set_host_byte(scmnd, DID_PASSTHROUGH); break; /* * On Some Windows hosts TEST_UNIT_READY command can return * SRB_STATUS_ERROR, let the upper level code deal with it * based on the sense information. */ case TEST_UNIT_READY: break; default: set_host_byte(scmnd, DID_TARGET_FAILURE); } break; case SRB_STATUS_INVALID_LUN: do_work = true; process_err_fn = storvsc_remove_lun; break; case (SRB_STATUS_ABORTED | SRB_STATUS_AUTOSENSE_VALID): if ((asc == 0x2a) && (ascq == 0x9)) { do_work = true; process_err_fn = storvsc_device_scan; /* * Retry the I/O that trigerred this. */ set_host_byte(scmnd, DID_REQUEUE); } break; } if (!do_work) return; /* * We need to schedule work to process this error; schedule it. */ wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); if (!wrk) { set_host_byte(scmnd, DID_TARGET_FAILURE); return; } wrk->host = host; wrk->lun = vm_srb->lun; INIT_WORK(&wrk->work, process_err_fn); schedule_work(&wrk->work); } static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request) { struct scsi_cmnd *scmnd = cmd_request->cmd; struct hv_host_device *host_dev = shost_priv(scmnd->device->host); struct scsi_sense_hdr sense_hdr; struct vmscsi_request *vm_srb; struct Scsi_Host *host; struct storvsc_device *stor_dev; struct hv_device *dev = host_dev->dev; u32 payload_sz = cmd_request->payload_sz; void *payload = cmd_request->payload; stor_dev = get_in_stor_device(dev); host = stor_dev->host; vm_srb = &cmd_request->vstor_packet.vm_srb; if (cmd_request->bounce_sgl_count) { if (vm_srb->data_in == READ_TYPE) copy_from_bounce_buffer(scsi_sglist(scmnd), cmd_request->bounce_sgl, scsi_sg_count(scmnd), cmd_request->bounce_sgl_count); destroy_bounce_buffer(cmd_request->bounce_sgl, cmd_request->bounce_sgl_count); } scmnd->result = vm_srb->scsi_status; if (scmnd->result) { if (scsi_normalize_sense(scmnd->sense_buffer, SCSI_SENSE_BUFFERSIZE, &sense_hdr)) scsi_print_sense_hdr(scmnd->device, "storvsc", &sense_hdr); } if (vm_srb->srb_status != SRB_STATUS_SUCCESS) storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, sense_hdr.ascq); scsi_set_resid(scmnd, cmd_request->payload->range.len - vm_srb->data_transfer_length); scmnd->scsi_done(scmnd); if (payload_sz > sizeof(struct vmbus_channel_packet_multipage_buffer)) kfree(payload); } static void storvsc_on_io_completion(struct hv_device *device, struct vstor_packet *vstor_packet, struct storvsc_cmd_request *request) { struct storvsc_device *stor_device; struct vstor_packet *stor_pkt; stor_device = hv_get_drvdata(device); stor_pkt = &request->vstor_packet; /* * The current SCSI handling on the host side does * not correctly handle: * INQUIRY command with page code parameter set to 0x80 * MODE_SENSE command with cmd[2] == 0x1c * * Setup srb and scsi status so this won't be fatal. * We do this so we can distinguish truly fatal failues * (srb status == 0x4) and off-line the device in that case. */ if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) { vstor_packet->vm_srb.scsi_status = 0; vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; } /* Copy over the status...etc */ stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; stor_pkt->vm_srb.sense_info_length = vstor_packet->vm_srb.sense_info_length; if ((vstor_packet->vm_srb.scsi_status & 0xFF) == 0x02) { /* CHECK_CONDITION */ if (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID) { /* autosense data available */ memcpy(request->cmd->sense_buffer, vstor_packet->vm_srb.sense_data, vstor_packet->vm_srb.sense_info_length); } } stor_pkt->vm_srb.data_transfer_length = vstor_packet->vm_srb.data_transfer_length; storvsc_command_completion(request); if (atomic_dec_and_test(&stor_device->num_outstanding_req) && stor_device->drain_notify) wake_up(&stor_device->waiting_to_drain); } static void storvsc_on_receive(struct hv_device *device, struct vstor_packet *vstor_packet, struct storvsc_cmd_request *request) { struct storvsc_scan_work *work; struct storvsc_device *stor_device; switch (vstor_packet->operation) { case VSTOR_OPERATION_COMPLETE_IO: storvsc_on_io_completion(device, vstor_packet, request); break; case VSTOR_OPERATION_REMOVE_DEVICE: case VSTOR_OPERATION_ENUMERATE_BUS: stor_device = get_in_stor_device(device); work = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); if (!work) return; INIT_WORK(&work->work, storvsc_host_scan); work->host = stor_device->host; schedule_work(&work->work); break; default: break; } } static void storvsc_on_channel_callback(void *context) { struct vmbus_channel *channel = (struct vmbus_channel *)context; struct hv_device *device; struct storvsc_device *stor_device; u32 bytes_recvd; u64 request_id; unsigned char packet[ALIGN(sizeof(struct vstor_packet), 8)]; struct storvsc_cmd_request *request; int ret; if (channel->primary_channel != NULL) device = channel->primary_channel->device_obj; else device = channel->device_obj; stor_device = get_in_stor_device(device); if (!stor_device) return; do { ret = vmbus_recvpacket(channel, packet, ALIGN((sizeof(struct vstor_packet) - vmscsi_size_delta), 8), &bytes_recvd, &request_id); if (ret == 0 && bytes_recvd > 0) { request = (struct storvsc_cmd_request *) (unsigned long)request_id; if ((request == &stor_device->init_request) || (request == &stor_device->reset_request)) { memcpy(&request->vstor_packet, packet, (sizeof(struct vstor_packet) - vmscsi_size_delta)); complete(&request->wait_event); } else { storvsc_on_receive(device, (struct vstor_packet *)packet, request); } } else { break; } } while (1); return; } static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size) { struct vmstorage_channel_properties props; int ret; memset(&props, 0, sizeof(struct vmstorage_channel_properties)); ret = vmbus_open(device->channel, ring_size, ring_size, (void *)&props, sizeof(struct vmstorage_channel_properties), storvsc_on_channel_callback, device->channel); if (ret != 0) return ret; ret = storvsc_channel_init(device); return ret; } static int storvsc_dev_remove(struct hv_device *device) { struct storvsc_device *stor_device; unsigned long flags; stor_device = hv_get_drvdata(device); spin_lock_irqsave(&device->channel->inbound_lock, flags); stor_device->destroy = true; spin_unlock_irqrestore(&device->channel->inbound_lock, flags); /* * At this point, all outbound traffic should be disable. We * only allow inbound traffic (responses) to proceed so that * outstanding requests can be completed. */ storvsc_wait_to_drain(stor_device); /* * Since we have already drained, we don't need to busy wait * as was done in final_release_stor_device() * Note that we cannot set the ext pointer to NULL until * we have drained - to drain the outgoing packets, we need to * allow incoming packets. */ spin_lock_irqsave(&device->channel->inbound_lock, flags); hv_set_drvdata(device, NULL); spin_unlock_irqrestore(&device->channel->inbound_lock, flags); /* Close the channel */ vmbus_close(device->channel); kfree(stor_device); return 0; } static int storvsc_do_io(struct hv_device *device, struct storvsc_cmd_request *request) { struct storvsc_device *stor_device; struct vstor_packet *vstor_packet; struct vmbus_channel *outgoing_channel; int ret = 0; vstor_packet = &request->vstor_packet; stor_device = get_out_stor_device(device); if (!stor_device) return -ENODEV; request->device = device; /* * Select an an appropriate channel to send the request out. */ outgoing_channel = vmbus_get_outgoing_channel(device->channel); vstor_packet->flags |= REQUEST_COMPLETION_FLAG; vstor_packet->vm_srb.length = (sizeof(struct vmscsi_request) - vmscsi_size_delta); vstor_packet->vm_srb.sense_info_length = sense_buffer_size; vstor_packet->vm_srb.data_transfer_length = request->payload->range.len; vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; if (request->payload->range.len) { ret = vmbus_sendpacket_mpb_desc(outgoing_channel, request->payload, request->payload_sz, vstor_packet, (sizeof(struct vstor_packet) - vmscsi_size_delta), (unsigned long)request); } else { ret = vmbus_sendpacket(outgoing_channel, vstor_packet, (sizeof(struct vstor_packet) - vmscsi_size_delta), (unsigned long)request, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); } if (ret != 0) return ret; atomic_inc(&stor_device->num_outstanding_req); return ret; } static int storvsc_device_configure(struct scsi_device *sdevice) { blk_queue_max_segment_size(sdevice->request_queue, PAGE_SIZE); blk_queue_bounce_limit(sdevice->request_queue, BLK_BOUNCE_ANY); blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); sdevice->no_write_same = 1; /* * Add blist flags to permit the reading of the VPD pages even when * the target may claim SPC-2 compliance. MSFT targets currently * claim SPC-2 compliance while they implement post SPC-2 features. * With this patch we can correctly handle WRITE_SAME_16 issues. */ sdevice->sdev_bflags |= msft_blist_flags; /* * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 * if the device is a MSFT virtual device. */ if (!strncmp(sdevice->vendor, "Msft", 4)) { switch (vmbus_proto_version) { case VERSION_WIN8: case VERSION_WIN8_1: sdevice->scsi_level = SCSI_SPC_3; break; } } return 0; } static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev, sector_t capacity, int *info) { sector_t nsect = capacity; sector_t cylinders = nsect; int heads, sectors_pt; /* * We are making up these values; let us keep it simple. */ heads = 0xff; sectors_pt = 0x3f; /* Sectors per track */ sector_div(cylinders, heads * sectors_pt); if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) cylinders = 0xffff; info[0] = heads; info[1] = sectors_pt; info[2] = (int)cylinders; return 0; } static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) { struct hv_host_device *host_dev = shost_priv(scmnd->device->host); struct hv_device *device = host_dev->dev; struct storvsc_device *stor_device; struct storvsc_cmd_request *request; struct vstor_packet *vstor_packet; int ret, t; stor_device = get_out_stor_device(device); if (!stor_device) return FAILED; request = &stor_device->reset_request; vstor_packet = &request->vstor_packet; init_completion(&request->wait_event); vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; vstor_packet->flags = REQUEST_COMPLETION_FLAG; vstor_packet->vm_srb.path_id = stor_device->path_id; ret = vmbus_sendpacket(device->channel, vstor_packet, (sizeof(struct vstor_packet) - vmscsi_size_delta), (unsigned long)&stor_device->reset_request, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (ret != 0) return FAILED; t = wait_for_completion_timeout(&request->wait_event, 5*HZ); if (t == 0) return TIMEOUT_ERROR; /* * At this point, all outstanding requests in the adapter * should have been flushed out and return to us * There is a potential race here where the host may be in * the process of responding when we return from here. * Just wait for all in-transit packets to be accounted for * before we return from here. */ storvsc_wait_to_drain(stor_device); return SUCCESS; } /* * The host guarantees to respond to each command, although I/O latencies might * be unbounded on Azure. Reset the timer unconditionally to give the host a * chance to perform EH. */ static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd) { return BLK_EH_RESET_TIMER; } static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) { bool allowed = true; u8 scsi_op = scmnd->cmnd[0]; switch (scsi_op) { /* the host does not handle WRITE_SAME, log accident usage */ case WRITE_SAME: /* * smartd sends this command and the host does not handle * this. So, don't send it. */ case SET_WINDOW: scmnd->result = ILLEGAL_REQUEST << 16; allowed = false; break; default: break; } return allowed; } static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) { int ret; struct hv_host_device *host_dev = shost_priv(host); struct hv_device *dev = host_dev->dev; struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); int i; struct scatterlist *sgl; unsigned int sg_count = 0; struct vmscsi_request *vm_srb; struct scatterlist *cur_sgl; struct vmbus_packet_mpb_array *payload; u32 payload_sz; u32 length; if (vmstor_current_major <= VMSTOR_WIN8_MAJOR) { /* * On legacy hosts filter unimplemented commands. * Future hosts are expected to correctly handle * unsupported commands. Furthermore, it is * possible that some of the currently * unsupported commands maybe supported in * future versions of the host. */ if (!storvsc_scsi_cmd_ok(scmnd)) { scmnd->scsi_done(scmnd); return 0; } } /* Setup the cmd request */ cmd_request->cmd = scmnd; vm_srb = &cmd_request->vstor_packet.vm_srb; vm_srb->win8_extension.time_out_value = 60; vm_srb->win8_extension.srb_flags |= (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_DISABLE_SYNCH_TRANSFER); /* Build the SRB */ switch (scmnd->sc_data_direction) { case DMA_TO_DEVICE: vm_srb->data_in = WRITE_TYPE; vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_OUT; break; case DMA_FROM_DEVICE: vm_srb->data_in = READ_TYPE; vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_IN; break; default: vm_srb->data_in = UNKNOWN_TYPE; vm_srb->win8_extension.srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; break; } vm_srb->port_number = host_dev->port; vm_srb->path_id = scmnd->device->channel; vm_srb->target_id = scmnd->device->id; vm_srb->lun = scmnd->device->lun; vm_srb->cdb_length = scmnd->cmd_len; memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); sgl = (struct scatterlist *)scsi_sglist(scmnd); sg_count = scsi_sg_count(scmnd); length = scsi_bufflen(scmnd); payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; payload_sz = sizeof(cmd_request->mpb); if (sg_count) { /* check if we need to bounce the sgl */ if (do_bounce_buffer(sgl, scsi_sg_count(scmnd)) != -1) { cmd_request->bounce_sgl = create_bounce_buffer(sgl, sg_count, length, vm_srb->data_in); if (!cmd_request->bounce_sgl) return SCSI_MLQUEUE_HOST_BUSY; cmd_request->bounce_sgl_count = ALIGN(length, PAGE_SIZE) >> PAGE_SHIFT; if (vm_srb->data_in == WRITE_TYPE) copy_to_bounce_buffer(sgl, cmd_request->bounce_sgl, sg_count); sgl = cmd_request->bounce_sgl; sg_count = cmd_request->bounce_sgl_count; } if (sg_count > MAX_PAGE_BUFFER_COUNT) { payload_sz = (sg_count * sizeof(void *) + sizeof(struct vmbus_packet_mpb_array)); payload = kmalloc(payload_sz, GFP_ATOMIC); if (!payload) { if (cmd_request->bounce_sgl_count) destroy_bounce_buffer( cmd_request->bounce_sgl, cmd_request->bounce_sgl_count); return SCSI_MLQUEUE_DEVICE_BUSY; } } payload->range.len = length; payload->range.offset = sgl[0].offset; cur_sgl = sgl; for (i = 0; i < sg_count; i++) { payload->range.pfn_array[i] = page_to_pfn(sg_page((cur_sgl))); cur_sgl = sg_next(cur_sgl); } } else if (scsi_sglist(scmnd)) { payload->range.len = length; payload->range.offset = virt_to_phys(scsi_sglist(scmnd)) & (PAGE_SIZE-1); payload->range.pfn_array[0] = virt_to_phys(scsi_sglist(scmnd)) >> PAGE_SHIFT; } cmd_request->payload = payload; cmd_request->payload_sz = payload_sz; /* Invokes the vsc to start an IO */ ret = storvsc_do_io(dev, cmd_request); if (ret == -EAGAIN) { /* no more space */ if (cmd_request->bounce_sgl_count) destroy_bounce_buffer(cmd_request->bounce_sgl, cmd_request->bounce_sgl_count); return SCSI_MLQUEUE_DEVICE_BUSY; } return 0; } static struct scsi_host_template scsi_driver = { .module = THIS_MODULE, .name = "storvsc_host_t", .cmd_size = sizeof(struct storvsc_cmd_request), .bios_param = storvsc_get_chs, .queuecommand = storvsc_queuecommand, .eh_host_reset_handler = storvsc_host_reset_handler, .proc_name = "storvsc_host", .eh_timed_out = storvsc_eh_timed_out, .slave_configure = storvsc_device_configure, .cmd_per_lun = 255, .this_id = -1, .use_clustering = ENABLE_CLUSTERING, /* Make sure we dont get a sg segment crosses a page boundary */ .dma_boundary = PAGE_SIZE-1, .no_write_same = 1, }; enum { SCSI_GUID, IDE_GUID, SFC_GUID, }; static const struct hv_vmbus_device_id id_table[] = { /* SCSI guid */ { HV_SCSI_GUID, .driver_data = SCSI_GUID }, /* IDE guid */ { HV_IDE_GUID, .driver_data = IDE_GUID }, /* Fibre Channel GUID */ { HV_SYNTHFC_GUID, .driver_data = SFC_GUID }, { }, }; MODULE_DEVICE_TABLE(vmbus, id_table); static int storvsc_probe(struct hv_device *device, const struct hv_vmbus_device_id *dev_id) { int ret; int num_cpus = num_online_cpus(); struct Scsi_Host *host; struct hv_host_device *host_dev; bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false); int target = 0; struct storvsc_device *stor_device; int max_luns_per_target; int max_targets; int max_channels; int max_sub_channels = 0; /* * Based on the windows host we are running on, * set state to properly communicate with the host. */ switch (vmbus_proto_version) { case VERSION_WS2008: case VERSION_WIN7: sense_buffer_size = PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE; vmscsi_size_delta = sizeof(struct vmscsi_win8_extension); vmstor_current_major = VMSTOR_WIN7_MAJOR; vmstor_current_minor = VMSTOR_WIN7_MINOR; max_luns_per_target = STORVSC_IDE_MAX_LUNS_PER_TARGET; max_targets = STORVSC_IDE_MAX_TARGETS; max_channels = STORVSC_IDE_MAX_CHANNELS; break; default: sense_buffer_size = POST_WIN7_STORVSC_SENSE_BUFFER_SIZE; vmscsi_size_delta = 0; vmstor_current_major = VMSTOR_WIN8_MAJOR; vmstor_current_minor = VMSTOR_WIN8_MINOR; max_luns_per_target = STORVSC_MAX_LUNS_PER_TARGET; max_targets = STORVSC_MAX_TARGETS; max_channels = STORVSC_MAX_CHANNELS; /* * On Windows8 and above, we support sub-channels for storage. * The number of sub-channels offerred is based on the number of * VCPUs in the guest. */ max_sub_channels = (num_cpus / storvsc_vcpus_per_sub_channel); break; } scsi_driver.can_queue = (max_outstanding_req_per_channel * (max_sub_channels + 1)); host = scsi_host_alloc(&scsi_driver, sizeof(struct hv_host_device)); if (!host) return -ENOMEM; host_dev = shost_priv(host); memset(host_dev, 0, sizeof(struct hv_host_device)); host_dev->port = host->host_no; host_dev->dev = device; stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); if (!stor_device) { ret = -ENOMEM; goto err_out0; } stor_device->destroy = false; stor_device->open_sub_channel = false; init_waitqueue_head(&stor_device->waiting_to_drain); stor_device->device = device; stor_device->host = host; hv_set_drvdata(device, stor_device); stor_device->port_number = host->host_no; ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size); if (ret) goto err_out1; host_dev->path = stor_device->path_id; host_dev->target = stor_device->target_id; switch (dev_id->driver_data) { case SFC_GUID: host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; host->max_id = STORVSC_FC_MAX_TARGETS; host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; break; case SCSI_GUID: host->max_lun = max_luns_per_target; host->max_id = max_targets; host->max_channel = max_channels - 1; break; default: host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; host->max_id = STORVSC_IDE_MAX_TARGETS; host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; break; } /* max cmd length */ host->max_cmd_len = STORVSC_MAX_CMD_LEN; /* * set the table size based on the info we got * from the host. */ host->sg_tablesize = (stor_device->max_transfer_bytes >> PAGE_SHIFT); /* Register the HBA and start the scsi bus scan */ ret = scsi_add_host(host, &device->device); if (ret != 0) goto err_out2; if (!dev_is_ide) { scsi_scan_host(host); } else { target = (device->dev_instance.b[5] << 8 | device->dev_instance.b[4]); ret = scsi_add_device(host, 0, target, 0); if (ret) { scsi_remove_host(host); goto err_out2; } } return 0; err_out2: /* * Once we have connected with the host, we would need to * to invoke storvsc_dev_remove() to rollback this state and * this call also frees up the stor_device; hence the jump around * err_out1 label. */ storvsc_dev_remove(device); goto err_out0; err_out1: kfree(stor_device); err_out0: scsi_host_put(host); return ret; } static int storvsc_remove(struct hv_device *dev) { struct storvsc_device *stor_device = hv_get_drvdata(dev); struct Scsi_Host *host = stor_device->host; scsi_remove_host(host); storvsc_dev_remove(dev); scsi_host_put(host); return 0; } static struct hv_driver storvsc_drv = { .name = KBUILD_MODNAME, .id_table = id_table, .probe = storvsc_probe, .remove = storvsc_remove, }; static int __init storvsc_drv_init(void) { /* * Divide the ring buffer data size (which is 1 page less * than the ring buffer size since that page is reserved for * the ring buffer indices) by the max request size (which is * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) */ max_outstanding_req_per_channel = ((storvsc_ringbuffer_size - PAGE_SIZE) / ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + sizeof(struct vstor_packet) + sizeof(u64) - vmscsi_size_delta, sizeof(u64))); return vmbus_driver_register(&storvsc_drv); } static void __exit storvsc_drv_exit(void) { vmbus_driver_unregister(&storvsc_drv); } MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); module_init(storvsc_drv_init); module_exit(storvsc_drv_exit);