/* * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> * * The filters are packed to hash tables of key nodes * with a set of 32bit key/mask pairs at every node. * Nodes reference next level hash tables etc. * * This scheme is the best universal classifier I managed to * invent; it is not super-fast, but it is not slow (provided you * program it correctly), and general enough. And its relative * speed grows as the number of rules becomes larger. * * It seems that it represents the best middle point between * speed and manageability both by human and by machine. * * It is especially useful for link sharing combined with QoS; * pure RSVP doesn't need such a general approach and can use * much simpler (and faster) schemes, sort of cls_rsvp.c. * * JHS: We should remove the CONFIG_NET_CLS_IND from here * eventually when the meta match extension is made available * * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro> */ #include <linux/module.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/percpu.h> #include <linux/rtnetlink.h> #include <linux/skbuff.h> #include <linux/bitmap.h> #include <net/netlink.h> #include <net/act_api.h> #include <net/pkt_cls.h> struct tc_u_knode { struct tc_u_knode __rcu *next; u32 handle; struct tc_u_hnode __rcu *ht_up; struct tcf_exts exts; #ifdef CONFIG_NET_CLS_IND int ifindex; #endif u8 fshift; struct tcf_result res; struct tc_u_hnode __rcu *ht_down; #ifdef CONFIG_CLS_U32_PERF struct tc_u32_pcnt __percpu *pf; #endif #ifdef CONFIG_CLS_U32_MARK u32 val; u32 mask; u32 __percpu *pcpu_success; #endif struct tcf_proto *tp; struct rcu_head rcu; /* The 'sel' field MUST be the last field in structure to allow for * tc_u32_keys allocated at end of structure. */ struct tc_u32_sel sel; }; struct tc_u_hnode { struct tc_u_hnode __rcu *next; u32 handle; u32 prio; struct tc_u_common *tp_c; int refcnt; unsigned int divisor; struct rcu_head rcu; /* The 'ht' field MUST be the last field in structure to allow for * more entries allocated at end of structure. */ struct tc_u_knode __rcu *ht[1]; }; struct tc_u_common { struct tc_u_hnode __rcu *hlist; struct Qdisc *q; int refcnt; u32 hgenerator; struct rcu_head rcu; }; static inline unsigned int u32_hash_fold(__be32 key, const struct tc_u32_sel *sel, u8 fshift) { unsigned int h = ntohl(key & sel->hmask) >> fshift; return h; } static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res) { struct { struct tc_u_knode *knode; unsigned int off; } stack[TC_U32_MAXDEPTH]; struct tc_u_hnode *ht = rcu_dereference_bh(tp->root); unsigned int off = skb_network_offset(skb); struct tc_u_knode *n; int sdepth = 0; int off2 = 0; int sel = 0; #ifdef CONFIG_CLS_U32_PERF int j; #endif int i, r; next_ht: n = rcu_dereference_bh(ht->ht[sel]); next_knode: if (n) { struct tc_u32_key *key = n->sel.keys; #ifdef CONFIG_CLS_U32_PERF __this_cpu_inc(n->pf->rcnt); j = 0; #endif #ifdef CONFIG_CLS_U32_MARK if ((skb->mark & n->mask) != n->val) { n = rcu_dereference_bh(n->next); goto next_knode; } else { __this_cpu_inc(*n->pcpu_success); } #endif for (i = n->sel.nkeys; i > 0; i--, key++) { int toff = off + key->off + (off2 & key->offmask); __be32 *data, hdata; if (skb_headroom(skb) + toff > INT_MAX) goto out; data = skb_header_pointer(skb, toff, 4, &hdata); if (!data) goto out; if ((*data ^ key->val) & key->mask) { n = rcu_dereference_bh(n->next); goto next_knode; } #ifdef CONFIG_CLS_U32_PERF __this_cpu_inc(n->pf->kcnts[j]); j++; #endif } ht = rcu_dereference_bh(n->ht_down); if (!ht) { check_terminal: if (n->sel.flags & TC_U32_TERMINAL) { *res = n->res; #ifdef CONFIG_NET_CLS_IND if (!tcf_match_indev(skb, n->ifindex)) { n = rcu_dereference_bh(n->next); goto next_knode; } #endif #ifdef CONFIG_CLS_U32_PERF __this_cpu_inc(n->pf->rhit); #endif r = tcf_exts_exec(skb, &n->exts, res); if (r < 0) { n = rcu_dereference_bh(n->next); goto next_knode; } return r; } n = rcu_dereference_bh(n->next); goto next_knode; } /* PUSH */ if (sdepth >= TC_U32_MAXDEPTH) goto deadloop; stack[sdepth].knode = n; stack[sdepth].off = off; sdepth++; ht = rcu_dereference_bh(n->ht_down); sel = 0; if (ht->divisor) { __be32 *data, hdata; data = skb_header_pointer(skb, off + n->sel.hoff, 4, &hdata); if (!data) goto out; sel = ht->divisor & u32_hash_fold(*data, &n->sel, n->fshift); } if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT))) goto next_ht; if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) { off2 = n->sel.off + 3; if (n->sel.flags & TC_U32_VAROFFSET) { __be16 *data, hdata; data = skb_header_pointer(skb, off + n->sel.offoff, 2, &hdata); if (!data) goto out; off2 += ntohs(n->sel.offmask & *data) >> n->sel.offshift; } off2 &= ~3; } if (n->sel.flags & TC_U32_EAT) { off += off2; off2 = 0; } if (off < skb->len) goto next_ht; } /* POP */ if (sdepth--) { n = stack[sdepth].knode; ht = rcu_dereference_bh(n->ht_up); off = stack[sdepth].off; goto check_terminal; } out: return -1; deadloop: net_warn_ratelimited("cls_u32: dead loop\n"); return -1; } static struct tc_u_hnode * u32_lookup_ht(struct tc_u_common *tp_c, u32 handle) { struct tc_u_hnode *ht; for (ht = rtnl_dereference(tp_c->hlist); ht; ht = rtnl_dereference(ht->next)) if (ht->handle == handle) break; return ht; } static struct tc_u_knode * u32_lookup_key(struct tc_u_hnode *ht, u32 handle) { unsigned int sel; struct tc_u_knode *n = NULL; sel = TC_U32_HASH(handle); if (sel > ht->divisor) goto out; for (n = rtnl_dereference(ht->ht[sel]); n; n = rtnl_dereference(n->next)) if (n->handle == handle) break; out: return n; } static unsigned long u32_get(struct tcf_proto *tp, u32 handle) { struct tc_u_hnode *ht; struct tc_u_common *tp_c = tp->data; if (TC_U32_HTID(handle) == TC_U32_ROOT) ht = rtnl_dereference(tp->root); else ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle)); if (!ht) return 0; if (TC_U32_KEY(handle) == 0) return (unsigned long)ht; return (unsigned long)u32_lookup_key(ht, handle); } static u32 gen_new_htid(struct tc_u_common *tp_c) { int i = 0x800; /* hgenerator only used inside rtnl lock it is safe to increment * without read _copy_ update semantics */ do { if (++tp_c->hgenerator == 0x7FF) tp_c->hgenerator = 1; } while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20)); return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0; } static int u32_init(struct tcf_proto *tp) { struct tc_u_hnode *root_ht; struct tc_u_common *tp_c; tp_c = tp->q->u32_node; root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL); if (root_ht == NULL) return -ENOBUFS; root_ht->divisor = 0; root_ht->refcnt++; root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000; root_ht->prio = tp->prio; if (tp_c == NULL) { tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL); if (tp_c == NULL) { kfree(root_ht); return -ENOBUFS; } tp_c->q = tp->q; tp->q->u32_node = tp_c; } tp_c->refcnt++; RCU_INIT_POINTER(root_ht->next, tp_c->hlist); rcu_assign_pointer(tp_c->hlist, root_ht); root_ht->tp_c = tp_c; rcu_assign_pointer(tp->root, root_ht); tp->data = tp_c; return 0; } static int u32_destroy_key(struct tcf_proto *tp, struct tc_u_knode *n, bool free_pf) { tcf_exts_destroy(&n->exts); if (n->ht_down) n->ht_down->refcnt--; #ifdef CONFIG_CLS_U32_PERF if (free_pf) free_percpu(n->pf); #endif #ifdef CONFIG_CLS_U32_MARK if (free_pf) free_percpu(n->pcpu_success); #endif kfree(n); return 0; } /* u32_delete_key_rcu should be called when free'ing a copied * version of a tc_u_knode obtained from u32_init_knode(). When * copies are obtained from u32_init_knode() the statistics are * shared between the old and new copies to allow readers to * continue to update the statistics during the copy. To support * this the u32_delete_key_rcu variant does not free the percpu * statistics. */ static void u32_delete_key_rcu(struct rcu_head *rcu) { struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); u32_destroy_key(key->tp, key, false); } /* u32_delete_key_freepf_rcu is the rcu callback variant * that free's the entire structure including the statistics * percpu variables. Only use this if the key is not a copy * returned by u32_init_knode(). See u32_delete_key_rcu() * for the variant that should be used with keys return from * u32_init_knode() */ static void u32_delete_key_freepf_rcu(struct rcu_head *rcu) { struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); u32_destroy_key(key->tp, key, true); } static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key) { struct tc_u_knode __rcu **kp; struct tc_u_knode *pkp; struct tc_u_hnode *ht = rtnl_dereference(key->ht_up); if (ht) { kp = &ht->ht[TC_U32_HASH(key->handle)]; for (pkp = rtnl_dereference(*kp); pkp; kp = &pkp->next, pkp = rtnl_dereference(*kp)) { if (pkp == key) { RCU_INIT_POINTER(*kp, key->next); tcf_unbind_filter(tp, &key->res); call_rcu(&key->rcu, u32_delete_key_freepf_rcu); return 0; } } } WARN_ON(1); return 0; } static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) { struct tc_u_knode *n; unsigned int h; for (h = 0; h <= ht->divisor; h++) { while ((n = rtnl_dereference(ht->ht[h])) != NULL) { RCU_INIT_POINTER(ht->ht[h], rtnl_dereference(n->next)); tcf_unbind_filter(tp, &n->res); call_rcu(&n->rcu, u32_delete_key_freepf_rcu); } } } static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) { struct tc_u_common *tp_c = tp->data; struct tc_u_hnode __rcu **hn; struct tc_u_hnode *phn; WARN_ON(ht->refcnt); u32_clear_hnode(tp, ht); hn = &tp_c->hlist; for (phn = rtnl_dereference(*hn); phn; hn = &phn->next, phn = rtnl_dereference(*hn)) { if (phn == ht) { RCU_INIT_POINTER(*hn, ht->next); kfree_rcu(ht, rcu); return 0; } } return -ENOENT; } static bool ht_empty(struct tc_u_hnode *ht) { unsigned int h; for (h = 0; h <= ht->divisor; h++) if (rcu_access_pointer(ht->ht[h])) return false; return true; } static bool u32_destroy(struct tcf_proto *tp, bool force) { struct tc_u_common *tp_c = tp->data; struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); WARN_ON(root_ht == NULL); if (!force) { if (root_ht) { if (root_ht->refcnt > 1) return false; if (root_ht->refcnt == 1) { if (!ht_empty(root_ht)) return false; } } } if (root_ht && --root_ht->refcnt == 0) u32_destroy_hnode(tp, root_ht); if (--tp_c->refcnt == 0) { struct tc_u_hnode *ht; tp->q->u32_node = NULL; for (ht = rtnl_dereference(tp_c->hlist); ht; ht = rtnl_dereference(ht->next)) { ht->refcnt--; u32_clear_hnode(tp, ht); } while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) { RCU_INIT_POINTER(tp_c->hlist, ht->next); kfree_rcu(ht, rcu); } kfree(tp_c); } tp->data = NULL; return true; } static int u32_delete(struct tcf_proto *tp, unsigned long arg) { struct tc_u_hnode *ht = (struct tc_u_hnode *)arg; struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); if (ht == NULL) return 0; if (TC_U32_KEY(ht->handle)) return u32_delete_key(tp, (struct tc_u_knode *)ht); if (root_ht == ht) return -EINVAL; if (ht->refcnt == 1) { ht->refcnt--; u32_destroy_hnode(tp, ht); } else { return -EBUSY; } return 0; } #define NR_U32_NODE (1<<12) static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle) { struct tc_u_knode *n; unsigned long i; unsigned long *bitmap = kzalloc(BITS_TO_LONGS(NR_U32_NODE) * sizeof(unsigned long), GFP_KERNEL); if (!bitmap) return handle | 0xFFF; for (n = rtnl_dereference(ht->ht[TC_U32_HASH(handle)]); n; n = rtnl_dereference(n->next)) set_bit(TC_U32_NODE(n->handle), bitmap); i = find_next_zero_bit(bitmap, NR_U32_NODE, 0x800); if (i >= NR_U32_NODE) i = find_next_zero_bit(bitmap, NR_U32_NODE, 1); kfree(bitmap); return handle | (i >= NR_U32_NODE ? 0xFFF : i); } static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = { [TCA_U32_CLASSID] = { .type = NLA_U32 }, [TCA_U32_HASH] = { .type = NLA_U32 }, [TCA_U32_LINK] = { .type = NLA_U32 }, [TCA_U32_DIVISOR] = { .type = NLA_U32 }, [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) }, [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ }, [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) }, }; static int u32_set_parms(struct net *net, struct tcf_proto *tp, unsigned long base, struct tc_u_hnode *ht, struct tc_u_knode *n, struct nlattr **tb, struct nlattr *est, bool ovr) { int err; struct tcf_exts e; tcf_exts_init(&e, TCA_U32_ACT, TCA_U32_POLICE); err = tcf_exts_validate(net, tp, tb, est, &e, ovr); if (err < 0) return err; err = -EINVAL; if (tb[TCA_U32_LINK]) { u32 handle = nla_get_u32(tb[TCA_U32_LINK]); struct tc_u_hnode *ht_down = NULL, *ht_old; if (TC_U32_KEY(handle)) goto errout; if (handle) { ht_down = u32_lookup_ht(ht->tp_c, handle); if (ht_down == NULL) goto errout; ht_down->refcnt++; } ht_old = rtnl_dereference(n->ht_down); rcu_assign_pointer(n->ht_down, ht_down); if (ht_old) ht_old->refcnt--; } if (tb[TCA_U32_CLASSID]) { n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]); tcf_bind_filter(tp, &n->res, base); } #ifdef CONFIG_NET_CLS_IND if (tb[TCA_U32_INDEV]) { int ret; ret = tcf_change_indev(net, tb[TCA_U32_INDEV]); if (ret < 0) goto errout; n->ifindex = ret; } #endif tcf_exts_change(tp, &n->exts, &e); return 0; errout: tcf_exts_destroy(&e); return err; } static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c, struct tc_u_knode *n) { struct tc_u_knode __rcu **ins; struct tc_u_knode *pins; struct tc_u_hnode *ht; if (TC_U32_HTID(n->handle) == TC_U32_ROOT) ht = rtnl_dereference(tp->root); else ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle)); ins = &ht->ht[TC_U32_HASH(n->handle)]; /* The node must always exist for it to be replaced if this is not the * case then something went very wrong elsewhere. */ for (pins = rtnl_dereference(*ins); ; ins = &pins->next, pins = rtnl_dereference(*ins)) if (pins->handle == n->handle) break; RCU_INIT_POINTER(n->next, pins->next); rcu_assign_pointer(*ins, n); } static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp, struct tc_u_knode *n) { struct tc_u_knode *new; struct tc_u32_sel *s = &n->sel; new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL); if (!new) return NULL; RCU_INIT_POINTER(new->next, n->next); new->handle = n->handle; RCU_INIT_POINTER(new->ht_up, n->ht_up); #ifdef CONFIG_NET_CLS_IND new->ifindex = n->ifindex; #endif new->fshift = n->fshift; new->res = n->res; RCU_INIT_POINTER(new->ht_down, n->ht_down); /* bump reference count as long as we hold pointer to structure */ if (new->ht_down) new->ht_down->refcnt++; #ifdef CONFIG_CLS_U32_PERF /* Statistics may be incremented by readers during update * so we must keep them in tact. When the node is later destroyed * a special destroy call must be made to not free the pf memory. */ new->pf = n->pf; #endif #ifdef CONFIG_CLS_U32_MARK new->val = n->val; new->mask = n->mask; /* Similarly success statistics must be moved as pointers */ new->pcpu_success = n->pcpu_success; #endif new->tp = tp; memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE); return new; } static int u32_change(struct net *net, struct sk_buff *in_skb, struct tcf_proto *tp, unsigned long base, u32 handle, struct nlattr **tca, unsigned long *arg, bool ovr) { struct tc_u_common *tp_c = tp->data; struct tc_u_hnode *ht; struct tc_u_knode *n; struct tc_u32_sel *s; struct nlattr *opt = tca[TCA_OPTIONS]; struct nlattr *tb[TCA_U32_MAX + 1]; u32 htid; int err; #ifdef CONFIG_CLS_U32_PERF size_t size; #endif if (opt == NULL) return handle ? -EINVAL : 0; err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy); if (err < 0) return err; n = (struct tc_u_knode *)*arg; if (n) { struct tc_u_knode *new; if (TC_U32_KEY(n->handle) == 0) return -EINVAL; new = u32_init_knode(tp, n); if (!new) return -ENOMEM; err = u32_set_parms(net, tp, base, rtnl_dereference(n->ht_up), new, tb, tca[TCA_RATE], ovr); if (err) { u32_destroy_key(tp, new, false); return err; } u32_replace_knode(tp, tp_c, new); tcf_unbind_filter(tp, &n->res); call_rcu(&n->rcu, u32_delete_key_rcu); return 0; } if (tb[TCA_U32_DIVISOR]) { unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]); if (--divisor > 0x100) return -EINVAL; if (TC_U32_KEY(handle)) return -EINVAL; if (handle == 0) { handle = gen_new_htid(tp->data); if (handle == 0) return -ENOMEM; } ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL); if (ht == NULL) return -ENOBUFS; ht->tp_c = tp_c; ht->refcnt = 1; ht->divisor = divisor; ht->handle = handle; ht->prio = tp->prio; RCU_INIT_POINTER(ht->next, tp_c->hlist); rcu_assign_pointer(tp_c->hlist, ht); *arg = (unsigned long)ht; return 0; } if (tb[TCA_U32_HASH]) { htid = nla_get_u32(tb[TCA_U32_HASH]); if (TC_U32_HTID(htid) == TC_U32_ROOT) { ht = rtnl_dereference(tp->root); htid = ht->handle; } else { ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid)); if (ht == NULL) return -EINVAL; } } else { ht = rtnl_dereference(tp->root); htid = ht->handle; } if (ht->divisor < TC_U32_HASH(htid)) return -EINVAL; if (handle) { if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid)) return -EINVAL; handle = htid | TC_U32_NODE(handle); } else handle = gen_new_kid(ht, htid); if (tb[TCA_U32_SEL] == NULL) return -EINVAL; s = nla_data(tb[TCA_U32_SEL]); n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL); if (n == NULL) return -ENOBUFS; #ifdef CONFIG_CLS_U32_PERF size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64); n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt)); if (!n->pf) { kfree(n); return -ENOBUFS; } #endif memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); RCU_INIT_POINTER(n->ht_up, ht); n->handle = handle; n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0; tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE); n->tp = tp; #ifdef CONFIG_CLS_U32_MARK n->pcpu_success = alloc_percpu(u32); if (!n->pcpu_success) { err = -ENOMEM; goto errout; } if (tb[TCA_U32_MARK]) { struct tc_u32_mark *mark; mark = nla_data(tb[TCA_U32_MARK]); n->val = mark->val; n->mask = mark->mask; } #endif err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr); if (err == 0) { struct tc_u_knode __rcu **ins; struct tc_u_knode *pins; ins = &ht->ht[TC_U32_HASH(handle)]; for (pins = rtnl_dereference(*ins); pins; ins = &pins->next, pins = rtnl_dereference(*ins)) if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle)) break; RCU_INIT_POINTER(n->next, pins); rcu_assign_pointer(*ins, n); *arg = (unsigned long)n; return 0; } #ifdef CONFIG_CLS_U32_MARK free_percpu(n->pcpu_success); errout: #endif #ifdef CONFIG_CLS_U32_PERF free_percpu(n->pf); #endif kfree(n); return err; } static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg) { struct tc_u_common *tp_c = tp->data; struct tc_u_hnode *ht; struct tc_u_knode *n; unsigned int h; if (arg->stop) return; for (ht = rtnl_dereference(tp_c->hlist); ht; ht = rtnl_dereference(ht->next)) { if (ht->prio != tp->prio) continue; if (arg->count >= arg->skip) { if (arg->fn(tp, (unsigned long)ht, arg) < 0) { arg->stop = 1; return; } } arg->count++; for (h = 0; h <= ht->divisor; h++) { for (n = rtnl_dereference(ht->ht[h]); n; n = rtnl_dereference(n->next)) { if (arg->count < arg->skip) { arg->count++; continue; } if (arg->fn(tp, (unsigned long)n, arg) < 0) { arg->stop = 1; return; } arg->count++; } } } } static int u32_dump(struct net *net, struct tcf_proto *tp, unsigned long fh, struct sk_buff *skb, struct tcmsg *t) { struct tc_u_knode *n = (struct tc_u_knode *)fh; struct tc_u_hnode *ht_up, *ht_down; struct nlattr *nest; if (n == NULL) return skb->len; t->tcm_handle = n->handle; nest = nla_nest_start(skb, TCA_OPTIONS); if (nest == NULL) goto nla_put_failure; if (TC_U32_KEY(n->handle) == 0) { struct tc_u_hnode *ht = (struct tc_u_hnode *)fh; u32 divisor = ht->divisor + 1; if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor)) goto nla_put_failure; } else { #ifdef CONFIG_CLS_U32_PERF struct tc_u32_pcnt *gpf; int cpu; #endif if (nla_put(skb, TCA_U32_SEL, sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key), &n->sel)) goto nla_put_failure; ht_up = rtnl_dereference(n->ht_up); if (ht_up) { u32 htid = n->handle & 0xFFFFF000; if (nla_put_u32(skb, TCA_U32_HASH, htid)) goto nla_put_failure; } if (n->res.classid && nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid)) goto nla_put_failure; ht_down = rtnl_dereference(n->ht_down); if (ht_down && nla_put_u32(skb, TCA_U32_LINK, ht_down->handle)) goto nla_put_failure; #ifdef CONFIG_CLS_U32_MARK if ((n->val || n->mask)) { struct tc_u32_mark mark = {.val = n->val, .mask = n->mask, .success = 0}; int cpum; for_each_possible_cpu(cpum) { __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum); mark.success += cnt; } if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark)) goto nla_put_failure; } #endif if (tcf_exts_dump(skb, &n->exts) < 0) goto nla_put_failure; #ifdef CONFIG_NET_CLS_IND if (n->ifindex) { struct net_device *dev; dev = __dev_get_by_index(net, n->ifindex); if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name)) goto nla_put_failure; } #endif #ifdef CONFIG_CLS_U32_PERF gpf = kzalloc(sizeof(struct tc_u32_pcnt) + n->sel.nkeys * sizeof(u64), GFP_KERNEL); if (!gpf) goto nla_put_failure; for_each_possible_cpu(cpu) { int i; struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu); gpf->rcnt += pf->rcnt; gpf->rhit += pf->rhit; for (i = 0; i < n->sel.nkeys; i++) gpf->kcnts[i] += pf->kcnts[i]; } if (nla_put(skb, TCA_U32_PCNT, sizeof(struct tc_u32_pcnt) + n->sel.nkeys*sizeof(u64), gpf)) { kfree(gpf); goto nla_put_failure; } kfree(gpf); #endif } nla_nest_end(skb, nest); if (TC_U32_KEY(n->handle)) if (tcf_exts_dump_stats(skb, &n->exts) < 0) goto nla_put_failure; return skb->len; nla_put_failure: nla_nest_cancel(skb, nest); return -1; } static struct tcf_proto_ops cls_u32_ops __read_mostly = { .kind = "u32", .classify = u32_classify, .init = u32_init, .destroy = u32_destroy, .get = u32_get, .change = u32_change, .delete = u32_delete, .walk = u32_walk, .dump = u32_dump, .owner = THIS_MODULE, }; static int __init init_u32(void) { pr_info("u32 classifier\n"); #ifdef CONFIG_CLS_U32_PERF pr_info(" Performance counters on\n"); #endif #ifdef CONFIG_NET_CLS_IND pr_info(" input device check on\n"); #endif #ifdef CONFIG_NET_CLS_ACT pr_info(" Actions configured\n"); #endif return register_tcf_proto_ops(&cls_u32_ops); } static void __exit exit_u32(void) { unregister_tcf_proto_ops(&cls_u32_ops); } module_init(init_u32) module_exit(exit_u32) MODULE_LICENSE("GPL");