/* * GICv3 distributor and redistributor emulation * * GICv3 emulation is currently only supported on a GICv3 host (because * we rely on the hardware's CPU interface virtualization support), but * supports both hardware with or without the optional GICv2 backwards * compatibility features. * * Limitations of the emulation: * (RAZ/WI: read as zero, write ignore, RAO/WI: read as one, write ignore) * - We do not support LPIs (yet). TYPER.LPIS is reported as 0 and is RAZ/WI. * - We do not support the message based interrupts (MBIs) triggered by * writes to the GICD_{SET,CLR}SPI_* registers. TYPER.MBIS is reported as 0. * - We do not support the (optional) backwards compatibility feature. * GICD_CTLR.ARE resets to 1 and is RAO/WI. If the _host_ GIC supports * the compatiblity feature, you can use a GICv2 in the guest, though. * - We only support a single security state. GICD_CTLR.DS is 1 and is RAO/WI. * - Priorities are not emulated (same as the GICv2 emulation). Linux * as a guest is fine with this, because it does not use priorities. * - We only support Group1 interrupts. Again Linux uses only those. * * Copyright (C) 2014 ARM Ltd. * Author: Andre Przywara <andre.przywara@arm.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <linux/cpu.h> #include <linux/kvm.h> #include <linux/kvm_host.h> #include <linux/interrupt.h> #include <linux/irqchip/arm-gic-v3.h> #include <kvm/arm_vgic.h> #include <asm/kvm_emulate.h> #include <asm/kvm_arm.h> #include <asm/kvm_mmu.h> #include "vgic.h" static bool handle_mmio_rao_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 reg = 0xffffffff; vgic_reg_access(mmio, ®, offset, ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); return false; } static bool handle_mmio_ctlr(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 reg = 0; /* * Force ARE and DS to 1, the guest cannot change this. * For the time being we only support Group1 interrupts. */ if (vcpu->kvm->arch.vgic.enabled) reg = GICD_CTLR_ENABLE_SS_G1; reg |= GICD_CTLR_ARE_NS | GICD_CTLR_DS; vgic_reg_access(mmio, ®, offset, ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); if (mmio->is_write) { if (reg & GICD_CTLR_ENABLE_SS_G0) kvm_info("guest tried to enable unsupported Group0 interrupts\n"); vcpu->kvm->arch.vgic.enabled = !!(reg & GICD_CTLR_ENABLE_SS_G1); vgic_update_state(vcpu->kvm); return true; } return false; } /* * As this implementation does not provide compatibility * with GICv2 (ARE==1), we report zero CPUs in bits [5..7]. * Also LPIs and MBIs are not supported, so we set the respective bits to 0. * Also we report at most 2**10=1024 interrupt IDs (to match 1024 SPIs). */ #define INTERRUPT_ID_BITS 10 static bool handle_mmio_typer(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 reg; reg = (min(vcpu->kvm->arch.vgic.nr_irqs, 1024) >> 5) - 1; reg |= (INTERRUPT_ID_BITS - 1) << 19; vgic_reg_access(mmio, ®, offset, ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); return false; } static bool handle_mmio_iidr(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 reg; reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); vgic_reg_access(mmio, ®, offset, ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); return false; } static bool handle_mmio_set_enable_reg_dist(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, vcpu->vcpu_id, ACCESS_WRITE_SETBIT); vgic_reg_access(mmio, NULL, offset, ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); return false; } static bool handle_mmio_clear_enable_reg_dist(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, vcpu->vcpu_id, ACCESS_WRITE_CLEARBIT); vgic_reg_access(mmio, NULL, offset, ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); return false; } static bool handle_mmio_set_pending_reg_dist(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset, vcpu->vcpu_id); vgic_reg_access(mmio, NULL, offset, ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); return false; } static bool handle_mmio_clear_pending_reg_dist(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset, vcpu->vcpu_id); vgic_reg_access(mmio, NULL, offset, ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); return false; } static bool handle_mmio_priority_reg_dist(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 *reg; if (unlikely(offset < VGIC_NR_PRIVATE_IRQS)) { vgic_reg_access(mmio, NULL, offset, ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); return false; } reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, vcpu->vcpu_id, offset); vgic_reg_access(mmio, reg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); return false; } static bool handle_mmio_cfg_reg_dist(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 *reg; if (unlikely(offset < VGIC_NR_PRIVATE_IRQS / 4)) { vgic_reg_access(mmio, NULL, offset, ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); return false; } reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, vcpu->vcpu_id, offset >> 1); return vgic_handle_cfg_reg(reg, mmio, offset); } /* * We use a compressed version of the MPIDR (all 32 bits in one 32-bit word) * when we store the target MPIDR written by the guest. */ static u32 compress_mpidr(unsigned long mpidr) { u32 ret; ret = MPIDR_AFFINITY_LEVEL(mpidr, 0); ret |= MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8; ret |= MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16; ret |= MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24; return ret; } static unsigned long uncompress_mpidr(u32 value) { unsigned long mpidr; mpidr = ((value >> 0) & 0xFF) << MPIDR_LEVEL_SHIFT(0); mpidr |= ((value >> 8) & 0xFF) << MPIDR_LEVEL_SHIFT(1); mpidr |= ((value >> 16) & 0xFF) << MPIDR_LEVEL_SHIFT(2); mpidr |= (u64)((value >> 24) & 0xFF) << MPIDR_LEVEL_SHIFT(3); return mpidr; } /* * Lookup the given MPIDR value to get the vcpu_id (if there is one) * and store that in the irq_spi_cpu[] array. * This limits the number of VCPUs to 255 for now, extending the data * type (or storing kvm_vcpu pointers) should lift the limit. * Store the original MPIDR value in an extra array to support read-as-written. * Unallocated MPIDRs are translated to a special value and caught * before any array accesses. */ static bool handle_mmio_route_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { struct kvm *kvm = vcpu->kvm; struct vgic_dist *dist = &kvm->arch.vgic; int spi; u32 reg; int vcpu_id; unsigned long *bmap, mpidr; /* * The upper 32 bits of each 64 bit register are zero, * as we don't support Aff3. */ if ((offset & 4)) { vgic_reg_access(mmio, NULL, offset, ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); return false; } /* This region only covers SPIs, so no handling of private IRQs here. */ spi = offset / 8; /* get the stored MPIDR for this IRQ */ mpidr = uncompress_mpidr(dist->irq_spi_mpidr[spi]); reg = mpidr; vgic_reg_access(mmio, ®, offset, ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); if (!mmio->is_write) return false; /* * Now clear the currently assigned vCPU from the map, making room * for the new one to be written below */ vcpu = kvm_mpidr_to_vcpu(kvm, mpidr); if (likely(vcpu)) { vcpu_id = vcpu->vcpu_id; bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]); __clear_bit(spi, bmap); } dist->irq_spi_mpidr[spi] = compress_mpidr(reg); vcpu = kvm_mpidr_to_vcpu(kvm, reg & MPIDR_HWID_BITMASK); /* * The spec says that non-existent MPIDR values should not be * forwarded to any existent (v)CPU, but should be able to become * pending anyway. We simply keep the irq_spi_target[] array empty, so * the interrupt will never be injected. * irq_spi_cpu[irq] gets a magic value in this case. */ if (likely(vcpu)) { vcpu_id = vcpu->vcpu_id; dist->irq_spi_cpu[spi] = vcpu_id; bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]); __set_bit(spi, bmap); } else { dist->irq_spi_cpu[spi] = VCPU_NOT_ALLOCATED; } vgic_update_state(kvm); return true; } /* * We should be careful about promising too much when a guest reads * this register. Don't claim to be like any hardware implementation, * but just report the GIC as version 3 - which is what a Linux guest * would check. */ static bool handle_mmio_idregs(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 reg = 0; switch (offset + GICD_IDREGS) { case GICD_PIDR2: reg = 0x3b; break; } vgic_reg_access(mmio, ®, offset, ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); return false; } static const struct vgic_io_range vgic_v3_dist_ranges[] = { { .base = GICD_CTLR, .len = 0x04, .bits_per_irq = 0, .handle_mmio = handle_mmio_ctlr, }, { .base = GICD_TYPER, .len = 0x04, .bits_per_irq = 0, .handle_mmio = handle_mmio_typer, }, { .base = GICD_IIDR, .len = 0x04, .bits_per_irq = 0, .handle_mmio = handle_mmio_iidr, }, { /* this register is optional, it is RAZ/WI if not implemented */ .base = GICD_STATUSR, .len = 0x04, .bits_per_irq = 0, .handle_mmio = handle_mmio_raz_wi, }, { /* this write only register is WI when TYPER.MBIS=0 */ .base = GICD_SETSPI_NSR, .len = 0x04, .bits_per_irq = 0, .handle_mmio = handle_mmio_raz_wi, }, { /* this write only register is WI when TYPER.MBIS=0 */ .base = GICD_CLRSPI_NSR, .len = 0x04, .bits_per_irq = 0, .handle_mmio = handle_mmio_raz_wi, }, { /* this is RAZ/WI when DS=1 */ .base = GICD_SETSPI_SR, .len = 0x04, .bits_per_irq = 0, .handle_mmio = handle_mmio_raz_wi, }, { /* this is RAZ/WI when DS=1 */ .base = GICD_CLRSPI_SR, .len = 0x04, .bits_per_irq = 0, .handle_mmio = handle_mmio_raz_wi, }, { .base = GICD_IGROUPR, .len = 0x80, .bits_per_irq = 1, .handle_mmio = handle_mmio_rao_wi, }, { .base = GICD_ISENABLER, .len = 0x80, .bits_per_irq = 1, .handle_mmio = handle_mmio_set_enable_reg_dist, }, { .base = GICD_ICENABLER, .len = 0x80, .bits_per_irq = 1, .handle_mmio = handle_mmio_clear_enable_reg_dist, }, { .base = GICD_ISPENDR, .len = 0x80, .bits_per_irq = 1, .handle_mmio = handle_mmio_set_pending_reg_dist, }, { .base = GICD_ICPENDR, .len = 0x80, .bits_per_irq = 1, .handle_mmio = handle_mmio_clear_pending_reg_dist, }, { .base = GICD_ISACTIVER, .len = 0x80, .bits_per_irq = 1, .handle_mmio = handle_mmio_raz_wi, }, { .base = GICD_ICACTIVER, .len = 0x80, .bits_per_irq = 1, .handle_mmio = handle_mmio_raz_wi, }, { .base = GICD_IPRIORITYR, .len = 0x400, .bits_per_irq = 8, .handle_mmio = handle_mmio_priority_reg_dist, }, { /* TARGETSRn is RES0 when ARE=1 */ .base = GICD_ITARGETSR, .len = 0x400, .bits_per_irq = 8, .handle_mmio = handle_mmio_raz_wi, }, { .base = GICD_ICFGR, .len = 0x100, .bits_per_irq = 2, .handle_mmio = handle_mmio_cfg_reg_dist, }, { /* this is RAZ/WI when DS=1 */ .base = GICD_IGRPMODR, .len = 0x80, .bits_per_irq = 1, .handle_mmio = handle_mmio_raz_wi, }, { /* this is RAZ/WI when DS=1 */ .base = GICD_NSACR, .len = 0x100, .bits_per_irq = 2, .handle_mmio = handle_mmio_raz_wi, }, { /* this is RAZ/WI when ARE=1 */ .base = GICD_SGIR, .len = 0x04, .handle_mmio = handle_mmio_raz_wi, }, { /* this is RAZ/WI when ARE=1 */ .base = GICD_CPENDSGIR, .len = 0x10, .handle_mmio = handle_mmio_raz_wi, }, { /* this is RAZ/WI when ARE=1 */ .base = GICD_SPENDSGIR, .len = 0x10, .handle_mmio = handle_mmio_raz_wi, }, { .base = GICD_IROUTER + 0x100, .len = 0x1ee0, .bits_per_irq = 64, .handle_mmio = handle_mmio_route_reg, }, { .base = GICD_IDREGS, .len = 0x30, .bits_per_irq = 0, .handle_mmio = handle_mmio_idregs, }, {}, }; static bool handle_mmio_ctlr_redist(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { /* since we don't support LPIs, this register is zero for now */ vgic_reg_access(mmio, NULL, offset, ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); return false; } static bool handle_mmio_typer_redist(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 reg; u64 mpidr; struct kvm_vcpu *redist_vcpu = mmio->private; int target_vcpu_id = redist_vcpu->vcpu_id; /* the upper 32 bits contain the affinity value */ if ((offset & ~3) == 4) { mpidr = kvm_vcpu_get_mpidr_aff(redist_vcpu); reg = compress_mpidr(mpidr); vgic_reg_access(mmio, ®, offset, ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); return false; } reg = redist_vcpu->vcpu_id << 8; if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1) reg |= GICR_TYPER_LAST; vgic_reg_access(mmio, ®, offset, ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); return false; } static bool handle_mmio_set_enable_reg_redist(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { struct kvm_vcpu *redist_vcpu = mmio->private; return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, redist_vcpu->vcpu_id, ACCESS_WRITE_SETBIT); } static bool handle_mmio_clear_enable_reg_redist(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { struct kvm_vcpu *redist_vcpu = mmio->private; return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, redist_vcpu->vcpu_id, ACCESS_WRITE_CLEARBIT); } static bool handle_mmio_set_pending_reg_redist(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { struct kvm_vcpu *redist_vcpu = mmio->private; return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset, redist_vcpu->vcpu_id); } static bool handle_mmio_clear_pending_reg_redist(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { struct kvm_vcpu *redist_vcpu = mmio->private; return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset, redist_vcpu->vcpu_id); } static bool handle_mmio_priority_reg_redist(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { struct kvm_vcpu *redist_vcpu = mmio->private; u32 *reg; reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, redist_vcpu->vcpu_id, offset); vgic_reg_access(mmio, reg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); return false; } static bool handle_mmio_cfg_reg_redist(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { struct kvm_vcpu *redist_vcpu = mmio->private; u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, redist_vcpu->vcpu_id, offset >> 1); return vgic_handle_cfg_reg(reg, mmio, offset); } #define SGI_base(x) ((x) + SZ_64K) static const struct vgic_io_range vgic_redist_ranges[] = { { .base = GICR_CTLR, .len = 0x04, .bits_per_irq = 0, .handle_mmio = handle_mmio_ctlr_redist, }, { .base = GICR_TYPER, .len = 0x08, .bits_per_irq = 0, .handle_mmio = handle_mmio_typer_redist, }, { .base = GICR_IIDR, .len = 0x04, .bits_per_irq = 0, .handle_mmio = handle_mmio_iidr, }, { .base = GICR_WAKER, .len = 0x04, .bits_per_irq = 0, .handle_mmio = handle_mmio_raz_wi, }, { .base = GICR_IDREGS, .len = 0x30, .bits_per_irq = 0, .handle_mmio = handle_mmio_idregs, }, { .base = SGI_base(GICR_IGROUPR0), .len = 0x04, .bits_per_irq = 1, .handle_mmio = handle_mmio_rao_wi, }, { .base = SGI_base(GICR_ISENABLER0), .len = 0x04, .bits_per_irq = 1, .handle_mmio = handle_mmio_set_enable_reg_redist, }, { .base = SGI_base(GICR_ICENABLER0), .len = 0x04, .bits_per_irq = 1, .handle_mmio = handle_mmio_clear_enable_reg_redist, }, { .base = SGI_base(GICR_ISPENDR0), .len = 0x04, .bits_per_irq = 1, .handle_mmio = handle_mmio_set_pending_reg_redist, }, { .base = SGI_base(GICR_ICPENDR0), .len = 0x04, .bits_per_irq = 1, .handle_mmio = handle_mmio_clear_pending_reg_redist, }, { .base = SGI_base(GICR_ISACTIVER0), .len = 0x04, .bits_per_irq = 1, .handle_mmio = handle_mmio_raz_wi, }, { .base = SGI_base(GICR_ICACTIVER0), .len = 0x04, .bits_per_irq = 1, .handle_mmio = handle_mmio_raz_wi, }, { .base = SGI_base(GICR_IPRIORITYR0), .len = 0x20, .bits_per_irq = 8, .handle_mmio = handle_mmio_priority_reg_redist, }, { .base = SGI_base(GICR_ICFGR0), .len = 0x08, .bits_per_irq = 2, .handle_mmio = handle_mmio_cfg_reg_redist, }, { .base = SGI_base(GICR_IGRPMODR0), .len = 0x04, .bits_per_irq = 1, .handle_mmio = handle_mmio_raz_wi, }, { .base = SGI_base(GICR_NSACR), .len = 0x04, .handle_mmio = handle_mmio_raz_wi, }, {}, }; static bool vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, int irq) { if (vgic_queue_irq(vcpu, 0, irq)) { vgic_dist_irq_clear_pending(vcpu, irq); vgic_cpu_irq_clear(vcpu, irq); return true; } return false; } static int vgic_v3_map_resources(struct kvm *kvm, const struct vgic_params *params) { int ret = 0; struct vgic_dist *dist = &kvm->arch.vgic; gpa_t rdbase = dist->vgic_redist_base; struct vgic_io_device *iodevs = NULL; int i; if (!irqchip_in_kernel(kvm)) return 0; mutex_lock(&kvm->lock); if (vgic_ready(kvm)) goto out; if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) || IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) { kvm_err("Need to set vgic distributor addresses first\n"); ret = -ENXIO; goto out; } /* * For a VGICv3 we require the userland to explicitly initialize * the VGIC before we need to use it. */ if (!vgic_initialized(kvm)) { ret = -EBUSY; goto out; } ret = vgic_register_kvm_io_dev(kvm, dist->vgic_dist_base, GIC_V3_DIST_SIZE, vgic_v3_dist_ranges, -1, &dist->dist_iodev); if (ret) goto out; iodevs = kcalloc(dist->nr_cpus, sizeof(iodevs[0]), GFP_KERNEL); if (!iodevs) { ret = -ENOMEM; goto out_unregister; } for (i = 0; i < dist->nr_cpus; i++) { ret = vgic_register_kvm_io_dev(kvm, rdbase, SZ_128K, vgic_redist_ranges, i, &iodevs[i]); if (ret) goto out_unregister; rdbase += GIC_V3_REDIST_SIZE; } dist->redist_iodevs = iodevs; dist->ready = true; goto out; out_unregister: kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, &dist->dist_iodev.dev); if (iodevs) { for (i = 0; i < dist->nr_cpus; i++) { if (iodevs[i].dev.ops) kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS, &iodevs[i].dev); } } out: if (ret) kvm_vgic_destroy(kvm); mutex_unlock(&kvm->lock); return ret; } static int vgic_v3_init_model(struct kvm *kvm) { int i; u32 mpidr; struct vgic_dist *dist = &kvm->arch.vgic; int nr_spis = dist->nr_irqs - VGIC_NR_PRIVATE_IRQS; dist->irq_spi_mpidr = kcalloc(nr_spis, sizeof(dist->irq_spi_mpidr[0]), GFP_KERNEL); if (!dist->irq_spi_mpidr) return -ENOMEM; /* Initialize the target VCPUs for each IRQ to VCPU 0 */ mpidr = compress_mpidr(kvm_vcpu_get_mpidr_aff(kvm_get_vcpu(kvm, 0))); for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i++) { dist->irq_spi_cpu[i - VGIC_NR_PRIVATE_IRQS] = 0; dist->irq_spi_mpidr[i - VGIC_NR_PRIVATE_IRQS] = mpidr; vgic_bitmap_set_irq_val(dist->irq_spi_target, 0, i, 1); } return 0; } /* GICv3 does not keep track of SGI sources anymore. */ static void vgic_v3_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source) { } void vgic_v3_init_emulation(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; dist->vm_ops.queue_sgi = vgic_v3_queue_sgi; dist->vm_ops.add_sgi_source = vgic_v3_add_sgi_source; dist->vm_ops.init_model = vgic_v3_init_model; dist->vm_ops.map_resources = vgic_v3_map_resources; kvm->arch.max_vcpus = KVM_MAX_VCPUS; } /* * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI * generation register ICC_SGI1R_EL1) with a given VCPU. * If the VCPU's MPIDR matches, return the level0 affinity, otherwise * return -1. */ static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu) { unsigned long affinity; int level0; /* * Split the current VCPU's MPIDR into affinity level 0 and the * rest as this is what we have to compare against. */ affinity = kvm_vcpu_get_mpidr_aff(vcpu); level0 = MPIDR_AFFINITY_LEVEL(affinity, 0); affinity &= ~MPIDR_LEVEL_MASK; /* bail out if the upper three levels don't match */ if (sgi_aff != affinity) return -1; /* Is this VCPU's bit set in the mask ? */ if (!(sgi_cpu_mask & BIT(level0))) return -1; return level0; } #define SGI_AFFINITY_LEVEL(reg, level) \ ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \ >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level)) /** * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs * @vcpu: The VCPU requesting a SGI * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU * * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register. * This will trap in sys_regs.c and call this function. * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the * target processors as well as a bitmask of 16 Aff0 CPUs. * If the interrupt routing mode bit is not set, we iterate over all VCPUs to * check for matching ones. If this bit is set, we signal all, but not the * calling VCPU. */ void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg) { struct kvm *kvm = vcpu->kvm; struct kvm_vcpu *c_vcpu; struct vgic_dist *dist = &kvm->arch.vgic; u16 target_cpus; u64 mpidr; int sgi, c; int vcpu_id = vcpu->vcpu_id; bool broadcast; int updated = 0; sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT; broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT); target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT; mpidr = SGI_AFFINITY_LEVEL(reg, 3); mpidr |= SGI_AFFINITY_LEVEL(reg, 2); mpidr |= SGI_AFFINITY_LEVEL(reg, 1); /* * We take the dist lock here, because we come from the sysregs * code path and not from the MMIO one (which already takes the lock). */ spin_lock(&dist->lock); /* * We iterate over all VCPUs to find the MPIDRs matching the request. * If we have handled one CPU, we clear it's bit to detect early * if we are already finished. This avoids iterating through all * VCPUs when most of the times we just signal a single VCPU. */ kvm_for_each_vcpu(c, c_vcpu, kvm) { /* Exit early if we have dealt with all requested CPUs */ if (!broadcast && target_cpus == 0) break; /* Don't signal the calling VCPU */ if (broadcast && c == vcpu_id) continue; if (!broadcast) { int level0; level0 = match_mpidr(mpidr, target_cpus, c_vcpu); if (level0 == -1) continue; /* remove this matching VCPU from the mask */ target_cpus &= ~BIT(level0); } /* Flag the SGI as pending */ vgic_dist_irq_set_pending(c_vcpu, sgi); updated = 1; kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c); } if (updated) vgic_update_state(vcpu->kvm); spin_unlock(&dist->lock); if (updated) vgic_kick_vcpus(vcpu->kvm); } static int vgic_v3_create(struct kvm_device *dev, u32 type) { return kvm_vgic_create(dev->kvm, type); } static void vgic_v3_destroy(struct kvm_device *dev) { kfree(dev); } static int vgic_v3_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { int ret; ret = vgic_set_common_attr(dev, attr); if (ret != -ENXIO) return ret; switch (attr->group) { case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: return -ENXIO; } return -ENXIO; } static int vgic_v3_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { int ret; ret = vgic_get_common_attr(dev, attr); if (ret != -ENXIO) return ret; switch (attr->group) { case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: return -ENXIO; } return -ENXIO; } static int vgic_v3_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { switch (attr->group) { case KVM_DEV_ARM_VGIC_GRP_ADDR: switch (attr->attr) { case KVM_VGIC_V2_ADDR_TYPE_DIST: case KVM_VGIC_V2_ADDR_TYPE_CPU: return -ENXIO; case KVM_VGIC_V3_ADDR_TYPE_DIST: case KVM_VGIC_V3_ADDR_TYPE_REDIST: return 0; } break; case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: return -ENXIO; case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: return 0; case KVM_DEV_ARM_VGIC_GRP_CTRL: switch (attr->attr) { case KVM_DEV_ARM_VGIC_CTRL_INIT: return 0; } } return -ENXIO; } struct kvm_device_ops kvm_arm_vgic_v3_ops = { .name = "kvm-arm-vgic-v3", .create = vgic_v3_create, .destroy = vgic_v3_destroy, .set_attr = vgic_v3_set_attr, .get_attr = vgic_v3_get_attr, .has_attr = vgic_v3_has_attr, };