Kernel  |  4.1

下载     查看原文件
C++程序  |  828行  |  22.21 KB
/*
 * Procedures for creating, accessing and interpreting the device tree.
 *
 * Paul Mackerras	August 1996.
 * Copyright (C) 1996-2005 Paul Mackerras.
 * 
 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
 *    {engebret|bergner}@us.ibm.com 
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#undef DEBUG

#include <stdarg.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/threads.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/stringify.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/bitops.h>
#include <linux/export.h>
#include <linux/kexec.h>
#include <linux/irq.h>
#include <linux/memblock.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/libfdt.h>

#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/kdump.h>
#include <asm/smp.h>
#include <asm/mmu.h>
#include <asm/paca.h>
#include <asm/pgtable.h>
#include <asm/pci.h>
#include <asm/iommu.h>
#include <asm/btext.h>
#include <asm/sections.h>
#include <asm/machdep.h>
#include <asm/pci-bridge.h>
#include <asm/kexec.h>
#include <asm/opal.h>
#include <asm/fadump.h>
#include <asm/debug.h>

#include <mm/mmu_decl.h>

#ifdef DEBUG
#define DBG(fmt...) printk(KERN_ERR fmt)
#else
#define DBG(fmt...)
#endif

#ifdef CONFIG_PPC64
int __initdata iommu_is_off;
int __initdata iommu_force_on;
unsigned long tce_alloc_start, tce_alloc_end;
u64 ppc64_rma_size;
#endif
static phys_addr_t first_memblock_size;
static int __initdata boot_cpu_count;

static int __init early_parse_mem(char *p)
{
	if (!p)
		return 1;

	memory_limit = PAGE_ALIGN(memparse(p, &p));
	DBG("memory limit = 0x%llx\n", memory_limit);

	return 0;
}
early_param("mem", early_parse_mem);

/*
 * overlaps_initrd - check for overlap with page aligned extension of
 * initrd.
 */
static inline int overlaps_initrd(unsigned long start, unsigned long size)
{
#ifdef CONFIG_BLK_DEV_INITRD
	if (!initrd_start)
		return 0;

	return	(start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
			start <= _ALIGN_UP(initrd_end, PAGE_SIZE);
#else
	return 0;
#endif
}

/**
 * move_device_tree - move tree to an unused area, if needed.
 *
 * The device tree may be allocated beyond our memory limit, or inside the
 * crash kernel region for kdump, or within the page aligned range of initrd.
 * If so, move it out of the way.
 */
static void __init move_device_tree(void)
{
	unsigned long start, size;
	void *p;

	DBG("-> move_device_tree\n");

	start = __pa(initial_boot_params);
	size = fdt_totalsize(initial_boot_params);

	if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
			overlaps_crashkernel(start, size) ||
			overlaps_initrd(start, size)) {
		p = __va(memblock_alloc(size, PAGE_SIZE));
		memcpy(p, initial_boot_params, size);
		initial_boot_params = p;
		DBG("Moved device tree to 0x%p\n", p);
	}

	DBG("<- move_device_tree\n");
}

/*
 * ibm,pa-features is a per-cpu property that contains a string of
 * attribute descriptors, each of which has a 2 byte header plus up
 * to 254 bytes worth of processor attribute bits.  First header
 * byte specifies the number of bytes following the header.
 * Second header byte is an "attribute-specifier" type, of which
 * zero is the only currently-defined value.
 * Implementation:  Pass in the byte and bit offset for the feature
 * that we are interested in.  The function will return -1 if the
 * pa-features property is missing, or a 1/0 to indicate if the feature
 * is supported/not supported.  Note that the bit numbers are
 * big-endian to match the definition in PAPR.
 */
static struct ibm_pa_feature {
	unsigned long	cpu_features;	/* CPU_FTR_xxx bit */
	unsigned long	mmu_features;	/* MMU_FTR_xxx bit */
	unsigned int	cpu_user_ftrs;	/* PPC_FEATURE_xxx bit */
	unsigned char	pabyte;		/* byte number in ibm,pa-features */
	unsigned char	pabit;		/* bit number (big-endian) */
	unsigned char	invert;		/* if 1, pa bit set => clear feature */
} ibm_pa_features[] __initdata = {
	{0, 0, PPC_FEATURE_HAS_MMU,	0, 0, 0},
	{0, 0, PPC_FEATURE_HAS_FPU,	0, 1, 0},
	{CPU_FTR_CTRL, 0, 0,		0, 3, 0},
	{CPU_FTR_NOEXECUTE, 0, 0,	0, 6, 0},
	{CPU_FTR_NODSISRALIGN, 0, 0,	1, 1, 1},
	{0, MMU_FTR_CI_LARGE_PAGE, 0,	1, 2, 0},
	{CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0},
	/*
	 * If the kernel doesn't support TM (ie. CONFIG_PPC_TRANSACTIONAL_MEM=n),
	 * we don't want to turn on CPU_FTR_TM here, so we use CPU_FTR_TM_COMP
	 * which is 0 if the kernel doesn't support TM.
	 */
	{CPU_FTR_TM_COMP, 0, 0,		22, 0, 0},
};

static void __init scan_features(unsigned long node, const unsigned char *ftrs,
				 unsigned long tablelen,
				 struct ibm_pa_feature *fp,
				 unsigned long ft_size)
{
	unsigned long i, len, bit;

	/* find descriptor with type == 0 */
	for (;;) {
		if (tablelen < 3)
			return;
		len = 2 + ftrs[0];
		if (tablelen < len)
			return;		/* descriptor 0 not found */
		if (ftrs[1] == 0)
			break;
		tablelen -= len;
		ftrs += len;
	}

	/* loop over bits we know about */
	for (i = 0; i < ft_size; ++i, ++fp) {
		if (fp->pabyte >= ftrs[0])
			continue;
		bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
		if (bit ^ fp->invert) {
			cur_cpu_spec->cpu_features |= fp->cpu_features;
			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
			cur_cpu_spec->mmu_features |= fp->mmu_features;
		} else {
			cur_cpu_spec->cpu_features &= ~fp->cpu_features;
			cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
			cur_cpu_spec->mmu_features &= ~fp->mmu_features;
		}
	}
}

static void __init check_cpu_pa_features(unsigned long node)
{
	const unsigned char *pa_ftrs;
	int tablelen;

	pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
	if (pa_ftrs == NULL)
		return;

	scan_features(node, pa_ftrs, tablelen,
		      ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
}

#ifdef CONFIG_PPC_STD_MMU_64
static void __init check_cpu_slb_size(unsigned long node)
{
	const __be32 *slb_size_ptr;

	slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL);
	if (slb_size_ptr != NULL) {
		mmu_slb_size = be32_to_cpup(slb_size_ptr);
		return;
	}
	slb_size_ptr = of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
	if (slb_size_ptr != NULL) {
		mmu_slb_size = be32_to_cpup(slb_size_ptr);
	}
}
#else
#define check_cpu_slb_size(node) do { } while(0)
#endif

static struct feature_property {
	const char *name;
	u32 min_value;
	unsigned long cpu_feature;
	unsigned long cpu_user_ftr;
} feature_properties[] __initdata = {
#ifdef CONFIG_ALTIVEC
	{"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
	{"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_VSX
	/* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
	{"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
#endif /* CONFIG_VSX */
#ifdef CONFIG_PPC64
	{"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
	{"ibm,purr", 1, CPU_FTR_PURR, 0},
	{"ibm,spurr", 1, CPU_FTR_SPURR, 0},
#endif /* CONFIG_PPC64 */
};

#if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
static inline void identical_pvr_fixup(unsigned long node)
{
	unsigned int pvr;
	const char *model = of_get_flat_dt_prop(node, "model", NULL);

	/*
	 * Since 440GR(x)/440EP(x) processors have the same pvr,
	 * we check the node path and set bit 28 in the cur_cpu_spec
	 * pvr for EP(x) processor version. This bit is always 0 in
	 * the "real" pvr. Then we call identify_cpu again with
	 * the new logical pvr to enable FPU support.
	 */
	if (model && strstr(model, "440EP")) {
		pvr = cur_cpu_spec->pvr_value | 0x8;
		identify_cpu(0, pvr);
		DBG("Using logical pvr %x for %s\n", pvr, model);
	}
}
#else
#define identical_pvr_fixup(node) do { } while(0)
#endif

static void __init check_cpu_feature_properties(unsigned long node)
{
	unsigned long i;
	struct feature_property *fp = feature_properties;
	const __be32 *prop;

	for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
		prop = of_get_flat_dt_prop(node, fp->name, NULL);
		if (prop && be32_to_cpup(prop) >= fp->min_value) {
			cur_cpu_spec->cpu_features |= fp->cpu_feature;
			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
		}
	}
}

static int __init early_init_dt_scan_cpus(unsigned long node,
					  const char *uname, int depth,
					  void *data)
{
	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
	const __be32 *prop;
	const __be32 *intserv;
	int i, nthreads;
	int len;
	int found = -1;
	int found_thread = 0;

	/* We are scanning "cpu" nodes only */
	if (type == NULL || strcmp(type, "cpu") != 0)
		return 0;

	/* Get physical cpuid */
	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
	if (!intserv)
		intserv = of_get_flat_dt_prop(node, "reg", &len);

	nthreads = len / sizeof(int);

	/*
	 * Now see if any of these threads match our boot cpu.
	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
	 */
	for (i = 0; i < nthreads; i++) {
		/*
		 * version 2 of the kexec param format adds the phys cpuid of
		 * booted proc.
		 */
		if (fdt_version(initial_boot_params) >= 2) {
			if (be32_to_cpu(intserv[i]) ==
			    fdt_boot_cpuid_phys(initial_boot_params)) {
				found = boot_cpu_count;
				found_thread = i;
			}
		} else {
			/*
			 * Check if it's the boot-cpu, set it's hw index now,
			 * unfortunately this format did not support booting
			 * off secondary threads.
			 */
			if (of_get_flat_dt_prop(node,
					"linux,boot-cpu", NULL) != NULL)
				found = boot_cpu_count;
		}
#ifdef CONFIG_SMP
		/* logical cpu id is always 0 on UP kernels */
		boot_cpu_count++;
#endif
	}

	/* Not the boot CPU */
	if (found < 0)
		return 0;

	DBG("boot cpu: logical %d physical %d\n", found,
	    be32_to_cpu(intserv[found_thread]));
	boot_cpuid = found;
	set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread]));

	/*
	 * PAPR defines "logical" PVR values for cpus that
	 * meet various levels of the architecture:
	 * 0x0f000001	Architecture version 2.04
	 * 0x0f000002	Architecture version 2.05
	 * If the cpu-version property in the cpu node contains
	 * such a value, we call identify_cpu again with the
	 * logical PVR value in order to use the cpu feature
	 * bits appropriate for the architecture level.
	 *
	 * A POWER6 partition in "POWER6 architected" mode
	 * uses the 0x0f000002 PVR value; in POWER5+ mode
	 * it uses 0x0f000001.
	 */
	prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
	if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
		identify_cpu(0, be32_to_cpup(prop));

	identical_pvr_fixup(node);

	check_cpu_feature_properties(node);
	check_cpu_pa_features(node);
	check_cpu_slb_size(node);

#ifdef CONFIG_PPC64
	if (nthreads > 1)
		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
	else
		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
#endif
	return 0;
}

static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
						const char *uname,
						int depth, void *data)
{
	const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */

	/* Use common scan routine to determine if this is the chosen node */
	if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
		return 0;

#ifdef CONFIG_PPC64
	/* check if iommu is forced on or off */
	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
		iommu_is_off = 1;
	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
		iommu_force_on = 1;
#endif

	/* mem=x on the command line is the preferred mechanism */
	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
	if (lprop)
		memory_limit = *lprop;

#ifdef CONFIG_PPC64
	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
	if (lprop)
		tce_alloc_start = *lprop;
	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
	if (lprop)
		tce_alloc_end = *lprop;
#endif

#ifdef CONFIG_KEXEC
	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
	if (lprop)
		crashk_res.start = *lprop;

	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
	if (lprop)
		crashk_res.end = crashk_res.start + *lprop - 1;
#endif

	/* break now */
	return 1;
}

#ifdef CONFIG_PPC_PSERIES
/*
 * Interpret the ibm,dynamic-memory property in the
 * /ibm,dynamic-reconfiguration-memory node.
 * This contains a list of memory blocks along with NUMA affinity
 * information.
 */
static int __init early_init_dt_scan_drconf_memory(unsigned long node)
{
	const __be32 *dm, *ls, *usm;
	int l;
	unsigned long n, flags;
	u64 base, size, memblock_size;
	unsigned int is_kexec_kdump = 0, rngs;

	ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
	if (ls == NULL || l < dt_root_size_cells * sizeof(__be32))
		return 0;
	memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls);

	dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
	if (dm == NULL || l < sizeof(__be32))
		return 0;

	n = of_read_number(dm++, 1);	/* number of entries */
	if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32))
		return 0;

	/* check if this is a kexec/kdump kernel. */
	usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory",
						 &l);
	if (usm != NULL)
		is_kexec_kdump = 1;

	for (; n != 0; --n) {
		base = dt_mem_next_cell(dt_root_addr_cells, &dm);
		flags = of_read_number(&dm[3], 1);
		/* skip DRC index, pad, assoc. list index, flags */
		dm += 4;
		/* skip this block if the reserved bit is set in flags (0x80)
		   or if the block is not assigned to this partition (0x8) */
		if ((flags & 0x80) || !(flags & 0x8))
			continue;
		size = memblock_size;
		rngs = 1;
		if (is_kexec_kdump) {
			/*
			 * For each memblock in ibm,dynamic-memory, a corresponding
			 * entry in linux,drconf-usable-memory property contains
			 * a counter 'p' followed by 'p' (base, size) duple.
			 * Now read the counter from
			 * linux,drconf-usable-memory property
			 */
			rngs = dt_mem_next_cell(dt_root_size_cells, &usm);
			if (!rngs) /* there are no (base, size) duple */
				continue;
		}
		do {
			if (is_kexec_kdump) {
				base = dt_mem_next_cell(dt_root_addr_cells,
							 &usm);
				size = dt_mem_next_cell(dt_root_size_cells,
							 &usm);
			}
			if (iommu_is_off) {
				if (base >= 0x80000000ul)
					continue;
				if ((base + size) > 0x80000000ul)
					size = 0x80000000ul - base;
			}
			memblock_add(base, size);
		} while (--rngs);
	}
	memblock_dump_all();
	return 0;
}
#else
#define early_init_dt_scan_drconf_memory(node)	0
#endif /* CONFIG_PPC_PSERIES */

static int __init early_init_dt_scan_memory_ppc(unsigned long node,
						const char *uname,
						int depth, void *data)
{
	if (depth == 1 &&
	    strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
		return early_init_dt_scan_drconf_memory(node);
	
	return early_init_dt_scan_memory(node, uname, depth, data);
}

/*
 * For a relocatable kernel, we need to get the memstart_addr first,
 * then use it to calculate the virtual kernel start address. This has
 * to happen at a very early stage (before machine_init). In this case,
 * we just want to get the memstart_address and would not like to mess the
 * memblock at this stage. So introduce a variable to skip the memblock_add()
 * for this reason.
 */
#ifdef CONFIG_RELOCATABLE
static int add_mem_to_memblock = 1;
#else
#define add_mem_to_memblock 1
#endif

void __init early_init_dt_add_memory_arch(u64 base, u64 size)
{
#ifdef CONFIG_PPC64
	if (iommu_is_off) {
		if (base >= 0x80000000ul)
			return;
		if ((base + size) > 0x80000000ul)
			size = 0x80000000ul - base;
	}
#endif
	/* Keep track of the beginning of memory -and- the size of
	 * the very first block in the device-tree as it represents
	 * the RMA on ppc64 server
	 */
	if (base < memstart_addr) {
		memstart_addr = base;
		first_memblock_size = size;
	}

	/* Add the chunk to the MEMBLOCK list */
	if (add_mem_to_memblock)
		memblock_add(base, size);
}

static void __init early_reserve_mem_dt(void)
{
	unsigned long i, dt_root;
	int len;
	const __be32 *prop;

	early_init_fdt_scan_reserved_mem();

	dt_root = of_get_flat_dt_root();

	prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);

	if (!prop)
		return;

	DBG("Found new-style reserved-ranges\n");

	/* Each reserved range is an (address,size) pair, 2 cells each,
	 * totalling 4 cells per range. */
	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
		u64 base, size;

		base = of_read_number(prop + (i * 4) + 0, 2);
		size = of_read_number(prop + (i * 4) + 2, 2);

		if (size) {
			DBG("reserving: %llx -> %llx\n", base, size);
			memblock_reserve(base, size);
		}
	}
}

static void __init early_reserve_mem(void)
{
	__be64 *reserve_map;

	reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
			fdt_off_mem_rsvmap(initial_boot_params));

	/* Look for the new "reserved-regions" property in the DT */
	early_reserve_mem_dt();

#ifdef CONFIG_BLK_DEV_INITRD
	/* Then reserve the initrd, if any */
	if (initrd_start && (initrd_end > initrd_start)) {
		memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
			_ALIGN_UP(initrd_end, PAGE_SIZE) -
			_ALIGN_DOWN(initrd_start, PAGE_SIZE));
	}
#endif /* CONFIG_BLK_DEV_INITRD */

#ifdef CONFIG_PPC32
	/* 
	 * Handle the case where we might be booting from an old kexec
	 * image that setup the mem_rsvmap as pairs of 32-bit values
	 */
	if (be64_to_cpup(reserve_map) > 0xffffffffull) {
		u32 base_32, size_32;
		__be32 *reserve_map_32 = (__be32 *)reserve_map;

		DBG("Found old 32-bit reserve map\n");

		while (1) {
			base_32 = be32_to_cpup(reserve_map_32++);
			size_32 = be32_to_cpup(reserve_map_32++);
			if (size_32 == 0)
				break;
			DBG("reserving: %x -> %x\n", base_32, size_32);
			memblock_reserve(base_32, size_32);
		}
		return;
	}
#endif
}

void __init early_init_devtree(void *params)
{
	phys_addr_t limit;

	DBG(" -> early_init_devtree(%p)\n", params);

	/* Too early to BUG_ON(), do it by hand */
	if (!early_init_dt_verify(params))
		panic("BUG: Failed verifying flat device tree, bad version?");

#ifdef CONFIG_PPC_RTAS
	/* Some machines might need RTAS info for debugging, grab it now. */
	of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
#endif

#ifdef CONFIG_PPC_POWERNV
	/* Some machines might need OPAL info for debugging, grab it now. */
	of_scan_flat_dt(early_init_dt_scan_opal, NULL);
#endif

#ifdef CONFIG_FA_DUMP
	/* scan tree to see if dump is active during last boot */
	of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
#endif

	/* Retrieve various informations from the /chosen node of the
	 * device-tree, including the platform type, initrd location and
	 * size, TCE reserve, and more ...
	 */
	of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);

	/* Scan memory nodes and rebuild MEMBLOCKs */
	of_scan_flat_dt(early_init_dt_scan_root, NULL);
	of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);

	parse_early_param();

	/* make sure we've parsed cmdline for mem= before this */
	if (memory_limit)
		first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
	setup_initial_memory_limit(memstart_addr, first_memblock_size);
	/* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
	memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
	/* If relocatable, reserve first 32k for interrupt vectors etc. */
	if (PHYSICAL_START > MEMORY_START)
		memblock_reserve(MEMORY_START, 0x8000);
	reserve_kdump_trampoline();
#ifdef CONFIG_FA_DUMP
	/*
	 * If we fail to reserve memory for firmware-assisted dump then
	 * fallback to kexec based kdump.
	 */
	if (fadump_reserve_mem() == 0)
#endif
		reserve_crashkernel();
	early_reserve_mem();

	/* Ensure that total memory size is page-aligned. */
	limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
	memblock_enforce_memory_limit(limit);

	memblock_allow_resize();
	memblock_dump_all();

	DBG("Phys. mem: %llx\n", memblock_phys_mem_size());

	/* We may need to relocate the flat tree, do it now.
	 * FIXME .. and the initrd too? */
	move_device_tree();

	allocate_pacas();

	DBG("Scanning CPUs ...\n");

	/* Retrieve CPU related informations from the flat tree
	 * (altivec support, boot CPU ID, ...)
	 */
	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
	if (boot_cpuid < 0) {
		printk("Failed to identify boot CPU !\n");
		BUG();
	}

#if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
	/* We'll later wait for secondaries to check in; there are
	 * NCPUS-1 non-boot CPUs  :-)
	 */
	spinning_secondaries = boot_cpu_count - 1;
#endif

#ifdef CONFIG_PPC_POWERNV
	/* Scan and build the list of machine check recoverable ranges */
	of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
#endif

	DBG(" <- early_init_devtree()\n");
}

#ifdef CONFIG_RELOCATABLE
/*
 * This function run before early_init_devtree, so we have to init
 * initial_boot_params.
 */
void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
{
	/* Setup flat device-tree pointer */
	initial_boot_params = params;

	/*
	 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
	 * mess the memblock.
	 */
	add_mem_to_memblock = 0;
	of_scan_flat_dt(early_init_dt_scan_root, NULL);
	of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
	add_mem_to_memblock = 1;

	if (size)
		*size = first_memblock_size;
}
#endif

/*******
 *
 * New implementation of the OF "find" APIs, return a refcounted
 * object, call of_node_put() when done.  The device tree and list
 * are protected by a rw_lock.
 *
 * Note that property management will need some locking as well,
 * this isn't dealt with yet.
 *
 *******/

/**
 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
 * @np: device node of the device
 *
 * This looks for a property "ibm,chip-id" in the node or any
 * of its parents and returns its content, or -1 if it cannot
 * be found.
 */
int of_get_ibm_chip_id(struct device_node *np)
{
	of_node_get(np);
	while(np) {
		struct device_node *old = np;
		const __be32 *prop;

		prop = of_get_property(np, "ibm,chip-id", NULL);
		if (prop) {
			of_node_put(np);
			return be32_to_cpup(prop);
		}
		np = of_get_parent(np);
		of_node_put(old);
	}
	return -1;
}

/**
 * cpu_to_chip_id - Return the cpus chip-id
 * @cpu: The logical cpu number.
 *
 * Return the value of the ibm,chip-id property corresponding to the given
 * logical cpu number. If the chip-id can not be found, returns -1.
 */
int cpu_to_chip_id(int cpu)
{
	struct device_node *np;

	np = of_get_cpu_node(cpu, NULL);
	if (!np)
		return -1;

	of_node_put(np);
	return of_get_ibm_chip_id(np);
}
EXPORT_SYMBOL(cpu_to_chip_id);

bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
{
	return (int)phys_id == get_hard_smp_processor_id(cpu);
}