/* * linux/fs/ext4/readpage.c * * Copyright (C) 2002, Linus Torvalds. * Copyright (C) 2015, Google, Inc. * * This was originally taken from fs/mpage.c * * The intent is the ext4_mpage_readpages() function here is intended * to replace mpage_readpages() in the general case, not just for * encrypted files. It has some limitations (see below), where it * will fall back to read_block_full_page(), but these limitations * should only be hit when page_size != block_size. * * This will allow us to attach a callback function to support ext4 * encryption. * * If anything unusual happens, such as: * * - encountering a page which has buffers * - encountering a page which has a non-hole after a hole * - encountering a page with non-contiguous blocks * * then this code just gives up and calls the buffer_head-based read function. * It does handle a page which has holes at the end - that is a common case: * the end-of-file on blocksize < PAGE_CACHE_SIZE setups. * */ #include <linux/kernel.h> #include <linux/export.h> #include <linux/mm.h> #include <linux/kdev_t.h> #include <linux/gfp.h> #include <linux/bio.h> #include <linux/fs.h> #include <linux/buffer_head.h> #include <linux/blkdev.h> #include <linux/highmem.h> #include <linux/prefetch.h> #include <linux/mpage.h> #include <linux/writeback.h> #include <linux/backing-dev.h> #include <linux/pagevec.h> #include <linux/cleancache.h> #include "ext4.h" /* * Call ext4_decrypt on every single page, reusing the encryption * context. */ static void completion_pages(struct work_struct *work) { #ifdef CONFIG_EXT4_FS_ENCRYPTION struct ext4_crypto_ctx *ctx = container_of(work, struct ext4_crypto_ctx, work); struct bio *bio = ctx->bio; struct bio_vec *bv; int i; bio_for_each_segment_all(bv, bio, i) { struct page *page = bv->bv_page; int ret = ext4_decrypt(ctx, page); if (ret) { WARN_ON_ONCE(1); SetPageError(page); } else SetPageUptodate(page); unlock_page(page); } ext4_release_crypto_ctx(ctx); bio_put(bio); #else BUG(); #endif } static inline bool ext4_bio_encrypted(struct bio *bio) { #ifdef CONFIG_EXT4_FS_ENCRYPTION return unlikely(bio->bi_private != NULL); #else return false; #endif } /* * I/O completion handler for multipage BIOs. * * The mpage code never puts partial pages into a BIO (except for end-of-file). * If a page does not map to a contiguous run of blocks then it simply falls * back to block_read_full_page(). * * Why is this? If a page's completion depends on a number of different BIOs * which can complete in any order (or at the same time) then determining the * status of that page is hard. See end_buffer_async_read() for the details. * There is no point in duplicating all that complexity. */ static void mpage_end_io(struct bio *bio, int err) { struct bio_vec *bv; int i; if (ext4_bio_encrypted(bio)) { struct ext4_crypto_ctx *ctx = bio->bi_private; if (err) { ext4_release_crypto_ctx(ctx); } else { INIT_WORK(&ctx->work, completion_pages); ctx->bio = bio; queue_work(ext4_read_workqueue, &ctx->work); return; } } bio_for_each_segment_all(bv, bio, i) { struct page *page = bv->bv_page; if (!err) { SetPageUptodate(page); } else { ClearPageUptodate(page); SetPageError(page); } unlock_page(page); } bio_put(bio); } int ext4_mpage_readpages(struct address_space *mapping, struct list_head *pages, struct page *page, unsigned nr_pages) { struct bio *bio = NULL; unsigned page_idx; sector_t last_block_in_bio = 0; struct inode *inode = mapping->host; const unsigned blkbits = inode->i_blkbits; const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; const unsigned blocksize = 1 << blkbits; sector_t block_in_file; sector_t last_block; sector_t last_block_in_file; sector_t blocks[MAX_BUF_PER_PAGE]; unsigned page_block; struct block_device *bdev = inode->i_sb->s_bdev; int length; unsigned relative_block = 0; struct ext4_map_blocks map; map.m_pblk = 0; map.m_lblk = 0; map.m_len = 0; map.m_flags = 0; for (page_idx = 0; nr_pages; page_idx++, nr_pages--) { int fully_mapped = 1; unsigned first_hole = blocks_per_page; prefetchw(&page->flags); if (pages) { page = list_entry(pages->prev, struct page, lru); list_del(&page->lru); if (add_to_page_cache_lru(page, mapping, page->index, GFP_KERNEL)) goto next_page; } if (page_has_buffers(page)) goto confused; block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); last_block = block_in_file + nr_pages * blocks_per_page; last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; if (last_block > last_block_in_file) last_block = last_block_in_file; page_block = 0; /* * Map blocks using the previous result first. */ if ((map.m_flags & EXT4_MAP_MAPPED) && block_in_file > map.m_lblk && block_in_file < (map.m_lblk + map.m_len)) { unsigned map_offset = block_in_file - map.m_lblk; unsigned last = map.m_len - map_offset; for (relative_block = 0; ; relative_block++) { if (relative_block == last) { /* needed? */ map.m_flags &= ~EXT4_MAP_MAPPED; break; } if (page_block == blocks_per_page) break; blocks[page_block] = map.m_pblk + map_offset + relative_block; page_block++; block_in_file++; } } /* * Then do more ext4_map_blocks() calls until we are * done with this page. */ while (page_block < blocks_per_page) { if (block_in_file < last_block) { map.m_lblk = block_in_file; map.m_len = last_block - block_in_file; if (ext4_map_blocks(NULL, inode, &map, 0) < 0) { set_error_page: SetPageError(page); zero_user_segment(page, 0, PAGE_CACHE_SIZE); unlock_page(page); goto next_page; } } if ((map.m_flags & EXT4_MAP_MAPPED) == 0) { fully_mapped = 0; if (first_hole == blocks_per_page) first_hole = page_block; page_block++; block_in_file++; continue; } if (first_hole != blocks_per_page) goto confused; /* hole -> non-hole */ /* Contiguous blocks? */ if (page_block && blocks[page_block-1] != map.m_pblk-1) goto confused; for (relative_block = 0; ; relative_block++) { if (relative_block == map.m_len) { /* needed? */ map.m_flags &= ~EXT4_MAP_MAPPED; break; } else if (page_block == blocks_per_page) break; blocks[page_block] = map.m_pblk+relative_block; page_block++; block_in_file++; } } if (first_hole != blocks_per_page) { zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE); if (first_hole == 0) { SetPageUptodate(page); unlock_page(page); goto next_page; } } else if (fully_mapped) { SetPageMappedToDisk(page); } if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) && cleancache_get_page(page) == 0) { SetPageUptodate(page); goto confused; } /* * This page will go to BIO. Do we need to send this * BIO off first? */ if (bio && (last_block_in_bio != blocks[0] - 1)) { submit_and_realloc: submit_bio(READ, bio); bio = NULL; } if (bio == NULL) { struct ext4_crypto_ctx *ctx = NULL; if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { ctx = ext4_get_crypto_ctx(inode); if (IS_ERR(ctx)) goto set_error_page; } bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, bio_get_nr_vecs(bdev))); if (!bio) { if (ctx) ext4_release_crypto_ctx(ctx); goto set_error_page; } bio->bi_bdev = bdev; bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9); bio->bi_end_io = mpage_end_io; bio->bi_private = ctx; } length = first_hole << blkbits; if (bio_add_page(bio, page, length, 0) < length) goto submit_and_realloc; if (((map.m_flags & EXT4_MAP_BOUNDARY) && (relative_block == map.m_len)) || (first_hole != blocks_per_page)) { submit_bio(READ, bio); bio = NULL; } else last_block_in_bio = blocks[blocks_per_page - 1]; goto next_page; confused: if (bio) { submit_bio(READ, bio); bio = NULL; } if (!PageUptodate(page)) block_read_full_page(page, ext4_get_block); else unlock_page(page); next_page: if (pages) page_cache_release(page); } BUG_ON(pages && !list_empty(pages)); if (bio) submit_bio(READ, bio); return 0; }