/* * Packet matching code for ARP packets. * * Based heavily, if not almost entirely, upon ip_tables.c framework. * * Some ARP specific bits are: * * Copyright (C) 2002 David S. Miller (davem@redhat.com) * Copyright (C) 2006-2009 Patrick McHardy <kaber@trash.net> * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/capability.h> #include <linux/if_arp.h> #include <linux/kmod.h> #include <linux/vmalloc.h> #include <linux/proc_fs.h> #include <linux/module.h> #include <linux/init.h> #include <linux/mutex.h> #include <linux/err.h> #include <net/compat.h> #include <net/sock.h> #include <asm/uaccess.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_arp/arp_tables.h> #include "../../netfilter/xt_repldata.h" MODULE_LICENSE("GPL"); MODULE_AUTHOR("David S. Miller <davem@redhat.com>"); MODULE_DESCRIPTION("arptables core"); /*#define DEBUG_ARP_TABLES*/ /*#define DEBUG_ARP_TABLES_USER*/ #ifdef DEBUG_ARP_TABLES #define dprintf(format, args...) printk(format , ## args) #else #define dprintf(format, args...) #endif #ifdef DEBUG_ARP_TABLES_USER #define duprintf(format, args...) printk(format , ## args) #else #define duprintf(format, args...) #endif #ifdef CONFIG_NETFILTER_DEBUG #define ARP_NF_ASSERT(x) WARN_ON(!(x)) #else #define ARP_NF_ASSERT(x) #endif void *arpt_alloc_initial_table(const struct xt_table *info) { return xt_alloc_initial_table(arpt, ARPT); } EXPORT_SYMBOL_GPL(arpt_alloc_initial_table); static inline int arp_devaddr_compare(const struct arpt_devaddr_info *ap, const char *hdr_addr, int len) { int i, ret; if (len > ARPT_DEV_ADDR_LEN_MAX) len = ARPT_DEV_ADDR_LEN_MAX; ret = 0; for (i = 0; i < len; i++) ret |= (hdr_addr[i] ^ ap->addr[i]) & ap->mask[i]; return ret != 0; } /* * Unfortunately, _b and _mask are not aligned to an int (or long int) * Some arches dont care, unrolling the loop is a win on them. * For other arches, we only have a 16bit alignement. */ static unsigned long ifname_compare(const char *_a, const char *_b, const char *_mask) { #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS unsigned long ret = ifname_compare_aligned(_a, _b, _mask); #else unsigned long ret = 0; const u16 *a = (const u16 *)_a; const u16 *b = (const u16 *)_b; const u16 *mask = (const u16 *)_mask; int i; for (i = 0; i < IFNAMSIZ/sizeof(u16); i++) ret |= (a[i] ^ b[i]) & mask[i]; #endif return ret; } /* Returns whether packet matches rule or not. */ static inline int arp_packet_match(const struct arphdr *arphdr, struct net_device *dev, const char *indev, const char *outdev, const struct arpt_arp *arpinfo) { const char *arpptr = (char *)(arphdr + 1); const char *src_devaddr, *tgt_devaddr; __be32 src_ipaddr, tgt_ipaddr; long ret; #define FWINV(bool, invflg) ((bool) ^ !!(arpinfo->invflags & (invflg))) if (FWINV((arphdr->ar_op & arpinfo->arpop_mask) != arpinfo->arpop, ARPT_INV_ARPOP)) { dprintf("ARP operation field mismatch.\n"); dprintf("ar_op: %04x info->arpop: %04x info->arpop_mask: %04x\n", arphdr->ar_op, arpinfo->arpop, arpinfo->arpop_mask); return 0; } if (FWINV((arphdr->ar_hrd & arpinfo->arhrd_mask) != arpinfo->arhrd, ARPT_INV_ARPHRD)) { dprintf("ARP hardware address format mismatch.\n"); dprintf("ar_hrd: %04x info->arhrd: %04x info->arhrd_mask: %04x\n", arphdr->ar_hrd, arpinfo->arhrd, arpinfo->arhrd_mask); return 0; } if (FWINV((arphdr->ar_pro & arpinfo->arpro_mask) != arpinfo->arpro, ARPT_INV_ARPPRO)) { dprintf("ARP protocol address format mismatch.\n"); dprintf("ar_pro: %04x info->arpro: %04x info->arpro_mask: %04x\n", arphdr->ar_pro, arpinfo->arpro, arpinfo->arpro_mask); return 0; } if (FWINV((arphdr->ar_hln & arpinfo->arhln_mask) != arpinfo->arhln, ARPT_INV_ARPHLN)) { dprintf("ARP hardware address length mismatch.\n"); dprintf("ar_hln: %02x info->arhln: %02x info->arhln_mask: %02x\n", arphdr->ar_hln, arpinfo->arhln, arpinfo->arhln_mask); return 0; } src_devaddr = arpptr; arpptr += dev->addr_len; memcpy(&src_ipaddr, arpptr, sizeof(u32)); arpptr += sizeof(u32); tgt_devaddr = arpptr; arpptr += dev->addr_len; memcpy(&tgt_ipaddr, arpptr, sizeof(u32)); if (FWINV(arp_devaddr_compare(&arpinfo->src_devaddr, src_devaddr, dev->addr_len), ARPT_INV_SRCDEVADDR) || FWINV(arp_devaddr_compare(&arpinfo->tgt_devaddr, tgt_devaddr, dev->addr_len), ARPT_INV_TGTDEVADDR)) { dprintf("Source or target device address mismatch.\n"); return 0; } if (FWINV((src_ipaddr & arpinfo->smsk.s_addr) != arpinfo->src.s_addr, ARPT_INV_SRCIP) || FWINV(((tgt_ipaddr & arpinfo->tmsk.s_addr) != arpinfo->tgt.s_addr), ARPT_INV_TGTIP)) { dprintf("Source or target IP address mismatch.\n"); dprintf("SRC: %pI4. Mask: %pI4. Target: %pI4.%s\n", &src_ipaddr, &arpinfo->smsk.s_addr, &arpinfo->src.s_addr, arpinfo->invflags & ARPT_INV_SRCIP ? " (INV)" : ""); dprintf("TGT: %pI4 Mask: %pI4 Target: %pI4.%s\n", &tgt_ipaddr, &arpinfo->tmsk.s_addr, &arpinfo->tgt.s_addr, arpinfo->invflags & ARPT_INV_TGTIP ? " (INV)" : ""); return 0; } /* Look for ifname matches. */ ret = ifname_compare(indev, arpinfo->iniface, arpinfo->iniface_mask); if (FWINV(ret != 0, ARPT_INV_VIA_IN)) { dprintf("VIA in mismatch (%s vs %s).%s\n", indev, arpinfo->iniface, arpinfo->invflags&ARPT_INV_VIA_IN ?" (INV)":""); return 0; } ret = ifname_compare(outdev, arpinfo->outiface, arpinfo->outiface_mask); if (FWINV(ret != 0, ARPT_INV_VIA_OUT)) { dprintf("VIA out mismatch (%s vs %s).%s\n", outdev, arpinfo->outiface, arpinfo->invflags&ARPT_INV_VIA_OUT ?" (INV)":""); return 0; } return 1; #undef FWINV } static inline int arp_checkentry(const struct arpt_arp *arp) { if (arp->flags & ~ARPT_F_MASK) { duprintf("Unknown flag bits set: %08X\n", arp->flags & ~ARPT_F_MASK); return 0; } if (arp->invflags & ~ARPT_INV_MASK) { duprintf("Unknown invflag bits set: %08X\n", arp->invflags & ~ARPT_INV_MASK); return 0; } return 1; } static unsigned int arpt_error(struct sk_buff *skb, const struct xt_action_param *par) { net_err_ratelimited("arp_tables: error: '%s'\n", (const char *)par->targinfo); return NF_DROP; } static inline const struct xt_entry_target * arpt_get_target_c(const struct arpt_entry *e) { return arpt_get_target((struct arpt_entry *)e); } static inline struct arpt_entry * get_entry(const void *base, unsigned int offset) { return (struct arpt_entry *)(base + offset); } static inline __pure struct arpt_entry *arpt_next_entry(const struct arpt_entry *entry) { return (void *)entry + entry->next_offset; } unsigned int arpt_do_table(struct sk_buff *skb, unsigned int hook, const struct nf_hook_state *state, struct xt_table *table) { static const char nulldevname[IFNAMSIZ] __attribute__((aligned(sizeof(long)))); unsigned int verdict = NF_DROP; const struct arphdr *arp; struct arpt_entry *e, *back; const char *indev, *outdev; void *table_base; const struct xt_table_info *private; struct xt_action_param acpar; unsigned int addend; if (!pskb_may_pull(skb, arp_hdr_len(skb->dev))) return NF_DROP; indev = state->in ? state->in->name : nulldevname; outdev = state->out ? state->out->name : nulldevname; local_bh_disable(); addend = xt_write_recseq_begin(); private = table->private; /* * Ensure we load private-> members after we've fetched the base * pointer. */ smp_read_barrier_depends(); table_base = private->entries[smp_processor_id()]; e = get_entry(table_base, private->hook_entry[hook]); back = get_entry(table_base, private->underflow[hook]); acpar.in = state->in; acpar.out = state->out; acpar.hooknum = hook; acpar.family = NFPROTO_ARP; acpar.hotdrop = false; arp = arp_hdr(skb); do { const struct xt_entry_target *t; if (!arp_packet_match(arp, skb->dev, indev, outdev, &e->arp)) { e = arpt_next_entry(e); continue; } ADD_COUNTER(e->counters, arp_hdr_len(skb->dev), 1); t = arpt_get_target_c(e); /* Standard target? */ if (!t->u.kernel.target->target) { int v; v = ((struct xt_standard_target *)t)->verdict; if (v < 0) { /* Pop from stack? */ if (v != XT_RETURN) { verdict = (unsigned int)(-v) - 1; break; } e = back; back = get_entry(table_base, back->comefrom); continue; } if (table_base + v != arpt_next_entry(e)) { /* Save old back ptr in next entry */ struct arpt_entry *next = arpt_next_entry(e); next->comefrom = (void *)back - table_base; /* set back pointer to next entry */ back = next; } e = get_entry(table_base, v); continue; } /* Targets which reenter must return * abs. verdicts */ acpar.target = t->u.kernel.target; acpar.targinfo = t->data; verdict = t->u.kernel.target->target(skb, &acpar); /* Target might have changed stuff. */ arp = arp_hdr(skb); if (verdict == XT_CONTINUE) e = arpt_next_entry(e); else /* Verdict */ break; } while (!acpar.hotdrop); xt_write_recseq_end(addend); local_bh_enable(); if (acpar.hotdrop) return NF_DROP; else return verdict; } /* All zeroes == unconditional rule. */ static inline bool unconditional(const struct arpt_arp *arp) { static const struct arpt_arp uncond; return memcmp(arp, &uncond, sizeof(uncond)) == 0; } /* Figures out from what hook each rule can be called: returns 0 if * there are loops. Puts hook bitmask in comefrom. */ static int mark_source_chains(const struct xt_table_info *newinfo, unsigned int valid_hooks, void *entry0) { unsigned int hook; /* No recursion; use packet counter to save back ptrs (reset * to 0 as we leave), and comefrom to save source hook bitmask. */ for (hook = 0; hook < NF_ARP_NUMHOOKS; hook++) { unsigned int pos = newinfo->hook_entry[hook]; struct arpt_entry *e = (struct arpt_entry *)(entry0 + pos); if (!(valid_hooks & (1 << hook))) continue; /* Set initial back pointer. */ e->counters.pcnt = pos; for (;;) { const struct xt_standard_target *t = (void *)arpt_get_target_c(e); int visited = e->comefrom & (1 << hook); if (e->comefrom & (1 << NF_ARP_NUMHOOKS)) { pr_notice("arptables: loop hook %u pos %u %08X.\n", hook, pos, e->comefrom); return 0; } e->comefrom |= ((1 << hook) | (1 << NF_ARP_NUMHOOKS)); /* Unconditional return/END. */ if ((e->target_offset == sizeof(struct arpt_entry) && (strcmp(t->target.u.user.name, XT_STANDARD_TARGET) == 0) && t->verdict < 0 && unconditional(&e->arp)) || visited) { unsigned int oldpos, size; if ((strcmp(t->target.u.user.name, XT_STANDARD_TARGET) == 0) && t->verdict < -NF_MAX_VERDICT - 1) { duprintf("mark_source_chains: bad " "negative verdict (%i)\n", t->verdict); return 0; } /* Return: backtrack through the last * big jump. */ do { e->comefrom ^= (1<<NF_ARP_NUMHOOKS); oldpos = pos; pos = e->counters.pcnt; e->counters.pcnt = 0; /* We're at the start. */ if (pos == oldpos) goto next; e = (struct arpt_entry *) (entry0 + pos); } while (oldpos == pos + e->next_offset); /* Move along one */ size = e->next_offset; e = (struct arpt_entry *) (entry0 + pos + size); e->counters.pcnt = pos; pos += size; } else { int newpos = t->verdict; if (strcmp(t->target.u.user.name, XT_STANDARD_TARGET) == 0 && newpos >= 0) { if (newpos > newinfo->size - sizeof(struct arpt_entry)) { duprintf("mark_source_chains: " "bad verdict (%i)\n", newpos); return 0; } /* This a jump; chase it. */ duprintf("Jump rule %u -> %u\n", pos, newpos); } else { /* ... this is a fallthru */ newpos = pos + e->next_offset; } e = (struct arpt_entry *) (entry0 + newpos); e->counters.pcnt = pos; pos = newpos; } } next: duprintf("Finished chain %u\n", hook); } return 1; } static inline int check_entry(const struct arpt_entry *e, const char *name) { const struct xt_entry_target *t; if (!arp_checkentry(&e->arp)) { duprintf("arp_tables: arp check failed %p %s.\n", e, name); return -EINVAL; } if (e->target_offset + sizeof(struct xt_entry_target) > e->next_offset) return -EINVAL; t = arpt_get_target_c(e); if (e->target_offset + t->u.target_size > e->next_offset) return -EINVAL; return 0; } static inline int check_target(struct arpt_entry *e, const char *name) { struct xt_entry_target *t = arpt_get_target(e); int ret; struct xt_tgchk_param par = { .table = name, .entryinfo = e, .target = t->u.kernel.target, .targinfo = t->data, .hook_mask = e->comefrom, .family = NFPROTO_ARP, }; ret = xt_check_target(&par, t->u.target_size - sizeof(*t), 0, false); if (ret < 0) { duprintf("arp_tables: check failed for `%s'.\n", t->u.kernel.target->name); return ret; } return 0; } static inline int find_check_entry(struct arpt_entry *e, const char *name, unsigned int size) { struct xt_entry_target *t; struct xt_target *target; int ret; ret = check_entry(e, name); if (ret) return ret; t = arpt_get_target(e); target = xt_request_find_target(NFPROTO_ARP, t->u.user.name, t->u.user.revision); if (IS_ERR(target)) { duprintf("find_check_entry: `%s' not found\n", t->u.user.name); ret = PTR_ERR(target); goto out; } t->u.kernel.target = target; ret = check_target(e, name); if (ret) goto err; return 0; err: module_put(t->u.kernel.target->me); out: return ret; } static bool check_underflow(const struct arpt_entry *e) { const struct xt_entry_target *t; unsigned int verdict; if (!unconditional(&e->arp)) return false; t = arpt_get_target_c(e); if (strcmp(t->u.user.name, XT_STANDARD_TARGET) != 0) return false; verdict = ((struct xt_standard_target *)t)->verdict; verdict = -verdict - 1; return verdict == NF_DROP || verdict == NF_ACCEPT; } static inline int check_entry_size_and_hooks(struct arpt_entry *e, struct xt_table_info *newinfo, const unsigned char *base, const unsigned char *limit, const unsigned int *hook_entries, const unsigned int *underflows, unsigned int valid_hooks) { unsigned int h; if ((unsigned long)e % __alignof__(struct arpt_entry) != 0 || (unsigned char *)e + sizeof(struct arpt_entry) >= limit) { duprintf("Bad offset %p\n", e); return -EINVAL; } if (e->next_offset < sizeof(struct arpt_entry) + sizeof(struct xt_entry_target)) { duprintf("checking: element %p size %u\n", e, e->next_offset); return -EINVAL; } /* Check hooks & underflows */ for (h = 0; h < NF_ARP_NUMHOOKS; h++) { if (!(valid_hooks & (1 << h))) continue; if ((unsigned char *)e - base == hook_entries[h]) newinfo->hook_entry[h] = hook_entries[h]; if ((unsigned char *)e - base == underflows[h]) { if (!check_underflow(e)) { pr_err("Underflows must be unconditional and " "use the STANDARD target with " "ACCEPT/DROP\n"); return -EINVAL; } newinfo->underflow[h] = underflows[h]; } } /* Clear counters and comefrom */ e->counters = ((struct xt_counters) { 0, 0 }); e->comefrom = 0; return 0; } static inline void cleanup_entry(struct arpt_entry *e) { struct xt_tgdtor_param par; struct xt_entry_target *t; t = arpt_get_target(e); par.target = t->u.kernel.target; par.targinfo = t->data; par.family = NFPROTO_ARP; if (par.target->destroy != NULL) par.target->destroy(&par); module_put(par.target->me); } /* Checks and translates the user-supplied table segment (held in * newinfo). */ static int translate_table(struct xt_table_info *newinfo, void *entry0, const struct arpt_replace *repl) { struct arpt_entry *iter; unsigned int i; int ret = 0; newinfo->size = repl->size; newinfo->number = repl->num_entries; /* Init all hooks to impossible value. */ for (i = 0; i < NF_ARP_NUMHOOKS; i++) { newinfo->hook_entry[i] = 0xFFFFFFFF; newinfo->underflow[i] = 0xFFFFFFFF; } duprintf("translate_table: size %u\n", newinfo->size); i = 0; /* Walk through entries, checking offsets. */ xt_entry_foreach(iter, entry0, newinfo->size) { ret = check_entry_size_and_hooks(iter, newinfo, entry0, entry0 + repl->size, repl->hook_entry, repl->underflow, repl->valid_hooks); if (ret != 0) break; ++i; if (strcmp(arpt_get_target(iter)->u.user.name, XT_ERROR_TARGET) == 0) ++newinfo->stacksize; } duprintf("translate_table: ARPT_ENTRY_ITERATE gives %d\n", ret); if (ret != 0) return ret; if (i != repl->num_entries) { duprintf("translate_table: %u not %u entries\n", i, repl->num_entries); return -EINVAL; } /* Check hooks all assigned */ for (i = 0; i < NF_ARP_NUMHOOKS; i++) { /* Only hooks which are valid */ if (!(repl->valid_hooks & (1 << i))) continue; if (newinfo->hook_entry[i] == 0xFFFFFFFF) { duprintf("Invalid hook entry %u %u\n", i, repl->hook_entry[i]); return -EINVAL; } if (newinfo->underflow[i] == 0xFFFFFFFF) { duprintf("Invalid underflow %u %u\n", i, repl->underflow[i]); return -EINVAL; } } if (!mark_source_chains(newinfo, repl->valid_hooks, entry0)) { duprintf("Looping hook\n"); return -ELOOP; } /* Finally, each sanity check must pass */ i = 0; xt_entry_foreach(iter, entry0, newinfo->size) { ret = find_check_entry(iter, repl->name, repl->size); if (ret != 0) break; ++i; } if (ret != 0) { xt_entry_foreach(iter, entry0, newinfo->size) { if (i-- == 0) break; cleanup_entry(iter); } return ret; } /* And one copy for every other CPU */ for_each_possible_cpu(i) { if (newinfo->entries[i] && newinfo->entries[i] != entry0) memcpy(newinfo->entries[i], entry0, newinfo->size); } return ret; } static void get_counters(const struct xt_table_info *t, struct xt_counters counters[]) { struct arpt_entry *iter; unsigned int cpu; unsigned int i; for_each_possible_cpu(cpu) { seqcount_t *s = &per_cpu(xt_recseq, cpu); i = 0; xt_entry_foreach(iter, t->entries[cpu], t->size) { u64 bcnt, pcnt; unsigned int start; do { start = read_seqcount_begin(s); bcnt = iter->counters.bcnt; pcnt = iter->counters.pcnt; } while (read_seqcount_retry(s, start)); ADD_COUNTER(counters[i], bcnt, pcnt); ++i; } } } static struct xt_counters *alloc_counters(const struct xt_table *table) { unsigned int countersize; struct xt_counters *counters; const struct xt_table_info *private = table->private; /* We need atomic snapshot of counters: rest doesn't change * (other than comefrom, which userspace doesn't care * about). */ countersize = sizeof(struct xt_counters) * private->number; counters = vzalloc(countersize); if (counters == NULL) return ERR_PTR(-ENOMEM); get_counters(private, counters); return counters; } static int copy_entries_to_user(unsigned int total_size, const struct xt_table *table, void __user *userptr) { unsigned int off, num; const struct arpt_entry *e; struct xt_counters *counters; struct xt_table_info *private = table->private; int ret = 0; void *loc_cpu_entry; counters = alloc_counters(table); if (IS_ERR(counters)) return PTR_ERR(counters); loc_cpu_entry = private->entries[raw_smp_processor_id()]; /* ... then copy entire thing ... */ if (copy_to_user(userptr, loc_cpu_entry, total_size) != 0) { ret = -EFAULT; goto free_counters; } /* FIXME: use iterator macros --RR */ /* ... then go back and fix counters and names */ for (off = 0, num = 0; off < total_size; off += e->next_offset, num++){ const struct xt_entry_target *t; e = (struct arpt_entry *)(loc_cpu_entry + off); if (copy_to_user(userptr + off + offsetof(struct arpt_entry, counters), &counters[num], sizeof(counters[num])) != 0) { ret = -EFAULT; goto free_counters; } t = arpt_get_target_c(e); if (copy_to_user(userptr + off + e->target_offset + offsetof(struct xt_entry_target, u.user.name), t->u.kernel.target->name, strlen(t->u.kernel.target->name)+1) != 0) { ret = -EFAULT; goto free_counters; } } free_counters: vfree(counters); return ret; } #ifdef CONFIG_COMPAT static void compat_standard_from_user(void *dst, const void *src) { int v = *(compat_int_t *)src; if (v > 0) v += xt_compat_calc_jump(NFPROTO_ARP, v); memcpy(dst, &v, sizeof(v)); } static int compat_standard_to_user(void __user *dst, const void *src) { compat_int_t cv = *(int *)src; if (cv > 0) cv -= xt_compat_calc_jump(NFPROTO_ARP, cv); return copy_to_user(dst, &cv, sizeof(cv)) ? -EFAULT : 0; } static int compat_calc_entry(const struct arpt_entry *e, const struct xt_table_info *info, const void *base, struct xt_table_info *newinfo) { const struct xt_entry_target *t; unsigned int entry_offset; int off, i, ret; off = sizeof(struct arpt_entry) - sizeof(struct compat_arpt_entry); entry_offset = (void *)e - base; t = arpt_get_target_c(e); off += xt_compat_target_offset(t->u.kernel.target); newinfo->size -= off; ret = xt_compat_add_offset(NFPROTO_ARP, entry_offset, off); if (ret) return ret; for (i = 0; i < NF_ARP_NUMHOOKS; i++) { if (info->hook_entry[i] && (e < (struct arpt_entry *)(base + info->hook_entry[i]))) newinfo->hook_entry[i] -= off; if (info->underflow[i] && (e < (struct arpt_entry *)(base + info->underflow[i]))) newinfo->underflow[i] -= off; } return 0; } static int compat_table_info(const struct xt_table_info *info, struct xt_table_info *newinfo) { struct arpt_entry *iter; void *loc_cpu_entry; int ret; if (!newinfo || !info) return -EINVAL; /* we dont care about newinfo->entries[] */ memcpy(newinfo, info, offsetof(struct xt_table_info, entries)); newinfo->initial_entries = 0; loc_cpu_entry = info->entries[raw_smp_processor_id()]; xt_compat_init_offsets(NFPROTO_ARP, info->number); xt_entry_foreach(iter, loc_cpu_entry, info->size) { ret = compat_calc_entry(iter, info, loc_cpu_entry, newinfo); if (ret != 0) return ret; } return 0; } #endif static int get_info(struct net *net, void __user *user, const int *len, int compat) { char name[XT_TABLE_MAXNAMELEN]; struct xt_table *t; int ret; if (*len != sizeof(struct arpt_getinfo)) { duprintf("length %u != %Zu\n", *len, sizeof(struct arpt_getinfo)); return -EINVAL; } if (copy_from_user(name, user, sizeof(name)) != 0) return -EFAULT; name[XT_TABLE_MAXNAMELEN-1] = '\0'; #ifdef CONFIG_COMPAT if (compat) xt_compat_lock(NFPROTO_ARP); #endif t = try_then_request_module(xt_find_table_lock(net, NFPROTO_ARP, name), "arptable_%s", name); if (!IS_ERR_OR_NULL(t)) { struct arpt_getinfo info; const struct xt_table_info *private = t->private; #ifdef CONFIG_COMPAT struct xt_table_info tmp; if (compat) { ret = compat_table_info(private, &tmp); xt_compat_flush_offsets(NFPROTO_ARP); private = &tmp; } #endif memset(&info, 0, sizeof(info)); info.valid_hooks = t->valid_hooks; memcpy(info.hook_entry, private->hook_entry, sizeof(info.hook_entry)); memcpy(info.underflow, private->underflow, sizeof(info.underflow)); info.num_entries = private->number; info.size = private->size; strcpy(info.name, name); if (copy_to_user(user, &info, *len) != 0) ret = -EFAULT; else ret = 0; xt_table_unlock(t); module_put(t->me); } else ret = t ? PTR_ERR(t) : -ENOENT; #ifdef CONFIG_COMPAT if (compat) xt_compat_unlock(NFPROTO_ARP); #endif return ret; } static int get_entries(struct net *net, struct arpt_get_entries __user *uptr, const int *len) { int ret; struct arpt_get_entries get; struct xt_table *t; if (*len < sizeof(get)) { duprintf("get_entries: %u < %Zu\n", *len, sizeof(get)); return -EINVAL; } if (copy_from_user(&get, uptr, sizeof(get)) != 0) return -EFAULT; if (*len != sizeof(struct arpt_get_entries) + get.size) { duprintf("get_entries: %u != %Zu\n", *len, sizeof(struct arpt_get_entries) + get.size); return -EINVAL; } t = xt_find_table_lock(net, NFPROTO_ARP, get.name); if (!IS_ERR_OR_NULL(t)) { const struct xt_table_info *private = t->private; duprintf("t->private->number = %u\n", private->number); if (get.size == private->size) ret = copy_entries_to_user(private->size, t, uptr->entrytable); else { duprintf("get_entries: I've got %u not %u!\n", private->size, get.size); ret = -EAGAIN; } module_put(t->me); xt_table_unlock(t); } else ret = t ? PTR_ERR(t) : -ENOENT; return ret; } static int __do_replace(struct net *net, const char *name, unsigned int valid_hooks, struct xt_table_info *newinfo, unsigned int num_counters, void __user *counters_ptr) { int ret; struct xt_table *t; struct xt_table_info *oldinfo; struct xt_counters *counters; void *loc_cpu_old_entry; struct arpt_entry *iter; ret = 0; counters = vzalloc(num_counters * sizeof(struct xt_counters)); if (!counters) { ret = -ENOMEM; goto out; } t = try_then_request_module(xt_find_table_lock(net, NFPROTO_ARP, name), "arptable_%s", name); if (IS_ERR_OR_NULL(t)) { ret = t ? PTR_ERR(t) : -ENOENT; goto free_newinfo_counters_untrans; } /* You lied! */ if (valid_hooks != t->valid_hooks) { duprintf("Valid hook crap: %08X vs %08X\n", valid_hooks, t->valid_hooks); ret = -EINVAL; goto put_module; } oldinfo = xt_replace_table(t, num_counters, newinfo, &ret); if (!oldinfo) goto put_module; /* Update module usage count based on number of rules */ duprintf("do_replace: oldnum=%u, initnum=%u, newnum=%u\n", oldinfo->number, oldinfo->initial_entries, newinfo->number); if ((oldinfo->number > oldinfo->initial_entries) || (newinfo->number <= oldinfo->initial_entries)) module_put(t->me); if ((oldinfo->number > oldinfo->initial_entries) && (newinfo->number <= oldinfo->initial_entries)) module_put(t->me); /* Get the old counters, and synchronize with replace */ get_counters(oldinfo, counters); /* Decrease module usage counts and free resource */ loc_cpu_old_entry = oldinfo->entries[raw_smp_processor_id()]; xt_entry_foreach(iter, loc_cpu_old_entry, oldinfo->size) cleanup_entry(iter); xt_free_table_info(oldinfo); if (copy_to_user(counters_ptr, counters, sizeof(struct xt_counters) * num_counters) != 0) { /* Silent error, can't fail, new table is already in place */ net_warn_ratelimited("arptables: counters copy to user failed while replacing table\n"); } vfree(counters); xt_table_unlock(t); return ret; put_module: module_put(t->me); xt_table_unlock(t); free_newinfo_counters_untrans: vfree(counters); out: return ret; } static int do_replace(struct net *net, const void __user *user, unsigned int len) { int ret; struct arpt_replace tmp; struct xt_table_info *newinfo; void *loc_cpu_entry; struct arpt_entry *iter; if (copy_from_user(&tmp, user, sizeof(tmp)) != 0) return -EFAULT; /* overflow check */ if (tmp.num_counters >= INT_MAX / sizeof(struct xt_counters)) return -ENOMEM; if (tmp.num_counters == 0) return -EINVAL; tmp.name[sizeof(tmp.name)-1] = 0; newinfo = xt_alloc_table_info(tmp.size); if (!newinfo) return -ENOMEM; /* choose the copy that is on our node/cpu */ loc_cpu_entry = newinfo->entries[raw_smp_processor_id()]; if (copy_from_user(loc_cpu_entry, user + sizeof(tmp), tmp.size) != 0) { ret = -EFAULT; goto free_newinfo; } ret = translate_table(newinfo, loc_cpu_entry, &tmp); if (ret != 0) goto free_newinfo; duprintf("arp_tables: Translated table\n"); ret = __do_replace(net, tmp.name, tmp.valid_hooks, newinfo, tmp.num_counters, tmp.counters); if (ret) goto free_newinfo_untrans; return 0; free_newinfo_untrans: xt_entry_foreach(iter, loc_cpu_entry, newinfo->size) cleanup_entry(iter); free_newinfo: xt_free_table_info(newinfo); return ret; } static int do_add_counters(struct net *net, const void __user *user, unsigned int len, int compat) { unsigned int i, curcpu; struct xt_counters_info tmp; struct xt_counters *paddc; unsigned int num_counters; const char *name; int size; void *ptmp; struct xt_table *t; const struct xt_table_info *private; int ret = 0; void *loc_cpu_entry; struct arpt_entry *iter; unsigned int addend; #ifdef CONFIG_COMPAT struct compat_xt_counters_info compat_tmp; if (compat) { ptmp = &compat_tmp; size = sizeof(struct compat_xt_counters_info); } else #endif { ptmp = &tmp; size = sizeof(struct xt_counters_info); } if (copy_from_user(ptmp, user, size) != 0) return -EFAULT; #ifdef CONFIG_COMPAT if (compat) { num_counters = compat_tmp.num_counters; name = compat_tmp.name; } else #endif { num_counters = tmp.num_counters; name = tmp.name; } if (len != size + num_counters * sizeof(struct xt_counters)) return -EINVAL; paddc = vmalloc(len - size); if (!paddc) return -ENOMEM; if (copy_from_user(paddc, user + size, len - size) != 0) { ret = -EFAULT; goto free; } t = xt_find_table_lock(net, NFPROTO_ARP, name); if (IS_ERR_OR_NULL(t)) { ret = t ? PTR_ERR(t) : -ENOENT; goto free; } local_bh_disable(); private = t->private; if (private->number != num_counters) { ret = -EINVAL; goto unlock_up_free; } i = 0; /* Choose the copy that is on our node */ curcpu = smp_processor_id(); loc_cpu_entry = private->entries[curcpu]; addend = xt_write_recseq_begin(); xt_entry_foreach(iter, loc_cpu_entry, private->size) { ADD_COUNTER(iter->counters, paddc[i].bcnt, paddc[i].pcnt); ++i; } xt_write_recseq_end(addend); unlock_up_free: local_bh_enable(); xt_table_unlock(t); module_put(t->me); free: vfree(paddc); return ret; } #ifdef CONFIG_COMPAT static inline void compat_release_entry(struct compat_arpt_entry *e) { struct xt_entry_target *t; t = compat_arpt_get_target(e); module_put(t->u.kernel.target->me); } static inline int check_compat_entry_size_and_hooks(struct compat_arpt_entry *e, struct xt_table_info *newinfo, unsigned int *size, const unsigned char *base, const unsigned char *limit, const unsigned int *hook_entries, const unsigned int *underflows, const char *name) { struct xt_entry_target *t; struct xt_target *target; unsigned int entry_offset; int ret, off, h; duprintf("check_compat_entry_size_and_hooks %p\n", e); if ((unsigned long)e % __alignof__(struct compat_arpt_entry) != 0 || (unsigned char *)e + sizeof(struct compat_arpt_entry) >= limit) { duprintf("Bad offset %p, limit = %p\n", e, limit); return -EINVAL; } if (e->next_offset < sizeof(struct compat_arpt_entry) + sizeof(struct compat_xt_entry_target)) { duprintf("checking: element %p size %u\n", e, e->next_offset); return -EINVAL; } /* For purposes of check_entry casting the compat entry is fine */ ret = check_entry((struct arpt_entry *)e, name); if (ret) return ret; off = sizeof(struct arpt_entry) - sizeof(struct compat_arpt_entry); entry_offset = (void *)e - (void *)base; t = compat_arpt_get_target(e); target = xt_request_find_target(NFPROTO_ARP, t->u.user.name, t->u.user.revision); if (IS_ERR(target)) { duprintf("check_compat_entry_size_and_hooks: `%s' not found\n", t->u.user.name); ret = PTR_ERR(target); goto out; } t->u.kernel.target = target; off += xt_compat_target_offset(target); *size += off; ret = xt_compat_add_offset(NFPROTO_ARP, entry_offset, off); if (ret) goto release_target; /* Check hooks & underflows */ for (h = 0; h < NF_ARP_NUMHOOKS; h++) { if ((unsigned char *)e - base == hook_entries[h]) newinfo->hook_entry[h] = hook_entries[h]; if ((unsigned char *)e - base == underflows[h]) newinfo->underflow[h] = underflows[h]; } /* Clear counters and comefrom */ memset(&e->counters, 0, sizeof(e->counters)); e->comefrom = 0; return 0; release_target: module_put(t->u.kernel.target->me); out: return ret; } static int compat_copy_entry_from_user(struct compat_arpt_entry *e, void **dstptr, unsigned int *size, const char *name, struct xt_table_info *newinfo, unsigned char *base) { struct xt_entry_target *t; struct xt_target *target; struct arpt_entry *de; unsigned int origsize; int ret, h; ret = 0; origsize = *size; de = (struct arpt_entry *)*dstptr; memcpy(de, e, sizeof(struct arpt_entry)); memcpy(&de->counters, &e->counters, sizeof(e->counters)); *dstptr += sizeof(struct arpt_entry); *size += sizeof(struct arpt_entry) - sizeof(struct compat_arpt_entry); de->target_offset = e->target_offset - (origsize - *size); t = compat_arpt_get_target(e); target = t->u.kernel.target; xt_compat_target_from_user(t, dstptr, size); de->next_offset = e->next_offset - (origsize - *size); for (h = 0; h < NF_ARP_NUMHOOKS; h++) { if ((unsigned char *)de - base < newinfo->hook_entry[h]) newinfo->hook_entry[h] -= origsize - *size; if ((unsigned char *)de - base < newinfo->underflow[h]) newinfo->underflow[h] -= origsize - *size; } return ret; } static int translate_compat_table(const char *name, unsigned int valid_hooks, struct xt_table_info **pinfo, void **pentry0, unsigned int total_size, unsigned int number, unsigned int *hook_entries, unsigned int *underflows) { unsigned int i, j; struct xt_table_info *newinfo, *info; void *pos, *entry0, *entry1; struct compat_arpt_entry *iter0; struct arpt_entry *iter1; unsigned int size; int ret = 0; info = *pinfo; entry0 = *pentry0; size = total_size; info->number = number; /* Init all hooks to impossible value. */ for (i = 0; i < NF_ARP_NUMHOOKS; i++) { info->hook_entry[i] = 0xFFFFFFFF; info->underflow[i] = 0xFFFFFFFF; } duprintf("translate_compat_table: size %u\n", info->size); j = 0; xt_compat_lock(NFPROTO_ARP); xt_compat_init_offsets(NFPROTO_ARP, number); /* Walk through entries, checking offsets. */ xt_entry_foreach(iter0, entry0, total_size) { ret = check_compat_entry_size_and_hooks(iter0, info, &size, entry0, entry0 + total_size, hook_entries, underflows, name); if (ret != 0) goto out_unlock; ++j; } ret = -EINVAL; if (j != number) { duprintf("translate_compat_table: %u not %u entries\n", j, number); goto out_unlock; } /* Check hooks all assigned */ for (i = 0; i < NF_ARP_NUMHOOKS; i++) { /* Only hooks which are valid */ if (!(valid_hooks & (1 << i))) continue; if (info->hook_entry[i] == 0xFFFFFFFF) { duprintf("Invalid hook entry %u %u\n", i, hook_entries[i]); goto out_unlock; } if (info->underflow[i] == 0xFFFFFFFF) { duprintf("Invalid underflow %u %u\n", i, underflows[i]); goto out_unlock; } } ret = -ENOMEM; newinfo = xt_alloc_table_info(size); if (!newinfo) goto out_unlock; newinfo->number = number; for (i = 0; i < NF_ARP_NUMHOOKS; i++) { newinfo->hook_entry[i] = info->hook_entry[i]; newinfo->underflow[i] = info->underflow[i]; } entry1 = newinfo->entries[raw_smp_processor_id()]; pos = entry1; size = total_size; xt_entry_foreach(iter0, entry0, total_size) { ret = compat_copy_entry_from_user(iter0, &pos, &size, name, newinfo, entry1); if (ret != 0) break; } xt_compat_flush_offsets(NFPROTO_ARP); xt_compat_unlock(NFPROTO_ARP); if (ret) goto free_newinfo; ret = -ELOOP; if (!mark_source_chains(newinfo, valid_hooks, entry1)) goto free_newinfo; i = 0; xt_entry_foreach(iter1, entry1, newinfo->size) { ret = check_target(iter1, name); if (ret != 0) break; ++i; if (strcmp(arpt_get_target(iter1)->u.user.name, XT_ERROR_TARGET) == 0) ++newinfo->stacksize; } if (ret) { /* * The first i matches need cleanup_entry (calls ->destroy) * because they had called ->check already. The other j-i * entries need only release. */ int skip = i; j -= i; xt_entry_foreach(iter0, entry0, newinfo->size) { if (skip-- > 0) continue; if (j-- == 0) break; compat_release_entry(iter0); } xt_entry_foreach(iter1, entry1, newinfo->size) { if (i-- == 0) break; cleanup_entry(iter1); } xt_free_table_info(newinfo); return ret; } /* And one copy for every other CPU */ for_each_possible_cpu(i) if (newinfo->entries[i] && newinfo->entries[i] != entry1) memcpy(newinfo->entries[i], entry1, newinfo->size); *pinfo = newinfo; *pentry0 = entry1; xt_free_table_info(info); return 0; free_newinfo: xt_free_table_info(newinfo); out: xt_entry_foreach(iter0, entry0, total_size) { if (j-- == 0) break; compat_release_entry(iter0); } return ret; out_unlock: xt_compat_flush_offsets(NFPROTO_ARP); xt_compat_unlock(NFPROTO_ARP); goto out; } struct compat_arpt_replace { char name[XT_TABLE_MAXNAMELEN]; u32 valid_hooks; u32 num_entries; u32 size; u32 hook_entry[NF_ARP_NUMHOOKS]; u32 underflow[NF_ARP_NUMHOOKS]; u32 num_counters; compat_uptr_t counters; struct compat_arpt_entry entries[0]; }; static int compat_do_replace(struct net *net, void __user *user, unsigned int len) { int ret; struct compat_arpt_replace tmp; struct xt_table_info *newinfo; void *loc_cpu_entry; struct arpt_entry *iter; if (copy_from_user(&tmp, user, sizeof(tmp)) != 0) return -EFAULT; /* overflow check */ if (tmp.size >= INT_MAX / num_possible_cpus()) return -ENOMEM; if (tmp.num_counters >= INT_MAX / sizeof(struct xt_counters)) return -ENOMEM; if (tmp.num_counters == 0) return -EINVAL; tmp.name[sizeof(tmp.name)-1] = 0; newinfo = xt_alloc_table_info(tmp.size); if (!newinfo) return -ENOMEM; /* choose the copy that is on our node/cpu */ loc_cpu_entry = newinfo->entries[raw_smp_processor_id()]; if (copy_from_user(loc_cpu_entry, user + sizeof(tmp), tmp.size) != 0) { ret = -EFAULT; goto free_newinfo; } ret = translate_compat_table(tmp.name, tmp.valid_hooks, &newinfo, &loc_cpu_entry, tmp.size, tmp.num_entries, tmp.hook_entry, tmp.underflow); if (ret != 0) goto free_newinfo; duprintf("compat_do_replace: Translated table\n"); ret = __do_replace(net, tmp.name, tmp.valid_hooks, newinfo, tmp.num_counters, compat_ptr(tmp.counters)); if (ret) goto free_newinfo_untrans; return 0; free_newinfo_untrans: xt_entry_foreach(iter, loc_cpu_entry, newinfo->size) cleanup_entry(iter); free_newinfo: xt_free_table_info(newinfo); return ret; } static int compat_do_arpt_set_ctl(struct sock *sk, int cmd, void __user *user, unsigned int len) { int ret; if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) return -EPERM; switch (cmd) { case ARPT_SO_SET_REPLACE: ret = compat_do_replace(sock_net(sk), user, len); break; case ARPT_SO_SET_ADD_COUNTERS: ret = do_add_counters(sock_net(sk), user, len, 1); break; default: duprintf("do_arpt_set_ctl: unknown request %i\n", cmd); ret = -EINVAL; } return ret; } static int compat_copy_entry_to_user(struct arpt_entry *e, void __user **dstptr, compat_uint_t *size, struct xt_counters *counters, unsigned int i) { struct xt_entry_target *t; struct compat_arpt_entry __user *ce; u_int16_t target_offset, next_offset; compat_uint_t origsize; int ret; origsize = *size; ce = (struct compat_arpt_entry __user *)*dstptr; if (copy_to_user(ce, e, sizeof(struct arpt_entry)) != 0 || copy_to_user(&ce->counters, &counters[i], sizeof(counters[i])) != 0) return -EFAULT; *dstptr += sizeof(struct compat_arpt_entry); *size -= sizeof(struct arpt_entry) - sizeof(struct compat_arpt_entry); target_offset = e->target_offset - (origsize - *size); t = arpt_get_target(e); ret = xt_compat_target_to_user(t, dstptr, size); if (ret) return ret; next_offset = e->next_offset - (origsize - *size); if (put_user(target_offset, &ce->target_offset) != 0 || put_user(next_offset, &ce->next_offset) != 0) return -EFAULT; return 0; } static int compat_copy_entries_to_user(unsigned int total_size, struct xt_table *table, void __user *userptr) { struct xt_counters *counters; const struct xt_table_info *private = table->private; void __user *pos; unsigned int size; int ret = 0; void *loc_cpu_entry; unsigned int i = 0; struct arpt_entry *iter; counters = alloc_counters(table); if (IS_ERR(counters)) return PTR_ERR(counters); /* choose the copy on our node/cpu */ loc_cpu_entry = private->entries[raw_smp_processor_id()]; pos = userptr; size = total_size; xt_entry_foreach(iter, loc_cpu_entry, total_size) { ret = compat_copy_entry_to_user(iter, &pos, &size, counters, i++); if (ret != 0) break; } vfree(counters); return ret; } struct compat_arpt_get_entries { char name[XT_TABLE_MAXNAMELEN]; compat_uint_t size; struct compat_arpt_entry entrytable[0]; }; static int compat_get_entries(struct net *net, struct compat_arpt_get_entries __user *uptr, int *len) { int ret; struct compat_arpt_get_entries get; struct xt_table *t; if (*len < sizeof(get)) { duprintf("compat_get_entries: %u < %zu\n", *len, sizeof(get)); return -EINVAL; } if (copy_from_user(&get, uptr, sizeof(get)) != 0) return -EFAULT; if (*len != sizeof(struct compat_arpt_get_entries) + get.size) { duprintf("compat_get_entries: %u != %zu\n", *len, sizeof(get) + get.size); return -EINVAL; } xt_compat_lock(NFPROTO_ARP); t = xt_find_table_lock(net, NFPROTO_ARP, get.name); if (!IS_ERR_OR_NULL(t)) { const struct xt_table_info *private = t->private; struct xt_table_info info; duprintf("t->private->number = %u\n", private->number); ret = compat_table_info(private, &info); if (!ret && get.size == info.size) { ret = compat_copy_entries_to_user(private->size, t, uptr->entrytable); } else if (!ret) { duprintf("compat_get_entries: I've got %u not %u!\n", private->size, get.size); ret = -EAGAIN; } xt_compat_flush_offsets(NFPROTO_ARP); module_put(t->me); xt_table_unlock(t); } else ret = t ? PTR_ERR(t) : -ENOENT; xt_compat_unlock(NFPROTO_ARP); return ret; } static int do_arpt_get_ctl(struct sock *, int, void __user *, int *); static int compat_do_arpt_get_ctl(struct sock *sk, int cmd, void __user *user, int *len) { int ret; if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) return -EPERM; switch (cmd) { case ARPT_SO_GET_INFO: ret = get_info(sock_net(sk), user, len, 1); break; case ARPT_SO_GET_ENTRIES: ret = compat_get_entries(sock_net(sk), user, len); break; default: ret = do_arpt_get_ctl(sk, cmd, user, len); } return ret; } #endif static int do_arpt_set_ctl(struct sock *sk, int cmd, void __user *user, unsigned int len) { int ret; if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) return -EPERM; switch (cmd) { case ARPT_SO_SET_REPLACE: ret = do_replace(sock_net(sk), user, len); break; case ARPT_SO_SET_ADD_COUNTERS: ret = do_add_counters(sock_net(sk), user, len, 0); break; default: duprintf("do_arpt_set_ctl: unknown request %i\n", cmd); ret = -EINVAL; } return ret; } static int do_arpt_get_ctl(struct sock *sk, int cmd, void __user *user, int *len) { int ret; if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) return -EPERM; switch (cmd) { case ARPT_SO_GET_INFO: ret = get_info(sock_net(sk), user, len, 0); break; case ARPT_SO_GET_ENTRIES: ret = get_entries(sock_net(sk), user, len); break; case ARPT_SO_GET_REVISION_TARGET: { struct xt_get_revision rev; if (*len != sizeof(rev)) { ret = -EINVAL; break; } if (copy_from_user(&rev, user, sizeof(rev)) != 0) { ret = -EFAULT; break; } rev.name[sizeof(rev.name)-1] = 0; try_then_request_module(xt_find_revision(NFPROTO_ARP, rev.name, rev.revision, 1, &ret), "arpt_%s", rev.name); break; } default: duprintf("do_arpt_get_ctl: unknown request %i\n", cmd); ret = -EINVAL; } return ret; } struct xt_table *arpt_register_table(struct net *net, const struct xt_table *table, const struct arpt_replace *repl) { int ret; struct xt_table_info *newinfo; struct xt_table_info bootstrap = {0}; void *loc_cpu_entry; struct xt_table *new_table; newinfo = xt_alloc_table_info(repl->size); if (!newinfo) { ret = -ENOMEM; goto out; } /* choose the copy on our node/cpu */ loc_cpu_entry = newinfo->entries[raw_smp_processor_id()]; memcpy(loc_cpu_entry, repl->entries, repl->size); ret = translate_table(newinfo, loc_cpu_entry, repl); duprintf("arpt_register_table: translate table gives %d\n", ret); if (ret != 0) goto out_free; new_table = xt_register_table(net, table, &bootstrap, newinfo); if (IS_ERR(new_table)) { ret = PTR_ERR(new_table); goto out_free; } return new_table; out_free: xt_free_table_info(newinfo); out: return ERR_PTR(ret); } void arpt_unregister_table(struct xt_table *table) { struct xt_table_info *private; void *loc_cpu_entry; struct module *table_owner = table->me; struct arpt_entry *iter; private = xt_unregister_table(table); /* Decrease module usage counts and free resources */ loc_cpu_entry = private->entries[raw_smp_processor_id()]; xt_entry_foreach(iter, loc_cpu_entry, private->size) cleanup_entry(iter); if (private->number > private->initial_entries) module_put(table_owner); xt_free_table_info(private); } /* The built-in targets: standard (NULL) and error. */ static struct xt_target arpt_builtin_tg[] __read_mostly = { { .name = XT_STANDARD_TARGET, .targetsize = sizeof(int), .family = NFPROTO_ARP, #ifdef CONFIG_COMPAT .compatsize = sizeof(compat_int_t), .compat_from_user = compat_standard_from_user, .compat_to_user = compat_standard_to_user, #endif }, { .name = XT_ERROR_TARGET, .target = arpt_error, .targetsize = XT_FUNCTION_MAXNAMELEN, .family = NFPROTO_ARP, }, }; static struct nf_sockopt_ops arpt_sockopts = { .pf = PF_INET, .set_optmin = ARPT_BASE_CTL, .set_optmax = ARPT_SO_SET_MAX+1, .set = do_arpt_set_ctl, #ifdef CONFIG_COMPAT .compat_set = compat_do_arpt_set_ctl, #endif .get_optmin = ARPT_BASE_CTL, .get_optmax = ARPT_SO_GET_MAX+1, .get = do_arpt_get_ctl, #ifdef CONFIG_COMPAT .compat_get = compat_do_arpt_get_ctl, #endif .owner = THIS_MODULE, }; static int __net_init arp_tables_net_init(struct net *net) { return xt_proto_init(net, NFPROTO_ARP); } static void __net_exit arp_tables_net_exit(struct net *net) { xt_proto_fini(net, NFPROTO_ARP); } static struct pernet_operations arp_tables_net_ops = { .init = arp_tables_net_init, .exit = arp_tables_net_exit, }; static int __init arp_tables_init(void) { int ret; ret = register_pernet_subsys(&arp_tables_net_ops); if (ret < 0) goto err1; /* No one else will be downing sem now, so we won't sleep */ ret = xt_register_targets(arpt_builtin_tg, ARRAY_SIZE(arpt_builtin_tg)); if (ret < 0) goto err2; /* Register setsockopt */ ret = nf_register_sockopt(&arpt_sockopts); if (ret < 0) goto err4; printk(KERN_INFO "arp_tables: (C) 2002 David S. Miller\n"); return 0; err4: xt_unregister_targets(arpt_builtin_tg, ARRAY_SIZE(arpt_builtin_tg)); err2: unregister_pernet_subsys(&arp_tables_net_ops); err1: return ret; } static void __exit arp_tables_fini(void) { nf_unregister_sockopt(&arpt_sockopts); xt_unregister_targets(arpt_builtin_tg, ARRAY_SIZE(arpt_builtin_tg)); unregister_pernet_subsys(&arp_tables_net_ops); } EXPORT_SYMBOL(arpt_register_table); EXPORT_SYMBOL(arpt_unregister_table); EXPORT_SYMBOL(arpt_do_table); module_init(arp_tables_init); module_exit(arp_tables_fini);