/* * Copyright (c) 2013, Kenneth MacKay * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <linux/random.h> #include "ecc.h" /* 256-bit curve */ #define ECC_BYTES 32 #define MAX_TRIES 16 /* Number of u64's needed */ #define NUM_ECC_DIGITS (ECC_BYTES / 8) struct ecc_point { u64 x[NUM_ECC_DIGITS]; u64 y[NUM_ECC_DIGITS]; }; typedef struct { u64 m_low; u64 m_high; } uint128_t; #define CURVE_P_32 { 0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull, \ 0x0000000000000000ull, 0xFFFFFFFF00000001ull } #define CURVE_G_32 { \ { 0xF4A13945D898C296ull, 0x77037D812DEB33A0ull, \ 0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull }, \ { 0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull, \ 0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull } \ } #define CURVE_N_32 { 0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull, \ 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull } static u64 curve_p[NUM_ECC_DIGITS] = CURVE_P_32; static struct ecc_point curve_g = CURVE_G_32; static u64 curve_n[NUM_ECC_DIGITS] = CURVE_N_32; static void vli_clear(u64 *vli) { int i; for (i = 0; i < NUM_ECC_DIGITS; i++) vli[i] = 0; } /* Returns true if vli == 0, false otherwise. */ static bool vli_is_zero(const u64 *vli) { int i; for (i = 0; i < NUM_ECC_DIGITS; i++) { if (vli[i]) return false; } return true; } /* Returns nonzero if bit bit of vli is set. */ static u64 vli_test_bit(const u64 *vli, unsigned int bit) { return (vli[bit / 64] & ((u64) 1 << (bit % 64))); } /* Counts the number of 64-bit "digits" in vli. */ static unsigned int vli_num_digits(const u64 *vli) { int i; /* Search from the end until we find a non-zero digit. * We do it in reverse because we expect that most digits will * be nonzero. */ for (i = NUM_ECC_DIGITS - 1; i >= 0 && vli[i] == 0; i--); return (i + 1); } /* Counts the number of bits required for vli. */ static unsigned int vli_num_bits(const u64 *vli) { unsigned int i, num_digits; u64 digit; num_digits = vli_num_digits(vli); if (num_digits == 0) return 0; digit = vli[num_digits - 1]; for (i = 0; digit; i++) digit >>= 1; return ((num_digits - 1) * 64 + i); } /* Sets dest = src. */ static void vli_set(u64 *dest, const u64 *src) { int i; for (i = 0; i < NUM_ECC_DIGITS; i++) dest[i] = src[i]; } /* Returns sign of left - right. */ static int vli_cmp(const u64 *left, const u64 *right) { int i; for (i = NUM_ECC_DIGITS - 1; i >= 0; i--) { if (left[i] > right[i]) return 1; else if (left[i] < right[i]) return -1; } return 0; } /* Computes result = in << c, returning carry. Can modify in place * (if result == in). 0 < shift < 64. */ static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift) { u64 carry = 0; int i; for (i = 0; i < NUM_ECC_DIGITS; i++) { u64 temp = in[i]; result[i] = (temp << shift) | carry; carry = temp >> (64 - shift); } return carry; } /* Computes vli = vli >> 1. */ static void vli_rshift1(u64 *vli) { u64 *end = vli; u64 carry = 0; vli += NUM_ECC_DIGITS; while (vli-- > end) { u64 temp = *vli; *vli = (temp >> 1) | carry; carry = temp << 63; } } /* Computes result = left + right, returning carry. Can modify in place. */ static u64 vli_add(u64 *result, const u64 *left, const u64 *right) { u64 carry = 0; int i; for (i = 0; i < NUM_ECC_DIGITS; i++) { u64 sum; sum = left[i] + right[i] + carry; if (sum != left[i]) carry = (sum < left[i]); result[i] = sum; } return carry; } /* Computes result = left - right, returning borrow. Can modify in place. */ static u64 vli_sub(u64 *result, const u64 *left, const u64 *right) { u64 borrow = 0; int i; for (i = 0; i < NUM_ECC_DIGITS; i++) { u64 diff; diff = left[i] - right[i] - borrow; if (diff != left[i]) borrow = (diff > left[i]); result[i] = diff; } return borrow; } static uint128_t mul_64_64(u64 left, u64 right) { u64 a0 = left & 0xffffffffull; u64 a1 = left >> 32; u64 b0 = right & 0xffffffffull; u64 b1 = right >> 32; u64 m0 = a0 * b0; u64 m1 = a0 * b1; u64 m2 = a1 * b0; u64 m3 = a1 * b1; uint128_t result; m2 += (m0 >> 32); m2 += m1; /* Overflow */ if (m2 < m1) m3 += 0x100000000ull; result.m_low = (m0 & 0xffffffffull) | (m2 << 32); result.m_high = m3 + (m2 >> 32); return result; } static uint128_t add_128_128(uint128_t a, uint128_t b) { uint128_t result; result.m_low = a.m_low + b.m_low; result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low); return result; } static void vli_mult(u64 *result, const u64 *left, const u64 *right) { uint128_t r01 = { 0, 0 }; u64 r2 = 0; unsigned int i, k; /* Compute each digit of result in sequence, maintaining the * carries. */ for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) { unsigned int min; if (k < NUM_ECC_DIGITS) min = 0; else min = (k + 1) - NUM_ECC_DIGITS; for (i = min; i <= k && i < NUM_ECC_DIGITS; i++) { uint128_t product; product = mul_64_64(left[i], right[k - i]); r01 = add_128_128(r01, product); r2 += (r01.m_high < product.m_high); } result[k] = r01.m_low; r01.m_low = r01.m_high; r01.m_high = r2; r2 = 0; } result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low; } static void vli_square(u64 *result, const u64 *left) { uint128_t r01 = { 0, 0 }; u64 r2 = 0; int i, k; for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) { unsigned int min; if (k < NUM_ECC_DIGITS) min = 0; else min = (k + 1) - NUM_ECC_DIGITS; for (i = min; i <= k && i <= k - i; i++) { uint128_t product; product = mul_64_64(left[i], left[k - i]); if (i < k - i) { r2 += product.m_high >> 63; product.m_high = (product.m_high << 1) | (product.m_low >> 63); product.m_low <<= 1; } r01 = add_128_128(r01, product); r2 += (r01.m_high < product.m_high); } result[k] = r01.m_low; r01.m_low = r01.m_high; r01.m_high = r2; r2 = 0; } result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low; } /* Computes result = (left + right) % mod. * Assumes that left < mod and right < mod, result != mod. */ static void vli_mod_add(u64 *result, const u64 *left, const u64 *right, const u64 *mod) { u64 carry; carry = vli_add(result, left, right); /* result > mod (result = mod + remainder), so subtract mod to * get remainder. */ if (carry || vli_cmp(result, mod) >= 0) vli_sub(result, result, mod); } /* Computes result = (left - right) % mod. * Assumes that left < mod and right < mod, result != mod. */ static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right, const u64 *mod) { u64 borrow = vli_sub(result, left, right); /* In this case, p_result == -diff == (max int) - diff. * Since -x % d == d - x, we can get the correct result from * result + mod (with overflow). */ if (borrow) vli_add(result, result, mod); } /* Computes result = product % curve_p from http://www.nsa.gov/ia/_files/nist-routines.pdf */ static void vli_mmod_fast(u64 *result, const u64 *product) { u64 tmp[NUM_ECC_DIGITS]; int carry; /* t */ vli_set(result, product); /* s1 */ tmp[0] = 0; tmp[1] = product[5] & 0xffffffff00000000ull; tmp[2] = product[6]; tmp[3] = product[7]; carry = vli_lshift(tmp, tmp, 1); carry += vli_add(result, result, tmp); /* s2 */ tmp[1] = product[6] << 32; tmp[2] = (product[6] >> 32) | (product[7] << 32); tmp[3] = product[7] >> 32; carry += vli_lshift(tmp, tmp, 1); carry += vli_add(result, result, tmp); /* s3 */ tmp[0] = product[4]; tmp[1] = product[5] & 0xffffffff; tmp[2] = 0; tmp[3] = product[7]; carry += vli_add(result, result, tmp); /* s4 */ tmp[0] = (product[4] >> 32) | (product[5] << 32); tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull); tmp[2] = product[7]; tmp[3] = (product[6] >> 32) | (product[4] << 32); carry += vli_add(result, result, tmp); /* d1 */ tmp[0] = (product[5] >> 32) | (product[6] << 32); tmp[1] = (product[6] >> 32); tmp[2] = 0; tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32); carry -= vli_sub(result, result, tmp); /* d2 */ tmp[0] = product[6]; tmp[1] = product[7]; tmp[2] = 0; tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull); carry -= vli_sub(result, result, tmp); /* d3 */ tmp[0] = (product[6] >> 32) | (product[7] << 32); tmp[1] = (product[7] >> 32) | (product[4] << 32); tmp[2] = (product[4] >> 32) | (product[5] << 32); tmp[3] = (product[6] << 32); carry -= vli_sub(result, result, tmp); /* d4 */ tmp[0] = product[7]; tmp[1] = product[4] & 0xffffffff00000000ull; tmp[2] = product[5]; tmp[3] = product[6] & 0xffffffff00000000ull; carry -= vli_sub(result, result, tmp); if (carry < 0) { do { carry += vli_add(result, result, curve_p); } while (carry < 0); } else { while (carry || vli_cmp(curve_p, result) != 1) carry -= vli_sub(result, result, curve_p); } } /* Computes result = (left * right) % curve_p. */ static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right) { u64 product[2 * NUM_ECC_DIGITS]; vli_mult(product, left, right); vli_mmod_fast(result, product); } /* Computes result = left^2 % curve_p. */ static void vli_mod_square_fast(u64 *result, const u64 *left) { u64 product[2 * NUM_ECC_DIGITS]; vli_square(product, left); vli_mmod_fast(result, product); } #define EVEN(vli) (!(vli[0] & 1)) /* Computes result = (1 / p_input) % mod. All VLIs are the same size. * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf */ static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod) { u64 a[NUM_ECC_DIGITS], b[NUM_ECC_DIGITS]; u64 u[NUM_ECC_DIGITS], v[NUM_ECC_DIGITS]; u64 carry; int cmp_result; if (vli_is_zero(input)) { vli_clear(result); return; } vli_set(a, input); vli_set(b, mod); vli_clear(u); u[0] = 1; vli_clear(v); while ((cmp_result = vli_cmp(a, b)) != 0) { carry = 0; if (EVEN(a)) { vli_rshift1(a); if (!EVEN(u)) carry = vli_add(u, u, mod); vli_rshift1(u); if (carry) u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; } else if (EVEN(b)) { vli_rshift1(b); if (!EVEN(v)) carry = vli_add(v, v, mod); vli_rshift1(v); if (carry) v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; } else if (cmp_result > 0) { vli_sub(a, a, b); vli_rshift1(a); if (vli_cmp(u, v) < 0) vli_add(u, u, mod); vli_sub(u, u, v); if (!EVEN(u)) carry = vli_add(u, u, mod); vli_rshift1(u); if (carry) u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; } else { vli_sub(b, b, a); vli_rshift1(b); if (vli_cmp(v, u) < 0) vli_add(v, v, mod); vli_sub(v, v, u); if (!EVEN(v)) carry = vli_add(v, v, mod); vli_rshift1(v); if (carry) v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; } } vli_set(result, u); } /* ------ Point operations ------ */ /* Returns true if p_point is the point at infinity, false otherwise. */ static bool ecc_point_is_zero(const struct ecc_point *point) { return (vli_is_zero(point->x) && vli_is_zero(point->y)); } /* Point multiplication algorithm using Montgomery's ladder with co-Z * coordinates. From http://eprint.iacr.org/2011/338.pdf */ /* Double in place */ static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1) { /* t1 = x, t2 = y, t3 = z */ u64 t4[NUM_ECC_DIGITS]; u64 t5[NUM_ECC_DIGITS]; if (vli_is_zero(z1)) return; vli_mod_square_fast(t4, y1); /* t4 = y1^2 */ vli_mod_mult_fast(t5, x1, t4); /* t5 = x1*y1^2 = A */ vli_mod_square_fast(t4, t4); /* t4 = y1^4 */ vli_mod_mult_fast(y1, y1, z1); /* t2 = y1*z1 = z3 */ vli_mod_square_fast(z1, z1); /* t3 = z1^2 */ vli_mod_add(x1, x1, z1, curve_p); /* t1 = x1 + z1^2 */ vli_mod_add(z1, z1, z1, curve_p); /* t3 = 2*z1^2 */ vli_mod_sub(z1, x1, z1, curve_p); /* t3 = x1 - z1^2 */ vli_mod_mult_fast(x1, x1, z1); /* t1 = x1^2 - z1^4 */ vli_mod_add(z1, x1, x1, curve_p); /* t3 = 2*(x1^2 - z1^4) */ vli_mod_add(x1, x1, z1, curve_p); /* t1 = 3*(x1^2 - z1^4) */ if (vli_test_bit(x1, 0)) { u64 carry = vli_add(x1, x1, curve_p); vli_rshift1(x1); x1[NUM_ECC_DIGITS - 1] |= carry << 63; } else { vli_rshift1(x1); } /* t1 = 3/2*(x1^2 - z1^4) = B */ vli_mod_square_fast(z1, x1); /* t3 = B^2 */ vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - A */ vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - 2A = x3 */ vli_mod_sub(t5, t5, z1, curve_p); /* t5 = A - x3 */ vli_mod_mult_fast(x1, x1, t5); /* t1 = B * (A - x3) */ vli_mod_sub(t4, x1, t4, curve_p); /* t4 = B * (A - x3) - y1^4 = y3 */ vli_set(x1, z1); vli_set(z1, y1); vli_set(y1, t4); } /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ static void apply_z(u64 *x1, u64 *y1, u64 *z) { u64 t1[NUM_ECC_DIGITS]; vli_mod_square_fast(t1, z); /* z^2 */ vli_mod_mult_fast(x1, x1, t1); /* x1 * z^2 */ vli_mod_mult_fast(t1, t1, z); /* z^3 */ vli_mod_mult_fast(y1, y1, t1); /* y1 * z^3 */ } /* P = (x1, y1) => 2P, (x2, y2) => P' */ static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2, u64 *p_initial_z) { u64 z[NUM_ECC_DIGITS]; vli_set(x2, x1); vli_set(y2, y1); vli_clear(z); z[0] = 1; if (p_initial_z) vli_set(z, p_initial_z); apply_z(x1, y1, z); ecc_point_double_jacobian(x1, y1, z); apply_z(x2, y2, z); } /* Input P = (x1, y1, Z), Q = (x2, y2, Z) * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) * or P => P', Q => P + Q */ static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2) { /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ u64 t5[NUM_ECC_DIGITS]; vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */ vli_mod_square_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */ vli_mod_mult_fast(x1, x1, t5); /* t1 = x1*A = B */ vli_mod_mult_fast(x2, x2, t5); /* t3 = x2*A = C */ vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */ vli_mod_square_fast(t5, y2); /* t5 = (y2 - y1)^2 = D */ vli_mod_sub(t5, t5, x1, curve_p); /* t5 = D - B */ vli_mod_sub(t5, t5, x2, curve_p); /* t5 = D - B - C = x3 */ vli_mod_sub(x2, x2, x1, curve_p); /* t3 = C - B */ vli_mod_mult_fast(y1, y1, x2); /* t2 = y1*(C - B) */ vli_mod_sub(x2, x1, t5, curve_p); /* t3 = B - x3 */ vli_mod_mult_fast(y2, y2, x2); /* t4 = (y2 - y1)*(B - x3) */ vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */ vli_set(x2, t5); } /* Input P = (x1, y1, Z), Q = (x2, y2, Z) * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) * or P => P - Q, Q => P + Q */ static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2) { /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ u64 t5[NUM_ECC_DIGITS]; u64 t6[NUM_ECC_DIGITS]; u64 t7[NUM_ECC_DIGITS]; vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */ vli_mod_square_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */ vli_mod_mult_fast(x1, x1, t5); /* t1 = x1*A = B */ vli_mod_mult_fast(x2, x2, t5); /* t3 = x2*A = C */ vli_mod_add(t5, y2, y1, curve_p); /* t4 = y2 + y1 */ vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */ vli_mod_sub(t6, x2, x1, curve_p); /* t6 = C - B */ vli_mod_mult_fast(y1, y1, t6); /* t2 = y1 * (C - B) */ vli_mod_add(t6, x1, x2, curve_p); /* t6 = B + C */ vli_mod_square_fast(x2, y2); /* t3 = (y2 - y1)^2 */ vli_mod_sub(x2, x2, t6, curve_p); /* t3 = x3 */ vli_mod_sub(t7, x1, x2, curve_p); /* t7 = B - x3 */ vli_mod_mult_fast(y2, y2, t7); /* t4 = (y2 - y1)*(B - x3) */ vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */ vli_mod_square_fast(t7, t5); /* t7 = (y2 + y1)^2 = F */ vli_mod_sub(t7, t7, t6, curve_p); /* t7 = x3' */ vli_mod_sub(t6, t7, x1, curve_p); /* t6 = x3' - B */ vli_mod_mult_fast(t6, t6, t5); /* t6 = (y2 + y1)*(x3' - B) */ vli_mod_sub(y1, t6, y1, curve_p); /* t2 = y3' */ vli_set(x1, t7); } static void ecc_point_mult(struct ecc_point *result, const struct ecc_point *point, u64 *scalar, u64 *initial_z, int num_bits) { /* R0 and R1 */ u64 rx[2][NUM_ECC_DIGITS]; u64 ry[2][NUM_ECC_DIGITS]; u64 z[NUM_ECC_DIGITS]; int i, nb; vli_set(rx[1], point->x); vli_set(ry[1], point->y); xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z); for (i = num_bits - 2; i > 0; i--) { nb = !vli_test_bit(scalar, i); xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]); xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]); } nb = !vli_test_bit(scalar, 0); xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]); /* Find final 1/Z value. */ vli_mod_sub(z, rx[1], rx[0], curve_p); /* X1 - X0 */ vli_mod_mult_fast(z, z, ry[1 - nb]); /* Yb * (X1 - X0) */ vli_mod_mult_fast(z, z, point->x); /* xP * Yb * (X1 - X0) */ vli_mod_inv(z, z, curve_p); /* 1 / (xP * Yb * (X1 - X0)) */ vli_mod_mult_fast(z, z, point->y); /* yP / (xP * Yb * (X1 - X0)) */ vli_mod_mult_fast(z, z, rx[1 - nb]); /* Xb * yP / (xP * Yb * (X1 - X0)) */ /* End 1/Z calculation */ xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]); apply_z(rx[0], ry[0], z); vli_set(result->x, rx[0]); vli_set(result->y, ry[0]); } static void ecc_bytes2native(const u8 bytes[ECC_BYTES], u64 native[NUM_ECC_DIGITS]) { int i; for (i = 0; i < NUM_ECC_DIGITS; i++) { const u8 *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i); native[NUM_ECC_DIGITS - 1 - i] = ((u64) digit[0] << 0) | ((u64) digit[1] << 8) | ((u64) digit[2] << 16) | ((u64) digit[3] << 24) | ((u64) digit[4] << 32) | ((u64) digit[5] << 40) | ((u64) digit[6] << 48) | ((u64) digit[7] << 56); } } static void ecc_native2bytes(const u64 native[NUM_ECC_DIGITS], u8 bytes[ECC_BYTES]) { int i; for (i = 0; i < NUM_ECC_DIGITS; i++) { u8 *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i); digit[0] = native[NUM_ECC_DIGITS - 1 - i] >> 0; digit[1] = native[NUM_ECC_DIGITS - 1 - i] >> 8; digit[2] = native[NUM_ECC_DIGITS - 1 - i] >> 16; digit[3] = native[NUM_ECC_DIGITS - 1 - i] >> 24; digit[4] = native[NUM_ECC_DIGITS - 1 - i] >> 32; digit[5] = native[NUM_ECC_DIGITS - 1 - i] >> 40; digit[6] = native[NUM_ECC_DIGITS - 1 - i] >> 48; digit[7] = native[NUM_ECC_DIGITS - 1 - i] >> 56; } } bool ecc_make_key(u8 public_key[64], u8 private_key[32]) { struct ecc_point pk; u64 priv[NUM_ECC_DIGITS]; unsigned int tries = 0; do { if (tries++ >= MAX_TRIES) return false; get_random_bytes(priv, ECC_BYTES); if (vli_is_zero(priv)) continue; /* Make sure the private key is in the range [1, n-1]. */ if (vli_cmp(curve_n, priv) != 1) continue; ecc_point_mult(&pk, &curve_g, priv, NULL, vli_num_bits(priv)); } while (ecc_point_is_zero(&pk)); ecc_native2bytes(priv, private_key); ecc_native2bytes(pk.x, public_key); ecc_native2bytes(pk.y, &public_key[32]); return true; } bool ecdh_shared_secret(const u8 public_key[64], const u8 private_key[32], u8 secret[32]) { u64 priv[NUM_ECC_DIGITS]; u64 rand[NUM_ECC_DIGITS]; struct ecc_point product, pk; get_random_bytes(rand, ECC_BYTES); ecc_bytes2native(public_key, pk.x); ecc_bytes2native(&public_key[32], pk.y); ecc_bytes2native(private_key, priv); ecc_point_mult(&product, &pk, priv, rand, vli_num_bits(priv)); ecc_native2bytes(product.x, secret); return !ecc_point_is_zero(&product); }