/* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Support for INET connection oriented protocols. * * Authors: See the TCP sources * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or(at your option) any later version. */ #include <linux/module.h> #include <linux/jhash.h> #include <net/inet_connection_sock.h> #include <net/inet_hashtables.h> #include <net/inet_timewait_sock.h> #include <net/ip.h> #include <net/route.h> #include <net/tcp_states.h> #include <net/xfrm.h> #include <net/tcp.h> #ifdef INET_CSK_DEBUG const char inet_csk_timer_bug_msg[] = "inet_csk BUG: unknown timer value\n"; EXPORT_SYMBOL(inet_csk_timer_bug_msg); #endif void inet_get_local_port_range(struct net *net, int *low, int *high) { unsigned int seq; do { seq = read_seqbegin(&net->ipv4.ip_local_ports.lock); *low = net->ipv4.ip_local_ports.range[0]; *high = net->ipv4.ip_local_ports.range[1]; } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq)); } EXPORT_SYMBOL(inet_get_local_port_range); int inet_csk_bind_conflict(const struct sock *sk, const struct inet_bind_bucket *tb, bool relax) { struct sock *sk2; int reuse = sk->sk_reuse; int reuseport = sk->sk_reuseport; kuid_t uid = sock_i_uid((struct sock *)sk); /* * Unlike other sk lookup places we do not check * for sk_net here, since _all_ the socks listed * in tb->owners list belong to the same net - the * one this bucket belongs to. */ sk_for_each_bound(sk2, &tb->owners) { if (sk != sk2 && !inet_v6_ipv6only(sk2) && (!sk->sk_bound_dev_if || !sk2->sk_bound_dev_if || sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) { if ((!reuse || !sk2->sk_reuse || sk2->sk_state == TCP_LISTEN) && (!reuseport || !sk2->sk_reuseport || (sk2->sk_state != TCP_TIME_WAIT && !uid_eq(uid, sock_i_uid(sk2))))) { if (!sk2->sk_rcv_saddr || !sk->sk_rcv_saddr || sk2->sk_rcv_saddr == sk->sk_rcv_saddr) break; } if (!relax && reuse && sk2->sk_reuse && sk2->sk_state != TCP_LISTEN) { if (!sk2->sk_rcv_saddr || !sk->sk_rcv_saddr || sk2->sk_rcv_saddr == sk->sk_rcv_saddr) break; } } } return sk2 != NULL; } EXPORT_SYMBOL_GPL(inet_csk_bind_conflict); /* Obtain a reference to a local port for the given sock, * if snum is zero it means select any available local port. */ int inet_csk_get_port(struct sock *sk, unsigned short snum) { struct inet_hashinfo *hashinfo = sk->sk_prot->h.hashinfo; struct inet_bind_hashbucket *head; struct inet_bind_bucket *tb; int ret, attempts = 5; struct net *net = sock_net(sk); int smallest_size = -1, smallest_rover; kuid_t uid = sock_i_uid(sk); local_bh_disable(); if (!snum) { int remaining, rover, low, high; again: inet_get_local_port_range(net, &low, &high); remaining = (high - low) + 1; smallest_rover = rover = prandom_u32() % remaining + low; smallest_size = -1; do { if (inet_is_local_reserved_port(net, rover)) goto next_nolock; head = &hashinfo->bhash[inet_bhashfn(net, rover, hashinfo->bhash_size)]; spin_lock(&head->lock); inet_bind_bucket_for_each(tb, &head->chain) if (net_eq(ib_net(tb), net) && tb->port == rover) { if (((tb->fastreuse > 0 && sk->sk_reuse && sk->sk_state != TCP_LISTEN) || (tb->fastreuseport > 0 && sk->sk_reuseport && uid_eq(tb->fastuid, uid))) && (tb->num_owners < smallest_size || smallest_size == -1)) { smallest_size = tb->num_owners; smallest_rover = rover; if (atomic_read(&hashinfo->bsockets) > (high - low) + 1 && !inet_csk(sk)->icsk_af_ops->bind_conflict(sk, tb, false)) { snum = smallest_rover; goto tb_found; } } if (!inet_csk(sk)->icsk_af_ops->bind_conflict(sk, tb, false)) { snum = rover; goto tb_found; } goto next; } break; next: spin_unlock(&head->lock); next_nolock: if (++rover > high) rover = low; } while (--remaining > 0); /* Exhausted local port range during search? It is not * possible for us to be holding one of the bind hash * locks if this test triggers, because if 'remaining' * drops to zero, we broke out of the do/while loop at * the top level, not from the 'break;' statement. */ ret = 1; if (remaining <= 0) { if (smallest_size != -1) { snum = smallest_rover; goto have_snum; } goto fail; } /* OK, here is the one we will use. HEAD is * non-NULL and we hold it's mutex. */ snum = rover; } else { have_snum: head = &hashinfo->bhash[inet_bhashfn(net, snum, hashinfo->bhash_size)]; spin_lock(&head->lock); inet_bind_bucket_for_each(tb, &head->chain) if (net_eq(ib_net(tb), net) && tb->port == snum) goto tb_found; } tb = NULL; goto tb_not_found; tb_found: if (!hlist_empty(&tb->owners)) { if (sk->sk_reuse == SK_FORCE_REUSE) goto success; if (((tb->fastreuse > 0 && sk->sk_reuse && sk->sk_state != TCP_LISTEN) || (tb->fastreuseport > 0 && sk->sk_reuseport && uid_eq(tb->fastuid, uid))) && smallest_size == -1) { goto success; } else { ret = 1; if (inet_csk(sk)->icsk_af_ops->bind_conflict(sk, tb, true)) { if (((sk->sk_reuse && sk->sk_state != TCP_LISTEN) || (tb->fastreuseport > 0 && sk->sk_reuseport && uid_eq(tb->fastuid, uid))) && smallest_size != -1 && --attempts >= 0) { spin_unlock(&head->lock); goto again; } goto fail_unlock; } } } tb_not_found: ret = 1; if (!tb && (tb = inet_bind_bucket_create(hashinfo->bind_bucket_cachep, net, head, snum)) == NULL) goto fail_unlock; if (hlist_empty(&tb->owners)) { if (sk->sk_reuse && sk->sk_state != TCP_LISTEN) tb->fastreuse = 1; else tb->fastreuse = 0; if (sk->sk_reuseport) { tb->fastreuseport = 1; tb->fastuid = uid; } else tb->fastreuseport = 0; } else { if (tb->fastreuse && (!sk->sk_reuse || sk->sk_state == TCP_LISTEN)) tb->fastreuse = 0; if (tb->fastreuseport && (!sk->sk_reuseport || !uid_eq(tb->fastuid, uid))) tb->fastreuseport = 0; } success: if (!inet_csk(sk)->icsk_bind_hash) inet_bind_hash(sk, tb, snum); WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); ret = 0; fail_unlock: spin_unlock(&head->lock); fail: local_bh_enable(); return ret; } EXPORT_SYMBOL_GPL(inet_csk_get_port); /* * Wait for an incoming connection, avoid race conditions. This must be called * with the socket locked. */ static int inet_csk_wait_for_connect(struct sock *sk, long timeo) { struct inet_connection_sock *icsk = inet_csk(sk); DEFINE_WAIT(wait); int err; /* * True wake-one mechanism for incoming connections: only * one process gets woken up, not the 'whole herd'. * Since we do not 'race & poll' for established sockets * anymore, the common case will execute the loop only once. * * Subtle issue: "add_wait_queue_exclusive()" will be added * after any current non-exclusive waiters, and we know that * it will always _stay_ after any new non-exclusive waiters * because all non-exclusive waiters are added at the * beginning of the wait-queue. As such, it's ok to "drop" * our exclusiveness temporarily when we get woken up without * having to remove and re-insert us on the wait queue. */ for (;;) { prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); release_sock(sk); if (reqsk_queue_empty(&icsk->icsk_accept_queue)) timeo = schedule_timeout(timeo); sched_annotate_sleep(); lock_sock(sk); err = 0; if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) break; err = -EINVAL; if (sk->sk_state != TCP_LISTEN) break; err = sock_intr_errno(timeo); if (signal_pending(current)) break; err = -EAGAIN; if (!timeo) break; } finish_wait(sk_sleep(sk), &wait); return err; } /* * This will accept the next outstanding connection. */ struct sock *inet_csk_accept(struct sock *sk, int flags, int *err) { struct inet_connection_sock *icsk = inet_csk(sk); struct request_sock_queue *queue = &icsk->icsk_accept_queue; struct request_sock *req; struct sock *newsk; int error; lock_sock(sk); /* We need to make sure that this socket is listening, * and that it has something pending. */ error = -EINVAL; if (sk->sk_state != TCP_LISTEN) goto out_err; /* Find already established connection */ if (reqsk_queue_empty(queue)) { long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); /* If this is a non blocking socket don't sleep */ error = -EAGAIN; if (!timeo) goto out_err; error = inet_csk_wait_for_connect(sk, timeo); if (error) goto out_err; } req = reqsk_queue_remove(queue); newsk = req->sk; sk_acceptq_removed(sk); if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener && queue->fastopenq) { spin_lock_bh(&queue->fastopenq->lock); if (tcp_rsk(req)->tfo_listener) { /* We are still waiting for the final ACK from 3WHS * so can't free req now. Instead, we set req->sk to * NULL to signify that the child socket is taken * so reqsk_fastopen_remove() will free the req * when 3WHS finishes (or is aborted). */ req->sk = NULL; req = NULL; } spin_unlock_bh(&queue->fastopenq->lock); } out: release_sock(sk); if (req) reqsk_put(req); return newsk; out_err: newsk = NULL; req = NULL; *err = error; goto out; } EXPORT_SYMBOL(inet_csk_accept); /* * Using different timers for retransmit, delayed acks and probes * We may wish use just one timer maintaining a list of expire jiffies * to optimize. */ void inet_csk_init_xmit_timers(struct sock *sk, void (*retransmit_handler)(unsigned long), void (*delack_handler)(unsigned long), void (*keepalive_handler)(unsigned long)) { struct inet_connection_sock *icsk = inet_csk(sk); setup_timer(&icsk->icsk_retransmit_timer, retransmit_handler, (unsigned long)sk); setup_timer(&icsk->icsk_delack_timer, delack_handler, (unsigned long)sk); setup_timer(&sk->sk_timer, keepalive_handler, (unsigned long)sk); icsk->icsk_pending = icsk->icsk_ack.pending = 0; } EXPORT_SYMBOL(inet_csk_init_xmit_timers); void inet_csk_clear_xmit_timers(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0; sk_stop_timer(sk, &icsk->icsk_retransmit_timer); sk_stop_timer(sk, &icsk->icsk_delack_timer); sk_stop_timer(sk, &sk->sk_timer); } EXPORT_SYMBOL(inet_csk_clear_xmit_timers); void inet_csk_delete_keepalive_timer(struct sock *sk) { sk_stop_timer(sk, &sk->sk_timer); } EXPORT_SYMBOL(inet_csk_delete_keepalive_timer); void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len) { sk_reset_timer(sk, &sk->sk_timer, jiffies + len); } EXPORT_SYMBOL(inet_csk_reset_keepalive_timer); struct dst_entry *inet_csk_route_req(struct sock *sk, struct flowi4 *fl4, const struct request_sock *req) { const struct inet_request_sock *ireq = inet_rsk(req); struct net *net = read_pnet(&ireq->ireq_net); struct ip_options_rcu *opt = ireq->opt; struct rtable *rt; flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, sk->sk_protocol, inet_sk_flowi_flags(sk), (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, ireq->ir_loc_addr, ireq->ir_rmt_port, htons(ireq->ir_num), sock_i_uid(sk)); security_req_classify_flow(req, flowi4_to_flowi(fl4)); rt = ip_route_output_flow(net, fl4, sk); if (IS_ERR(rt)) goto no_route; if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) goto route_err; return &rt->dst; route_err: ip_rt_put(rt); no_route: IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES); return NULL; } EXPORT_SYMBOL_GPL(inet_csk_route_req); struct dst_entry *inet_csk_route_child_sock(struct sock *sk, struct sock *newsk, const struct request_sock *req) { const struct inet_request_sock *ireq = inet_rsk(req); struct net *net = read_pnet(&ireq->ireq_net); struct inet_sock *newinet = inet_sk(newsk); struct ip_options_rcu *opt; struct flowi4 *fl4; struct rtable *rt; fl4 = &newinet->cork.fl.u.ip4; rcu_read_lock(); opt = rcu_dereference(newinet->inet_opt); flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, sk->sk_protocol, inet_sk_flowi_flags(sk), (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, ireq->ir_loc_addr, ireq->ir_rmt_port, htons(ireq->ir_num), sock_i_uid(sk)); security_req_classify_flow(req, flowi4_to_flowi(fl4)); rt = ip_route_output_flow(net, fl4, sk); if (IS_ERR(rt)) goto no_route; if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) goto route_err; rcu_read_unlock(); return &rt->dst; route_err: ip_rt_put(rt); no_route: rcu_read_unlock(); IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES); return NULL; } EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); static inline u32 inet_synq_hash(const __be32 raddr, const __be16 rport, const u32 rnd, const u32 synq_hsize) { return jhash_2words((__force u32)raddr, (__force u32)rport, rnd) & (synq_hsize - 1); } #if IS_ENABLED(CONFIG_IPV6) #define AF_INET_FAMILY(fam) ((fam) == AF_INET) #else #define AF_INET_FAMILY(fam) true #endif /* Note: this is temporary : * req sock will no longer be in listener hash table */ struct request_sock *inet_csk_search_req(struct sock *sk, const __be16 rport, const __be32 raddr, const __be32 laddr) { struct inet_connection_sock *icsk = inet_csk(sk); struct listen_sock *lopt = icsk->icsk_accept_queue.listen_opt; struct request_sock *req; u32 hash = inet_synq_hash(raddr, rport, lopt->hash_rnd, lopt->nr_table_entries); spin_lock(&icsk->icsk_accept_queue.syn_wait_lock); for (req = lopt->syn_table[hash]; req != NULL; req = req->dl_next) { const struct inet_request_sock *ireq = inet_rsk(req); if (ireq->ir_rmt_port == rport && ireq->ir_rmt_addr == raddr && ireq->ir_loc_addr == laddr && AF_INET_FAMILY(req->rsk_ops->family)) { atomic_inc(&req->rsk_refcnt); WARN_ON(req->sk); break; } } spin_unlock(&icsk->icsk_accept_queue.syn_wait_lock); return req; } EXPORT_SYMBOL_GPL(inet_csk_search_req); void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, unsigned long timeout) { struct inet_connection_sock *icsk = inet_csk(sk); struct listen_sock *lopt = icsk->icsk_accept_queue.listen_opt; const u32 h = inet_synq_hash(inet_rsk(req)->ir_rmt_addr, inet_rsk(req)->ir_rmt_port, lopt->hash_rnd, lopt->nr_table_entries); reqsk_queue_hash_req(&icsk->icsk_accept_queue, h, req, timeout); inet_csk_reqsk_queue_added(sk, timeout); } EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add); /* Only thing we need from tcp.h */ extern int sysctl_tcp_synack_retries; /* Decide when to expire the request and when to resend SYN-ACK */ static inline void syn_ack_recalc(struct request_sock *req, const int thresh, const int max_retries, const u8 rskq_defer_accept, int *expire, int *resend) { if (!rskq_defer_accept) { *expire = req->num_timeout >= thresh; *resend = 1; return; } *expire = req->num_timeout >= thresh && (!inet_rsk(req)->acked || req->num_timeout >= max_retries); /* * Do not resend while waiting for data after ACK, * start to resend on end of deferring period to give * last chance for data or ACK to create established socket. */ *resend = !inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept - 1; } int inet_rtx_syn_ack(struct sock *parent, struct request_sock *req) { int err = req->rsk_ops->rtx_syn_ack(parent, req); if (!err) req->num_retrans++; return err; } EXPORT_SYMBOL(inet_rtx_syn_ack); /* return true if req was found in the syn_table[] */ static bool reqsk_queue_unlink(struct request_sock_queue *queue, struct request_sock *req) { struct listen_sock *lopt = queue->listen_opt; struct request_sock **prev; bool found = false; spin_lock(&queue->syn_wait_lock); for (prev = &lopt->syn_table[req->rsk_hash]; *prev != NULL; prev = &(*prev)->dl_next) { if (*prev == req) { *prev = req->dl_next; found = true; break; } } spin_unlock(&queue->syn_wait_lock); if (del_timer(&req->rsk_timer)) reqsk_put(req); return found; } void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) { if (reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req)) { reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); reqsk_put(req); } } EXPORT_SYMBOL(inet_csk_reqsk_queue_drop); static void reqsk_timer_handler(unsigned long data) { struct request_sock *req = (struct request_sock *)data; struct sock *sk_listener = req->rsk_listener; struct inet_connection_sock *icsk = inet_csk(sk_listener); struct request_sock_queue *queue = &icsk->icsk_accept_queue; struct listen_sock *lopt = queue->listen_opt; int qlen, expire = 0, resend = 0; int max_retries, thresh; u8 defer_accept; if (sk_listener->sk_state != TCP_LISTEN || !lopt) { reqsk_put(req); return; } max_retries = icsk->icsk_syn_retries ? : sysctl_tcp_synack_retries; thresh = max_retries; /* Normally all the openreqs are young and become mature * (i.e. converted to established socket) for first timeout. * If synack was not acknowledged for 1 second, it means * one of the following things: synack was lost, ack was lost, * rtt is high or nobody planned to ack (i.e. synflood). * When server is a bit loaded, queue is populated with old * open requests, reducing effective size of queue. * When server is well loaded, queue size reduces to zero * after several minutes of work. It is not synflood, * it is normal operation. The solution is pruning * too old entries overriding normal timeout, when * situation becomes dangerous. * * Essentially, we reserve half of room for young * embrions; and abort old ones without pity, if old * ones are about to clog our table. */ qlen = listen_sock_qlen(lopt); if (qlen >> (lopt->max_qlen_log - 1)) { int young = listen_sock_young(lopt) << 1; while (thresh > 2) { if (qlen < young) break; thresh--; young <<= 1; } } defer_accept = READ_ONCE(queue->rskq_defer_accept); if (defer_accept) max_retries = defer_accept; syn_ack_recalc(req, thresh, max_retries, defer_accept, &expire, &resend); req->rsk_ops->syn_ack_timeout(req); if (!expire && (!resend || !inet_rtx_syn_ack(sk_listener, req) || inet_rsk(req)->acked)) { unsigned long timeo; if (req->num_timeout++ == 0) atomic_inc(&lopt->young_dec); timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX); mod_timer_pinned(&req->rsk_timer, jiffies + timeo); return; } inet_csk_reqsk_queue_drop(sk_listener, req); reqsk_put(req); } void reqsk_queue_hash_req(struct request_sock_queue *queue, u32 hash, struct request_sock *req, unsigned long timeout) { struct listen_sock *lopt = queue->listen_opt; req->num_retrans = 0; req->num_timeout = 0; req->sk = NULL; /* before letting lookups find us, make sure all req fields * are committed to memory and refcnt initialized. */ smp_wmb(); atomic_set(&req->rsk_refcnt, 2); setup_timer(&req->rsk_timer, reqsk_timer_handler, (unsigned long)req); req->rsk_hash = hash; spin_lock(&queue->syn_wait_lock); req->dl_next = lopt->syn_table[hash]; lopt->syn_table[hash] = req; spin_unlock(&queue->syn_wait_lock); mod_timer_pinned(&req->rsk_timer, jiffies + timeout); } EXPORT_SYMBOL(reqsk_queue_hash_req); /** * inet_csk_clone_lock - clone an inet socket, and lock its clone * @sk: the socket to clone * @req: request_sock * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) * * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) */ struct sock *inet_csk_clone_lock(const struct sock *sk, const struct request_sock *req, const gfp_t priority) { struct sock *newsk = sk_clone_lock(sk, priority); if (newsk) { struct inet_connection_sock *newicsk = inet_csk(newsk); newsk->sk_state = TCP_SYN_RECV; newicsk->icsk_bind_hash = NULL; inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port; inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num; inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num); newsk->sk_write_space = sk_stream_write_space; newsk->sk_mark = inet_rsk(req)->ir_mark; atomic64_set(&newsk->sk_cookie, atomic64_read(&inet_rsk(req)->ir_cookie)); newicsk->icsk_retransmits = 0; newicsk->icsk_backoff = 0; newicsk->icsk_probes_out = 0; /* Deinitialize accept_queue to trap illegal accesses. */ memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue)); security_inet_csk_clone(newsk, req); } return newsk; } EXPORT_SYMBOL_GPL(inet_csk_clone_lock); /* * At this point, there should be no process reference to this * socket, and thus no user references at all. Therefore we * can assume the socket waitqueue is inactive and nobody will * try to jump onto it. */ void inet_csk_destroy_sock(struct sock *sk) { WARN_ON(sk->sk_state != TCP_CLOSE); WARN_ON(!sock_flag(sk, SOCK_DEAD)); /* It cannot be in hash table! */ WARN_ON(!sk_unhashed(sk)); /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); sk->sk_prot->destroy(sk); sk_stream_kill_queues(sk); xfrm_sk_free_policy(sk); sk_refcnt_debug_release(sk); percpu_counter_dec(sk->sk_prot->orphan_count); sock_put(sk); } EXPORT_SYMBOL(inet_csk_destroy_sock); /* This function allows to force a closure of a socket after the call to * tcp/dccp_create_openreq_child(). */ void inet_csk_prepare_forced_close(struct sock *sk) __releases(&sk->sk_lock.slock) { /* sk_clone_lock locked the socket and set refcnt to 2 */ bh_unlock_sock(sk); sock_put(sk); /* The below has to be done to allow calling inet_csk_destroy_sock */ sock_set_flag(sk, SOCK_DEAD); percpu_counter_inc(sk->sk_prot->orphan_count); inet_sk(sk)->inet_num = 0; } EXPORT_SYMBOL(inet_csk_prepare_forced_close); int inet_csk_listen_start(struct sock *sk, const int nr_table_entries) { struct inet_sock *inet = inet_sk(sk); struct inet_connection_sock *icsk = inet_csk(sk); int rc = reqsk_queue_alloc(&icsk->icsk_accept_queue, nr_table_entries); if (rc != 0) return rc; sk->sk_max_ack_backlog = 0; sk->sk_ack_backlog = 0; inet_csk_delack_init(sk); /* There is race window here: we announce ourselves listening, * but this transition is still not validated by get_port(). * It is OK, because this socket enters to hash table only * after validation is complete. */ sk->sk_state = TCP_LISTEN; if (!sk->sk_prot->get_port(sk, inet->inet_num)) { inet->inet_sport = htons(inet->inet_num); sk_dst_reset(sk); sk->sk_prot->hash(sk); return 0; } sk->sk_state = TCP_CLOSE; __reqsk_queue_destroy(&icsk->icsk_accept_queue); return -EADDRINUSE; } EXPORT_SYMBOL_GPL(inet_csk_listen_start); /* * This routine closes sockets which have been at least partially * opened, but not yet accepted. */ void inet_csk_listen_stop(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); struct request_sock_queue *queue = &icsk->icsk_accept_queue; struct request_sock *acc_req; struct request_sock *req; /* make all the listen_opt local to us */ acc_req = reqsk_queue_yank_acceptq(queue); /* Following specs, it would be better either to send FIN * (and enter FIN-WAIT-1, it is normal close) * or to send active reset (abort). * Certainly, it is pretty dangerous while synflood, but it is * bad justification for our negligence 8) * To be honest, we are not able to make either * of the variants now. --ANK */ reqsk_queue_destroy(queue); while ((req = acc_req) != NULL) { struct sock *child = req->sk; acc_req = req->dl_next; local_bh_disable(); bh_lock_sock(child); WARN_ON(sock_owned_by_user(child)); sock_hold(child); sk->sk_prot->disconnect(child, O_NONBLOCK); sock_orphan(child); percpu_counter_inc(sk->sk_prot->orphan_count); if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { BUG_ON(tcp_sk(child)->fastopen_rsk != req); BUG_ON(sk != req->rsk_listener); /* Paranoid, to prevent race condition if * an inbound pkt destined for child is * blocked by sock lock in tcp_v4_rcv(). * Also to satisfy an assertion in * tcp_v4_destroy_sock(). */ tcp_sk(child)->fastopen_rsk = NULL; } inet_csk_destroy_sock(child); bh_unlock_sock(child); local_bh_enable(); sock_put(child); sk_acceptq_removed(sk); reqsk_put(req); } if (queue->fastopenq) { /* Free all the reqs queued in rskq_rst_head. */ spin_lock_bh(&queue->fastopenq->lock); acc_req = queue->fastopenq->rskq_rst_head; queue->fastopenq->rskq_rst_head = NULL; spin_unlock_bh(&queue->fastopenq->lock); while ((req = acc_req) != NULL) { acc_req = req->dl_next; reqsk_put(req); } } WARN_ON(sk->sk_ack_backlog); } EXPORT_SYMBOL_GPL(inet_csk_listen_stop); void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr) { struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; const struct inet_sock *inet = inet_sk(sk); sin->sin_family = AF_INET; sin->sin_addr.s_addr = inet->inet_daddr; sin->sin_port = inet->inet_dport; } EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr); #ifdef CONFIG_COMPAT int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { const struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_af_ops->compat_getsockopt) return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname, optval, optlen); return icsk->icsk_af_ops->getsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt); int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname, char __user *optval, unsigned int optlen) { const struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_af_ops->compat_setsockopt) return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname, optval, optlen); return icsk->icsk_af_ops->setsockopt(sk, level, optname, optval, optlen); } EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt); #endif static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) { const struct inet_sock *inet = inet_sk(sk); const struct ip_options_rcu *inet_opt; __be32 daddr = inet->inet_daddr; struct flowi4 *fl4; struct rtable *rt; rcu_read_lock(); inet_opt = rcu_dereference(inet->inet_opt); if (inet_opt && inet_opt->opt.srr) daddr = inet_opt->opt.faddr; fl4 = &fl->u.ip4; rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, inet->inet_dport, inet->inet_sport, sk->sk_protocol, RT_CONN_FLAGS(sk), sk->sk_bound_dev_if); if (IS_ERR(rt)) rt = NULL; if (rt) sk_setup_caps(sk, &rt->dst); rcu_read_unlock(); return &rt->dst; } struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) { struct dst_entry *dst = __sk_dst_check(sk, 0); struct inet_sock *inet = inet_sk(sk); if (!dst) { dst = inet_csk_rebuild_route(sk, &inet->cork.fl); if (!dst) goto out; } dst->ops->update_pmtu(dst, sk, NULL, mtu); dst = __sk_dst_check(sk, 0); if (!dst) dst = inet_csk_rebuild_route(sk, &inet->cork.fl); out: return dst; } EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);