/* * fs/f2fs/xattr.c * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * Portions of this code from linux/fs/ext2/xattr.c * * Copyright (C) 2001-2003 Andreas Gruenbacher <agruen@suse.de> * * Fix by Harrison Xing <harrison@mountainviewdata.com>. * Extended attributes for symlinks and special files added per * suggestion of Luka Renko <luka.renko@hermes.si>. * xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>, * Red Hat Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/rwsem.h> #include <linux/f2fs_fs.h> #include <linux/security.h> #include <linux/posix_acl_xattr.h> #include "f2fs.h" #include "xattr.h" static size_t f2fs_xattr_generic_list(struct dentry *dentry, char *list, size_t list_size, const char *name, size_t len, int type) { struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb); int total_len, prefix_len = 0; const char *prefix = NULL; switch (type) { case F2FS_XATTR_INDEX_USER: if (!test_opt(sbi, XATTR_USER)) return -EOPNOTSUPP; prefix = XATTR_USER_PREFIX; prefix_len = XATTR_USER_PREFIX_LEN; break; case F2FS_XATTR_INDEX_TRUSTED: if (!capable(CAP_SYS_ADMIN)) return -EPERM; prefix = XATTR_TRUSTED_PREFIX; prefix_len = XATTR_TRUSTED_PREFIX_LEN; break; case F2FS_XATTR_INDEX_SECURITY: prefix = XATTR_SECURITY_PREFIX; prefix_len = XATTR_SECURITY_PREFIX_LEN; break; default: return -EINVAL; } total_len = prefix_len + len + 1; if (list && total_len <= list_size) { memcpy(list, prefix, prefix_len); memcpy(list + prefix_len, name, len); list[prefix_len + len] = '\0'; } return total_len; } static int f2fs_xattr_generic_get(struct dentry *dentry, const char *name, void *buffer, size_t size, int type) { struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb); switch (type) { case F2FS_XATTR_INDEX_USER: if (!test_opt(sbi, XATTR_USER)) return -EOPNOTSUPP; break; case F2FS_XATTR_INDEX_TRUSTED: if (!capable(CAP_SYS_ADMIN)) return -EPERM; break; case F2FS_XATTR_INDEX_SECURITY: break; default: return -EINVAL; } if (strcmp(name, "") == 0) return -EINVAL; return f2fs_getxattr(d_inode(dentry), type, name, buffer, size, NULL); } static int f2fs_xattr_generic_set(struct dentry *dentry, const char *name, const void *value, size_t size, int flags, int type) { struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb); switch (type) { case F2FS_XATTR_INDEX_USER: if (!test_opt(sbi, XATTR_USER)) return -EOPNOTSUPP; break; case F2FS_XATTR_INDEX_TRUSTED: if (!capable(CAP_SYS_ADMIN)) return -EPERM; break; case F2FS_XATTR_INDEX_SECURITY: break; default: return -EINVAL; } if (strcmp(name, "") == 0) return -EINVAL; return f2fs_setxattr(d_inode(dentry), type, name, value, size, NULL, flags); } static size_t f2fs_xattr_advise_list(struct dentry *dentry, char *list, size_t list_size, const char *name, size_t len, int type) { const char *xname = F2FS_SYSTEM_ADVISE_PREFIX; size_t size; if (type != F2FS_XATTR_INDEX_ADVISE) return 0; size = strlen(xname) + 1; if (list && size <= list_size) memcpy(list, xname, size); return size; } static int f2fs_xattr_advise_get(struct dentry *dentry, const char *name, void *buffer, size_t size, int type) { struct inode *inode = d_inode(dentry); if (strcmp(name, "") != 0) return -EINVAL; if (buffer) *((char *)buffer) = F2FS_I(inode)->i_advise; return sizeof(char); } static int f2fs_xattr_advise_set(struct dentry *dentry, const char *name, const void *value, size_t size, int flags, int type) { struct inode *inode = d_inode(dentry); if (strcmp(name, "") != 0) return -EINVAL; if (!inode_owner_or_capable(inode)) return -EPERM; if (value == NULL) return -EINVAL; F2FS_I(inode)->i_advise |= *(char *)value; mark_inode_dirty(inode); return 0; } #ifdef CONFIG_F2FS_FS_SECURITY static int f2fs_initxattrs(struct inode *inode, const struct xattr *xattr_array, void *page) { const struct xattr *xattr; int err = 0; for (xattr = xattr_array; xattr->name != NULL; xattr++) { err = f2fs_setxattr(inode, F2FS_XATTR_INDEX_SECURITY, xattr->name, xattr->value, xattr->value_len, (struct page *)page, 0); if (err < 0) break; } return err; } int f2fs_init_security(struct inode *inode, struct inode *dir, const struct qstr *qstr, struct page *ipage) { return security_inode_init_security(inode, dir, qstr, &f2fs_initxattrs, ipage); } #endif const struct xattr_handler f2fs_xattr_user_handler = { .prefix = XATTR_USER_PREFIX, .flags = F2FS_XATTR_INDEX_USER, .list = f2fs_xattr_generic_list, .get = f2fs_xattr_generic_get, .set = f2fs_xattr_generic_set, }; const struct xattr_handler f2fs_xattr_trusted_handler = { .prefix = XATTR_TRUSTED_PREFIX, .flags = F2FS_XATTR_INDEX_TRUSTED, .list = f2fs_xattr_generic_list, .get = f2fs_xattr_generic_get, .set = f2fs_xattr_generic_set, }; const struct xattr_handler f2fs_xattr_advise_handler = { .prefix = F2FS_SYSTEM_ADVISE_PREFIX, .flags = F2FS_XATTR_INDEX_ADVISE, .list = f2fs_xattr_advise_list, .get = f2fs_xattr_advise_get, .set = f2fs_xattr_advise_set, }; const struct xattr_handler f2fs_xattr_security_handler = { .prefix = XATTR_SECURITY_PREFIX, .flags = F2FS_XATTR_INDEX_SECURITY, .list = f2fs_xattr_generic_list, .get = f2fs_xattr_generic_get, .set = f2fs_xattr_generic_set, }; static const struct xattr_handler *f2fs_xattr_handler_map[] = { [F2FS_XATTR_INDEX_USER] = &f2fs_xattr_user_handler, #ifdef CONFIG_F2FS_FS_POSIX_ACL [F2FS_XATTR_INDEX_POSIX_ACL_ACCESS] = &posix_acl_access_xattr_handler, [F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT] = &posix_acl_default_xattr_handler, #endif [F2FS_XATTR_INDEX_TRUSTED] = &f2fs_xattr_trusted_handler, #ifdef CONFIG_F2FS_FS_SECURITY [F2FS_XATTR_INDEX_SECURITY] = &f2fs_xattr_security_handler, #endif [F2FS_XATTR_INDEX_ADVISE] = &f2fs_xattr_advise_handler, }; const struct xattr_handler *f2fs_xattr_handlers[] = { &f2fs_xattr_user_handler, #ifdef CONFIG_F2FS_FS_POSIX_ACL &posix_acl_access_xattr_handler, &posix_acl_default_xattr_handler, #endif &f2fs_xattr_trusted_handler, #ifdef CONFIG_F2FS_FS_SECURITY &f2fs_xattr_security_handler, #endif &f2fs_xattr_advise_handler, NULL, }; static inline const struct xattr_handler *f2fs_xattr_handler(int index) { const struct xattr_handler *handler = NULL; if (index > 0 && index < ARRAY_SIZE(f2fs_xattr_handler_map)) handler = f2fs_xattr_handler_map[index]; return handler; } static struct f2fs_xattr_entry *__find_xattr(void *base_addr, int index, size_t len, const char *name) { struct f2fs_xattr_entry *entry; list_for_each_xattr(entry, base_addr) { if (entry->e_name_index != index) continue; if (entry->e_name_len != len) continue; if (!memcmp(entry->e_name, name, len)) break; } return entry; } static void *read_all_xattrs(struct inode *inode, struct page *ipage) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_xattr_header *header; size_t size = PAGE_SIZE, inline_size = 0; void *txattr_addr; inline_size = inline_xattr_size(inode); txattr_addr = kzalloc(inline_size + size, GFP_F2FS_ZERO); if (!txattr_addr) return NULL; /* read from inline xattr */ if (inline_size) { struct page *page = NULL; void *inline_addr; if (ipage) { inline_addr = inline_xattr_addr(ipage); } else { page = get_node_page(sbi, inode->i_ino); if (IS_ERR(page)) goto fail; inline_addr = inline_xattr_addr(page); } memcpy(txattr_addr, inline_addr, inline_size); f2fs_put_page(page, 1); } /* read from xattr node block */ if (F2FS_I(inode)->i_xattr_nid) { struct page *xpage; void *xattr_addr; /* The inode already has an extended attribute block. */ xpage = get_node_page(sbi, F2FS_I(inode)->i_xattr_nid); if (IS_ERR(xpage)) goto fail; xattr_addr = page_address(xpage); memcpy(txattr_addr + inline_size, xattr_addr, PAGE_SIZE); f2fs_put_page(xpage, 1); } header = XATTR_HDR(txattr_addr); /* never been allocated xattrs */ if (le32_to_cpu(header->h_magic) != F2FS_XATTR_MAGIC) { header->h_magic = cpu_to_le32(F2FS_XATTR_MAGIC); header->h_refcount = cpu_to_le32(1); } return txattr_addr; fail: kzfree(txattr_addr); return NULL; } static inline int write_all_xattrs(struct inode *inode, __u32 hsize, void *txattr_addr, struct page *ipage) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); size_t inline_size = 0; void *xattr_addr; struct page *xpage; nid_t new_nid = 0; int err; inline_size = inline_xattr_size(inode); if (hsize > inline_size && !F2FS_I(inode)->i_xattr_nid) if (!alloc_nid(sbi, &new_nid)) return -ENOSPC; /* write to inline xattr */ if (inline_size) { struct page *page = NULL; void *inline_addr; if (ipage) { inline_addr = inline_xattr_addr(ipage); f2fs_wait_on_page_writeback(ipage, NODE); } else { page = get_node_page(sbi, inode->i_ino); if (IS_ERR(page)) { alloc_nid_failed(sbi, new_nid); return PTR_ERR(page); } inline_addr = inline_xattr_addr(page); f2fs_wait_on_page_writeback(page, NODE); } memcpy(inline_addr, txattr_addr, inline_size); f2fs_put_page(page, 1); /* no need to use xattr node block */ if (hsize <= inline_size) { err = truncate_xattr_node(inode, ipage); alloc_nid_failed(sbi, new_nid); return err; } } /* write to xattr node block */ if (F2FS_I(inode)->i_xattr_nid) { xpage = get_node_page(sbi, F2FS_I(inode)->i_xattr_nid); if (IS_ERR(xpage)) { alloc_nid_failed(sbi, new_nid); return PTR_ERR(xpage); } f2fs_bug_on(sbi, new_nid); f2fs_wait_on_page_writeback(xpage, NODE); } else { struct dnode_of_data dn; set_new_dnode(&dn, inode, NULL, NULL, new_nid); xpage = new_node_page(&dn, XATTR_NODE_OFFSET, ipage); if (IS_ERR(xpage)) { alloc_nid_failed(sbi, new_nid); return PTR_ERR(xpage); } alloc_nid_done(sbi, new_nid); } xattr_addr = page_address(xpage); memcpy(xattr_addr, txattr_addr + inline_size, PAGE_SIZE - sizeof(struct node_footer)); set_page_dirty(xpage); f2fs_put_page(xpage, 1); /* need to checkpoint during fsync */ F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi)); return 0; } int f2fs_getxattr(struct inode *inode, int index, const char *name, void *buffer, size_t buffer_size, struct page *ipage) { struct f2fs_xattr_entry *entry; void *base_addr; int error = 0; size_t size, len; if (name == NULL) return -EINVAL; len = strlen(name); if (len > F2FS_NAME_LEN) return -ERANGE; base_addr = read_all_xattrs(inode, ipage); if (!base_addr) return -ENOMEM; entry = __find_xattr(base_addr, index, len, name); if (IS_XATTR_LAST_ENTRY(entry)) { error = -ENODATA; goto cleanup; } size = le16_to_cpu(entry->e_value_size); if (buffer && size > buffer_size) { error = -ERANGE; goto cleanup; } if (buffer) { char *pval = entry->e_name + entry->e_name_len; memcpy(buffer, pval, size); } error = size; cleanup: kzfree(base_addr); return error; } ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size) { struct inode *inode = d_inode(dentry); struct f2fs_xattr_entry *entry; void *base_addr; int error = 0; size_t rest = buffer_size; base_addr = read_all_xattrs(inode, NULL); if (!base_addr) return -ENOMEM; list_for_each_xattr(entry, base_addr) { const struct xattr_handler *handler = f2fs_xattr_handler(entry->e_name_index); size_t size; if (!handler) continue; size = handler->list(dentry, buffer, rest, entry->e_name, entry->e_name_len, handler->flags); if (buffer && size > rest) { error = -ERANGE; goto cleanup; } if (buffer) buffer += size; rest -= size; } error = buffer_size - rest; cleanup: kzfree(base_addr); return error; } static int __f2fs_setxattr(struct inode *inode, int index, const char *name, const void *value, size_t size, struct page *ipage, int flags) { struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_xattr_entry *here, *last; void *base_addr; int found, newsize; size_t len; __u32 new_hsize; int error = -ENOMEM; if (name == NULL) return -EINVAL; if (value == NULL) size = 0; len = strlen(name); if (len > F2FS_NAME_LEN || size > MAX_VALUE_LEN(inode)) return -ERANGE; base_addr = read_all_xattrs(inode, ipage); if (!base_addr) goto exit; /* find entry with wanted name. */ here = __find_xattr(base_addr, index, len, name); found = IS_XATTR_LAST_ENTRY(here) ? 0 : 1; if ((flags & XATTR_REPLACE) && !found) { error = -ENODATA; goto exit; } else if ((flags & XATTR_CREATE) && found) { error = -EEXIST; goto exit; } last = here; while (!IS_XATTR_LAST_ENTRY(last)) last = XATTR_NEXT_ENTRY(last); newsize = XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) + len + size); /* 1. Check space */ if (value) { int free; /* * If value is NULL, it is remove operation. * In case of update operation, we calculate free. */ free = MIN_OFFSET(inode) - ((char *)last - (char *)base_addr); if (found) free = free + ENTRY_SIZE(here); if (unlikely(free < newsize)) { error = -ENOSPC; goto exit; } } /* 2. Remove old entry */ if (found) { /* * If entry is found, remove old entry. * If not found, remove operation is not needed. */ struct f2fs_xattr_entry *next = XATTR_NEXT_ENTRY(here); int oldsize = ENTRY_SIZE(here); memmove(here, next, (char *)last - (char *)next); last = (struct f2fs_xattr_entry *)((char *)last - oldsize); memset(last, 0, oldsize); } new_hsize = (char *)last - (char *)base_addr; /* 3. Write new entry */ if (value) { char *pval; /* * Before we come here, old entry is removed. * We just write new entry. */ memset(last, 0, newsize); last->e_name_index = index; last->e_name_len = len; memcpy(last->e_name, name, len); pval = last->e_name + len; memcpy(pval, value, size); last->e_value_size = cpu_to_le16(size); new_hsize += newsize; } error = write_all_xattrs(inode, new_hsize, base_addr, ipage); if (error) goto exit; if (is_inode_flag_set(fi, FI_ACL_MODE)) { inode->i_mode = fi->i_acl_mode; inode->i_ctime = CURRENT_TIME; clear_inode_flag(fi, FI_ACL_MODE); } if (ipage) update_inode(inode, ipage); else update_inode_page(inode); exit: kzfree(base_addr); return error; } int f2fs_setxattr(struct inode *inode, int index, const char *name, const void *value, size_t size, struct page *ipage, int flags) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); int err; /* this case is only from init_inode_metadata */ if (ipage) return __f2fs_setxattr(inode, index, name, value, size, ipage, flags); f2fs_balance_fs(sbi); f2fs_lock_op(sbi); /* protect xattr_ver */ down_write(&F2FS_I(inode)->i_sem); err = __f2fs_setxattr(inode, index, name, value, size, ipage, flags); up_write(&F2FS_I(inode)->i_sem); f2fs_unlock_op(sbi); return err; }