/* * kvm eventfd support - use eventfd objects to signal various KVM events * * Copyright 2009 Novell. All Rights Reserved. * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Author: * Gregory Haskins <ghaskins@novell.com> * * This file is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #include <linux/kvm_host.h> #include <linux/kvm.h> #include <linux/workqueue.h> #include <linux/syscalls.h> #include <linux/wait.h> #include <linux/poll.h> #include <linux/file.h> #include <linux/list.h> #include <linux/eventfd.h> #include <linux/kernel.h> #include <linux/srcu.h> #include <linux/slab.h> #include <linux/seqlock.h> #include <trace/events/kvm.h> #include <kvm/iodev.h> #ifdef CONFIG_HAVE_KVM_IRQFD /* * -------------------------------------------------------------------- * irqfd: Allows an fd to be used to inject an interrupt to the guest * * Credit goes to Avi Kivity for the original idea. * -------------------------------------------------------------------- */ /* * Resampling irqfds are a special variety of irqfds used to emulate * level triggered interrupts. The interrupt is asserted on eventfd * trigger. On acknowledgement through the irq ack notifier, the * interrupt is de-asserted and userspace is notified through the * resamplefd. All resamplers on the same gsi are de-asserted * together, so we don't need to track the state of each individual * user. We can also therefore share the same irq source ID. */ struct _irqfd_resampler { struct kvm *kvm; /* * List of resampling struct _irqfd objects sharing this gsi. * RCU list modified under kvm->irqfds.resampler_lock */ struct list_head list; struct kvm_irq_ack_notifier notifier; /* * Entry in list of kvm->irqfd.resampler_list. Use for sharing * resamplers among irqfds on the same gsi. * Accessed and modified under kvm->irqfds.resampler_lock */ struct list_head link; }; struct _irqfd { /* Used for MSI fast-path */ struct kvm *kvm; wait_queue_t wait; /* Update side is protected by irqfds.lock */ struct kvm_kernel_irq_routing_entry irq_entry; seqcount_t irq_entry_sc; /* Used for level IRQ fast-path */ int gsi; struct work_struct inject; /* The resampler used by this irqfd (resampler-only) */ struct _irqfd_resampler *resampler; /* Eventfd notified on resample (resampler-only) */ struct eventfd_ctx *resamplefd; /* Entry in list of irqfds for a resampler (resampler-only) */ struct list_head resampler_link; /* Used for setup/shutdown */ struct eventfd_ctx *eventfd; struct list_head list; poll_table pt; struct work_struct shutdown; }; static struct workqueue_struct *irqfd_cleanup_wq; static void irqfd_inject(struct work_struct *work) { struct _irqfd *irqfd = container_of(work, struct _irqfd, inject); struct kvm *kvm = irqfd->kvm; if (!irqfd->resampler) { kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 1, false); kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 0, false); } else kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, irqfd->gsi, 1, false); } /* * Since resampler irqfds share an IRQ source ID, we de-assert once * then notify all of the resampler irqfds using this GSI. We can't * do multiple de-asserts or we risk racing with incoming re-asserts. */ static void irqfd_resampler_ack(struct kvm_irq_ack_notifier *kian) { struct _irqfd_resampler *resampler; struct kvm *kvm; struct _irqfd *irqfd; int idx; resampler = container_of(kian, struct _irqfd_resampler, notifier); kvm = resampler->kvm; kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, resampler->notifier.gsi, 0, false); idx = srcu_read_lock(&kvm->irq_srcu); list_for_each_entry_rcu(irqfd, &resampler->list, resampler_link) eventfd_signal(irqfd->resamplefd, 1); srcu_read_unlock(&kvm->irq_srcu, idx); } static void irqfd_resampler_shutdown(struct _irqfd *irqfd) { struct _irqfd_resampler *resampler = irqfd->resampler; struct kvm *kvm = resampler->kvm; mutex_lock(&kvm->irqfds.resampler_lock); list_del_rcu(&irqfd->resampler_link); synchronize_srcu(&kvm->irq_srcu); if (list_empty(&resampler->list)) { list_del(&resampler->link); kvm_unregister_irq_ack_notifier(kvm, &resampler->notifier); kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, resampler->notifier.gsi, 0, false); kfree(resampler); } mutex_unlock(&kvm->irqfds.resampler_lock); } /* * Race-free decouple logic (ordering is critical) */ static void irqfd_shutdown(struct work_struct *work) { struct _irqfd *irqfd = container_of(work, struct _irqfd, shutdown); u64 cnt; /* * Synchronize with the wait-queue and unhook ourselves to prevent * further events. */ eventfd_ctx_remove_wait_queue(irqfd->eventfd, &irqfd->wait, &cnt); /* * We know no new events will be scheduled at this point, so block * until all previously outstanding events have completed */ flush_work(&irqfd->inject); if (irqfd->resampler) { irqfd_resampler_shutdown(irqfd); eventfd_ctx_put(irqfd->resamplefd); } /* * It is now safe to release the object's resources */ eventfd_ctx_put(irqfd->eventfd); kfree(irqfd); } /* assumes kvm->irqfds.lock is held */ static bool irqfd_is_active(struct _irqfd *irqfd) { return list_empty(&irqfd->list) ? false : true; } /* * Mark the irqfd as inactive and schedule it for removal * * assumes kvm->irqfds.lock is held */ static void irqfd_deactivate(struct _irqfd *irqfd) { BUG_ON(!irqfd_is_active(irqfd)); list_del_init(&irqfd->list); queue_work(irqfd_cleanup_wq, &irqfd->shutdown); } /* * Called with wqh->lock held and interrupts disabled */ static int irqfd_wakeup(wait_queue_t *wait, unsigned mode, int sync, void *key) { struct _irqfd *irqfd = container_of(wait, struct _irqfd, wait); unsigned long flags = (unsigned long)key; struct kvm_kernel_irq_routing_entry irq; struct kvm *kvm = irqfd->kvm; unsigned seq; int idx; if (flags & POLLIN) { idx = srcu_read_lock(&kvm->irq_srcu); do { seq = read_seqcount_begin(&irqfd->irq_entry_sc); irq = irqfd->irq_entry; } while (read_seqcount_retry(&irqfd->irq_entry_sc, seq)); /* An event has been signaled, inject an interrupt */ if (irq.type == KVM_IRQ_ROUTING_MSI) kvm_set_msi(&irq, kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 1, false); else schedule_work(&irqfd->inject); srcu_read_unlock(&kvm->irq_srcu, idx); } if (flags & POLLHUP) { /* The eventfd is closing, detach from KVM */ unsigned long flags; spin_lock_irqsave(&kvm->irqfds.lock, flags); /* * We must check if someone deactivated the irqfd before * we could acquire the irqfds.lock since the item is * deactivated from the KVM side before it is unhooked from * the wait-queue. If it is already deactivated, we can * simply return knowing the other side will cleanup for us. * We cannot race against the irqfd going away since the * other side is required to acquire wqh->lock, which we hold */ if (irqfd_is_active(irqfd)) irqfd_deactivate(irqfd); spin_unlock_irqrestore(&kvm->irqfds.lock, flags); } return 0; } static void irqfd_ptable_queue_proc(struct file *file, wait_queue_head_t *wqh, poll_table *pt) { struct _irqfd *irqfd = container_of(pt, struct _irqfd, pt); add_wait_queue(wqh, &irqfd->wait); } /* Must be called under irqfds.lock */ static void irqfd_update(struct kvm *kvm, struct _irqfd *irqfd) { struct kvm_kernel_irq_routing_entry *e; struct kvm_kernel_irq_routing_entry entries[KVM_NR_IRQCHIPS]; int i, n_entries; n_entries = kvm_irq_map_gsi(kvm, entries, irqfd->gsi); write_seqcount_begin(&irqfd->irq_entry_sc); irqfd->irq_entry.type = 0; e = entries; for (i = 0; i < n_entries; ++i, ++e) { /* Only fast-path MSI. */ if (e->type == KVM_IRQ_ROUTING_MSI) irqfd->irq_entry = *e; } write_seqcount_end(&irqfd->irq_entry_sc); } static int kvm_irqfd_assign(struct kvm *kvm, struct kvm_irqfd *args) { struct _irqfd *irqfd, *tmp; struct fd f; struct eventfd_ctx *eventfd = NULL, *resamplefd = NULL; int ret; unsigned int events; int idx; if (!kvm_arch_intc_initialized(kvm)) return -EAGAIN; irqfd = kzalloc(sizeof(*irqfd), GFP_KERNEL); if (!irqfd) return -ENOMEM; irqfd->kvm = kvm; irqfd->gsi = args->gsi; INIT_LIST_HEAD(&irqfd->list); INIT_WORK(&irqfd->inject, irqfd_inject); INIT_WORK(&irqfd->shutdown, irqfd_shutdown); seqcount_init(&irqfd->irq_entry_sc); f = fdget(args->fd); if (!f.file) { ret = -EBADF; goto out; } eventfd = eventfd_ctx_fileget(f.file); if (IS_ERR(eventfd)) { ret = PTR_ERR(eventfd); goto fail; } irqfd->eventfd = eventfd; if (args->flags & KVM_IRQFD_FLAG_RESAMPLE) { struct _irqfd_resampler *resampler; resamplefd = eventfd_ctx_fdget(args->resamplefd); if (IS_ERR(resamplefd)) { ret = PTR_ERR(resamplefd); goto fail; } irqfd->resamplefd = resamplefd; INIT_LIST_HEAD(&irqfd->resampler_link); mutex_lock(&kvm->irqfds.resampler_lock); list_for_each_entry(resampler, &kvm->irqfds.resampler_list, link) { if (resampler->notifier.gsi == irqfd->gsi) { irqfd->resampler = resampler; break; } } if (!irqfd->resampler) { resampler = kzalloc(sizeof(*resampler), GFP_KERNEL); if (!resampler) { ret = -ENOMEM; mutex_unlock(&kvm->irqfds.resampler_lock); goto fail; } resampler->kvm = kvm; INIT_LIST_HEAD(&resampler->list); resampler->notifier.gsi = irqfd->gsi; resampler->notifier.irq_acked = irqfd_resampler_ack; INIT_LIST_HEAD(&resampler->link); list_add(&resampler->link, &kvm->irqfds.resampler_list); kvm_register_irq_ack_notifier(kvm, &resampler->notifier); irqfd->resampler = resampler; } list_add_rcu(&irqfd->resampler_link, &irqfd->resampler->list); synchronize_srcu(&kvm->irq_srcu); mutex_unlock(&kvm->irqfds.resampler_lock); } /* * Install our own custom wake-up handling so we are notified via * a callback whenever someone signals the underlying eventfd */ init_waitqueue_func_entry(&irqfd->wait, irqfd_wakeup); init_poll_funcptr(&irqfd->pt, irqfd_ptable_queue_proc); spin_lock_irq(&kvm->irqfds.lock); ret = 0; list_for_each_entry(tmp, &kvm->irqfds.items, list) { if (irqfd->eventfd != tmp->eventfd) continue; /* This fd is used for another irq already. */ ret = -EBUSY; spin_unlock_irq(&kvm->irqfds.lock); goto fail; } idx = srcu_read_lock(&kvm->irq_srcu); irqfd_update(kvm, irqfd); srcu_read_unlock(&kvm->irq_srcu, idx); list_add_tail(&irqfd->list, &kvm->irqfds.items); spin_unlock_irq(&kvm->irqfds.lock); /* * Check if there was an event already pending on the eventfd * before we registered, and trigger it as if we didn't miss it. */ events = f.file->f_op->poll(f.file, &irqfd->pt); if (events & POLLIN) schedule_work(&irqfd->inject); /* * do not drop the file until the irqfd is fully initialized, otherwise * we might race against the POLLHUP */ fdput(f); return 0; fail: if (irqfd->resampler) irqfd_resampler_shutdown(irqfd); if (resamplefd && !IS_ERR(resamplefd)) eventfd_ctx_put(resamplefd); if (eventfd && !IS_ERR(eventfd)) eventfd_ctx_put(eventfd); fdput(f); out: kfree(irqfd); return ret; } bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin) { struct kvm_irq_ack_notifier *kian; int gsi, idx; idx = srcu_read_lock(&kvm->irq_srcu); gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin); if (gsi != -1) hlist_for_each_entry_rcu(kian, &kvm->irq_ack_notifier_list, link) if (kian->gsi == gsi) { srcu_read_unlock(&kvm->irq_srcu, idx); return true; } srcu_read_unlock(&kvm->irq_srcu, idx); return false; } EXPORT_SYMBOL_GPL(kvm_irq_has_notifier); void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin) { struct kvm_irq_ack_notifier *kian; int gsi, idx; trace_kvm_ack_irq(irqchip, pin); idx = srcu_read_lock(&kvm->irq_srcu); gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin); if (gsi != -1) hlist_for_each_entry_rcu(kian, &kvm->irq_ack_notifier_list, link) if (kian->gsi == gsi) kian->irq_acked(kian); srcu_read_unlock(&kvm->irq_srcu, idx); } void kvm_register_irq_ack_notifier(struct kvm *kvm, struct kvm_irq_ack_notifier *kian) { mutex_lock(&kvm->irq_lock); hlist_add_head_rcu(&kian->link, &kvm->irq_ack_notifier_list); mutex_unlock(&kvm->irq_lock); kvm_vcpu_request_scan_ioapic(kvm); } void kvm_unregister_irq_ack_notifier(struct kvm *kvm, struct kvm_irq_ack_notifier *kian) { mutex_lock(&kvm->irq_lock); hlist_del_init_rcu(&kian->link); mutex_unlock(&kvm->irq_lock); synchronize_srcu(&kvm->irq_srcu); kvm_vcpu_request_scan_ioapic(kvm); } #endif void kvm_eventfd_init(struct kvm *kvm) { #ifdef CONFIG_HAVE_KVM_IRQFD spin_lock_init(&kvm->irqfds.lock); INIT_LIST_HEAD(&kvm->irqfds.items); INIT_LIST_HEAD(&kvm->irqfds.resampler_list); mutex_init(&kvm->irqfds.resampler_lock); #endif INIT_LIST_HEAD(&kvm->ioeventfds); } #ifdef CONFIG_HAVE_KVM_IRQFD /* * shutdown any irqfd's that match fd+gsi */ static int kvm_irqfd_deassign(struct kvm *kvm, struct kvm_irqfd *args) { struct _irqfd *irqfd, *tmp; struct eventfd_ctx *eventfd; eventfd = eventfd_ctx_fdget(args->fd); if (IS_ERR(eventfd)) return PTR_ERR(eventfd); spin_lock_irq(&kvm->irqfds.lock); list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) { if (irqfd->eventfd == eventfd && irqfd->gsi == args->gsi) { /* * This clearing of irq_entry.type is needed for when * another thread calls kvm_irq_routing_update before * we flush workqueue below (we synchronize with * kvm_irq_routing_update using irqfds.lock). */ write_seqcount_begin(&irqfd->irq_entry_sc); irqfd->irq_entry.type = 0; write_seqcount_end(&irqfd->irq_entry_sc); irqfd_deactivate(irqfd); } } spin_unlock_irq(&kvm->irqfds.lock); eventfd_ctx_put(eventfd); /* * Block until we know all outstanding shutdown jobs have completed * so that we guarantee there will not be any more interrupts on this * gsi once this deassign function returns. */ flush_workqueue(irqfd_cleanup_wq); return 0; } int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) { if (args->flags & ~(KVM_IRQFD_FLAG_DEASSIGN | KVM_IRQFD_FLAG_RESAMPLE)) return -EINVAL; if (args->flags & KVM_IRQFD_FLAG_DEASSIGN) return kvm_irqfd_deassign(kvm, args); return kvm_irqfd_assign(kvm, args); } /* * This function is called as the kvm VM fd is being released. Shutdown all * irqfds that still remain open */ void kvm_irqfd_release(struct kvm *kvm) { struct _irqfd *irqfd, *tmp; spin_lock_irq(&kvm->irqfds.lock); list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) irqfd_deactivate(irqfd); spin_unlock_irq(&kvm->irqfds.lock); /* * Block until we know all outstanding shutdown jobs have completed * since we do not take a kvm* reference. */ flush_workqueue(irqfd_cleanup_wq); } /* * Take note of a change in irq routing. * Caller must invoke synchronize_srcu(&kvm->irq_srcu) afterwards. */ void kvm_irq_routing_update(struct kvm *kvm) { struct _irqfd *irqfd; spin_lock_irq(&kvm->irqfds.lock); list_for_each_entry(irqfd, &kvm->irqfds.items, list) irqfd_update(kvm, irqfd); spin_unlock_irq(&kvm->irqfds.lock); } /* * create a host-wide workqueue for issuing deferred shutdown requests * aggregated from all vm* instances. We need our own isolated single-thread * queue to prevent deadlock against flushing the normal work-queue. */ int kvm_irqfd_init(void) { irqfd_cleanup_wq = create_singlethread_workqueue("kvm-irqfd-cleanup"); if (!irqfd_cleanup_wq) return -ENOMEM; return 0; } void kvm_irqfd_exit(void) { destroy_workqueue(irqfd_cleanup_wq); } #endif /* * -------------------------------------------------------------------- * ioeventfd: translate a PIO/MMIO memory write to an eventfd signal. * * userspace can register a PIO/MMIO address with an eventfd for receiving * notification when the memory has been touched. * -------------------------------------------------------------------- */ struct _ioeventfd { struct list_head list; u64 addr; int length; struct eventfd_ctx *eventfd; u64 datamatch; struct kvm_io_device dev; u8 bus_idx; bool wildcard; }; static inline struct _ioeventfd * to_ioeventfd(struct kvm_io_device *dev) { return container_of(dev, struct _ioeventfd, dev); } static void ioeventfd_release(struct _ioeventfd *p) { eventfd_ctx_put(p->eventfd); list_del(&p->list); kfree(p); } static bool ioeventfd_in_range(struct _ioeventfd *p, gpa_t addr, int len, const void *val) { u64 _val; if (addr != p->addr) /* address must be precise for a hit */ return false; if (!p->length) /* length = 0 means only look at the address, so always a hit */ return true; if (len != p->length) /* address-range must be precise for a hit */ return false; if (p->wildcard) /* all else equal, wildcard is always a hit */ return true; /* otherwise, we have to actually compare the data */ BUG_ON(!IS_ALIGNED((unsigned long)val, len)); switch (len) { case 1: _val = *(u8 *)val; break; case 2: _val = *(u16 *)val; break; case 4: _val = *(u32 *)val; break; case 8: _val = *(u64 *)val; break; default: return false; } return _val == p->datamatch ? true : false; } /* MMIO/PIO writes trigger an event if the addr/val match */ static int ioeventfd_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, int len, const void *val) { struct _ioeventfd *p = to_ioeventfd(this); if (!ioeventfd_in_range(p, addr, len, val)) return -EOPNOTSUPP; eventfd_signal(p->eventfd, 1); return 0; } /* * This function is called as KVM is completely shutting down. We do not * need to worry about locking just nuke anything we have as quickly as possible */ static void ioeventfd_destructor(struct kvm_io_device *this) { struct _ioeventfd *p = to_ioeventfd(this); ioeventfd_release(p); } static const struct kvm_io_device_ops ioeventfd_ops = { .write = ioeventfd_write, .destructor = ioeventfd_destructor, }; /* assumes kvm->slots_lock held */ static bool ioeventfd_check_collision(struct kvm *kvm, struct _ioeventfd *p) { struct _ioeventfd *_p; list_for_each_entry(_p, &kvm->ioeventfds, list) if (_p->bus_idx == p->bus_idx && _p->addr == p->addr && (!_p->length || !p->length || (_p->length == p->length && (_p->wildcard || p->wildcard || _p->datamatch == p->datamatch)))) return true; return false; } static enum kvm_bus ioeventfd_bus_from_flags(__u32 flags) { if (flags & KVM_IOEVENTFD_FLAG_PIO) return KVM_PIO_BUS; if (flags & KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY) return KVM_VIRTIO_CCW_NOTIFY_BUS; return KVM_MMIO_BUS; } static int kvm_assign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) { enum kvm_bus bus_idx; struct _ioeventfd *p; struct eventfd_ctx *eventfd; int ret; bus_idx = ioeventfd_bus_from_flags(args->flags); /* must be natural-word sized, or 0 to ignore length */ switch (args->len) { case 0: case 1: case 2: case 4: case 8: break; default: return -EINVAL; } /* check for range overflow */ if (args->addr + args->len < args->addr) return -EINVAL; /* check for extra flags that we don't understand */ if (args->flags & ~KVM_IOEVENTFD_VALID_FLAG_MASK) return -EINVAL; /* ioeventfd with no length can't be combined with DATAMATCH */ if (!args->len && args->flags & (KVM_IOEVENTFD_FLAG_PIO | KVM_IOEVENTFD_FLAG_DATAMATCH)) return -EINVAL; eventfd = eventfd_ctx_fdget(args->fd); if (IS_ERR(eventfd)) return PTR_ERR(eventfd); p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) { ret = -ENOMEM; goto fail; } INIT_LIST_HEAD(&p->list); p->addr = args->addr; p->bus_idx = bus_idx; p->length = args->len; p->eventfd = eventfd; /* The datamatch feature is optional, otherwise this is a wildcard */ if (args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH) p->datamatch = args->datamatch; else p->wildcard = true; mutex_lock(&kvm->slots_lock); /* Verify that there isn't a match already */ if (ioeventfd_check_collision(kvm, p)) { ret = -EEXIST; goto unlock_fail; } kvm_iodevice_init(&p->dev, &ioeventfd_ops); ret = kvm_io_bus_register_dev(kvm, bus_idx, p->addr, p->length, &p->dev); if (ret < 0) goto unlock_fail; /* When length is ignored, MMIO is also put on a separate bus, for * faster lookups. */ if (!args->len && !(args->flags & KVM_IOEVENTFD_FLAG_PIO)) { ret = kvm_io_bus_register_dev(kvm, KVM_FAST_MMIO_BUS, p->addr, 0, &p->dev); if (ret < 0) goto register_fail; } kvm->buses[bus_idx]->ioeventfd_count++; list_add_tail(&p->list, &kvm->ioeventfds); mutex_unlock(&kvm->slots_lock); return 0; register_fail: kvm_io_bus_unregister_dev(kvm, bus_idx, &p->dev); unlock_fail: mutex_unlock(&kvm->slots_lock); fail: kfree(p); eventfd_ctx_put(eventfd); return ret; } static int kvm_deassign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) { enum kvm_bus bus_idx; struct _ioeventfd *p, *tmp; struct eventfd_ctx *eventfd; int ret = -ENOENT; bus_idx = ioeventfd_bus_from_flags(args->flags); eventfd = eventfd_ctx_fdget(args->fd); if (IS_ERR(eventfd)) return PTR_ERR(eventfd); mutex_lock(&kvm->slots_lock); list_for_each_entry_safe(p, tmp, &kvm->ioeventfds, list) { bool wildcard = !(args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH); if (p->bus_idx != bus_idx || p->eventfd != eventfd || p->addr != args->addr || p->length != args->len || p->wildcard != wildcard) continue; if (!p->wildcard && p->datamatch != args->datamatch) continue; kvm_io_bus_unregister_dev(kvm, bus_idx, &p->dev); if (!p->length) { kvm_io_bus_unregister_dev(kvm, KVM_FAST_MMIO_BUS, &p->dev); } kvm->buses[bus_idx]->ioeventfd_count--; ioeventfd_release(p); ret = 0; break; } mutex_unlock(&kvm->slots_lock); eventfd_ctx_put(eventfd); return ret; } int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) { if (args->flags & KVM_IOEVENTFD_FLAG_DEASSIGN) return kvm_deassign_ioeventfd(kvm, args); return kvm_assign_ioeventfd(kvm, args); }