Kernel  |  4.1

下载     查看原文件
C++程序  |  330行  |  7.9 KB
/*
 * pci.c -- PCI bus support for ColdFire processors
 *
 * (C) Copyright 2012, Greg Ungerer <gerg@uclinux.com>
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file COPYING in the main directory of this archive
 * for more details.
 */

#include <linux/types.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <asm/coldfire.h>
#include <asm/mcfsim.h>
#include <asm/m54xxpci.h>

/*
 * Memory and IO mappings. We use a 1:1 mapping for local host memory to
 * PCI bus memory (no reason not to really). IO space doesn't matter, we
 * always use access functions for that. The device configuration space is
 * mapped over the IO map space when we enable it in the PCICAR register.
 */
#define	PCI_MEM_PA	0xf0000000		/* Host physical address */
#define	PCI_MEM_BA	0xf0000000		/* Bus physical address */
#define	PCI_MEM_SIZE	0x08000000		/* 128 MB */
#define	PCI_MEM_MASK	(PCI_MEM_SIZE - 1)

#define	PCI_IO_PA	0xf8000000		/* Host physical address */
#define	PCI_IO_BA	0x00000000		/* Bus physical address */
#define	PCI_IO_SIZE	0x00010000		/* 64k */
#define	PCI_IO_MASK	(PCI_IO_SIZE - 1)

static struct pci_bus *rootbus;
static unsigned long iospace;

/*
 * We need to be carefull probing on bus 0 (directly connected to host
 * bridge). We should only acccess the well defined possible devices in
 * use, ignore aliases and the like.
 */
static unsigned char mcf_host_slot2sid[32] = {
	0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0,
	0, 1, 2, 0, 3, 4, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0,
};

static unsigned char mcf_host_irq[] = {
	0, 69, 69, 71, 71,
};


static inline void syncio(void)
{
	/* The ColdFire "nop" instruction waits for all bus IO to complete */
	__asm__ __volatile__ ("nop");
}

/*
 * Configuration space access functions. Configuration space access is
 * through the IO mapping window, enabling it via the PCICAR register.
 */
static unsigned long mcf_mk_pcicar(int bus, unsigned int devfn, int where)
{
	return (bus << PCICAR_BUSN) | (devfn << PCICAR_DEVFNN) | (where & 0xfc);
}

static int mcf_pci_readconfig(struct pci_bus *bus, unsigned int devfn,
	int where, int size, u32 *value)
{
	unsigned long addr;

	*value = 0xffffffff;

	if (bus->number == 0) {
		if (mcf_host_slot2sid[PCI_SLOT(devfn)] == 0)
			return PCIBIOS_SUCCESSFUL;
	}

	syncio();
	addr = mcf_mk_pcicar(bus->number, devfn, where);
	__raw_writel(PCICAR_E | addr, PCICAR);
	addr = iospace + (where & 0x3);

	switch (size) {
	case 1:
		*value = __raw_readb(addr);
		break;
	case 2:
		*value = le16_to_cpu(__raw_readw(addr));
		break;
	default:
		*value = le32_to_cpu(__raw_readl(addr));
		break;
	}

	syncio();
	__raw_writel(0, PCICAR);
	return PCIBIOS_SUCCESSFUL;
}

static int mcf_pci_writeconfig(struct pci_bus *bus, unsigned int devfn,
	int where, int size, u32 value)
{
	unsigned long addr;

	if (bus->number == 0) {
		if (mcf_host_slot2sid[PCI_SLOT(devfn)] == 0)
			return PCIBIOS_SUCCESSFUL;
	}

	syncio();
	addr = mcf_mk_pcicar(bus->number, devfn, where);
	__raw_writel(PCICAR_E | addr, PCICAR);
	addr = iospace + (where & 0x3);

	switch (size) {
	case 1:
		 __raw_writeb(value, addr);
		break;
	case 2:
		__raw_writew(cpu_to_le16(value), addr);
		break;
	default:
		__raw_writel(cpu_to_le32(value), addr);
		break;
	}

	syncio();
	__raw_writel(0, PCICAR);
	return PCIBIOS_SUCCESSFUL;
}

static struct pci_ops mcf_pci_ops = {
	.read	= mcf_pci_readconfig,
	.write	= mcf_pci_writeconfig,
};

/*
 *	IO address space access functions. Pretty strait forward, these are
 *	directly mapped in to the IO mapping window. And that is mapped into
 *	virtual address space.
 */
u8 mcf_pci_inb(u32 addr)
{
	return __raw_readb(iospace + (addr & PCI_IO_MASK));
}
EXPORT_SYMBOL(mcf_pci_inb);

u16 mcf_pci_inw(u32 addr)
{
	return le16_to_cpu(__raw_readw(iospace + (addr & PCI_IO_MASK)));
}
EXPORT_SYMBOL(mcf_pci_inw);

u32 mcf_pci_inl(u32 addr)
{
	return le32_to_cpu(__raw_readl(iospace + (addr & PCI_IO_MASK)));
}
EXPORT_SYMBOL(mcf_pci_inl);

void mcf_pci_insb(u32 addr, u8 *buf, u32 len)
{
	for (; len; len--)
		*buf++ = mcf_pci_inb(addr);
}
EXPORT_SYMBOL(mcf_pci_insb);

void mcf_pci_insw(u32 addr, u16 *buf, u32 len)
{
	for (; len; len--)
		*buf++ = mcf_pci_inw(addr);
}
EXPORT_SYMBOL(mcf_pci_insw);

void mcf_pci_insl(u32 addr, u32 *buf, u32 len)
{
	for (; len; len--)
		*buf++ = mcf_pci_inl(addr);
}
EXPORT_SYMBOL(mcf_pci_insl);

void mcf_pci_outb(u8 v, u32 addr)
{
	__raw_writeb(v, iospace + (addr & PCI_IO_MASK));
}
EXPORT_SYMBOL(mcf_pci_outb);

void mcf_pci_outw(u16 v, u32 addr)
{
	__raw_writew(cpu_to_le16(v), iospace + (addr & PCI_IO_MASK));
}
EXPORT_SYMBOL(mcf_pci_outw);

void mcf_pci_outl(u32 v, u32 addr)
{
	__raw_writel(cpu_to_le32(v), iospace + (addr & PCI_IO_MASK));
}
EXPORT_SYMBOL(mcf_pci_outl);

void mcf_pci_outsb(u32 addr, const u8 *buf, u32 len)
{
	for (; len; len--)
		mcf_pci_outb(*buf++, addr);
}
EXPORT_SYMBOL(mcf_pci_outsb);

void mcf_pci_outsw(u32 addr, const u16 *buf, u32 len)
{
	for (; len; len--)
		mcf_pci_outw(*buf++, addr);
}
EXPORT_SYMBOL(mcf_pci_outsw);

void mcf_pci_outsl(u32 addr, const u32 *buf, u32 len)
{
	for (; len; len--)
		mcf_pci_outl(*buf++, addr);
}
EXPORT_SYMBOL(mcf_pci_outsl);

/*
 * Initialize the PCI bus registers, and scan the bus.
 */
static struct resource mcf_pci_mem = {
	.name	= "PCI Memory space",
	.start	= PCI_MEM_PA,
	.end	= PCI_MEM_PA + PCI_MEM_SIZE - 1,
	.flags	= IORESOURCE_MEM,
};

static struct resource mcf_pci_io = {
	.name	= "PCI IO space",
	.start	= 0x400,
	.end	= 0x10000 - 1,
	.flags	= IORESOURCE_IO,
};

/*
 * Interrupt mapping and setting.
 */
static int mcf_pci_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
{
	int sid;

	sid = mcf_host_slot2sid[slot];
	if (sid)
		return mcf_host_irq[sid];
	return 0;
}

static int __init mcf_pci_init(void)
{
	pr_info("ColdFire: PCI bus initialization...\n");

	/* Reset the external PCI bus */
	__raw_writel(PCIGSCR_RESET, PCIGSCR);
	__raw_writel(0, PCITCR);

	request_resource(&iomem_resource, &mcf_pci_mem);
	request_resource(&iomem_resource, &mcf_pci_io);

	/* Configure PCI arbiter */
	__raw_writel(PACR_INTMPRI | PACR_INTMINTE | PACR_EXTMPRI(0x1f) |
		PACR_EXTMINTE(0x1f), PACR);

	/* Set required multi-function pins for PCI bus use */
	__raw_writew(0x3ff, MCFGPIO_PAR_PCIBG);
	__raw_writew(0x3ff, MCFGPIO_PAR_PCIBR);

	/* Set up config space for local host bus controller */
	__raw_writel(PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
		PCI_COMMAND_INVALIDATE, PCISCR);
	__raw_writel(PCICR1_LT(32) | PCICR1_CL(8), PCICR1);
	__raw_writel(0, PCICR2);

	/*
	 * Set up the initiator windows for memory and IO mapping.
	 * These give the CPU bus access onto the PCI bus. One for each of
	 * PCI memory and IO address spaces.
	 */
	__raw_writel(WXBTAR(PCI_MEM_PA, PCI_MEM_BA, PCI_MEM_SIZE),
		PCIIW0BTAR);
	__raw_writel(WXBTAR(PCI_IO_PA, PCI_IO_BA, PCI_IO_SIZE),
		PCIIW1BTAR);
	__raw_writel(PCIIWCR_W0_MEM /*| PCIIWCR_W0_MRDL*/ | PCIIWCR_W0_E |
		PCIIWCR_W1_IO | PCIIWCR_W1_E, PCIIWCR);

	/*
	 * Set up the target windows for access from the PCI bus back to the
	 * CPU bus. All we need is access to system RAM (for mastering).
	 */
	__raw_writel(CONFIG_RAMBASE, PCIBAR1);
	__raw_writel(CONFIG_RAMBASE | PCITBATR1_E, PCITBATR1);

	/* Keep a virtual mapping to IO/config space active */
	iospace = (unsigned long) ioremap(PCI_IO_PA, PCI_IO_SIZE);
	if (iospace == 0)
		return -ENODEV;
	pr_info("Coldfire: PCI IO/config window mapped to 0x%x\n",
		(u32) iospace);

	/* Turn of PCI reset, and wait for devices to settle */
	__raw_writel(0, PCIGSCR);
	set_current_state(TASK_UNINTERRUPTIBLE);
	schedule_timeout(msecs_to_jiffies(200));

	rootbus = pci_scan_bus(0, &mcf_pci_ops, NULL);
	if (!rootbus)
		return -ENODEV;

	rootbus->resource[0] = &mcf_pci_io;
	rootbus->resource[1] = &mcf_pci_mem;

	pci_fixup_irqs(pci_common_swizzle, mcf_pci_map_irq);
	pci_bus_size_bridges(rootbus);
	pci_bus_assign_resources(rootbus);
	pci_bus_add_devices(rootbus);
	return 0;
}

subsys_initcall(mcf_pci_init);