- 根目录:
- drivers
- staging
- ozwpan
- ozhcd.c
/* -----------------------------------------------------------------------------
* Copyright (c) 2011 Ozmo Inc
* Released under the GNU General Public License Version 2 (GPLv2).
*
* This file provides the implementation of a USB host controller device that
* does not have any associated hardware. Instead the virtual device is
* connected to the WiFi network and emulates the operation of a USB hcd by
* receiving and sending network frames.
* Note:
* We take great pains to reduce the amount of code where interrupts need to be
* disabled and in this respect we are different from standard HCD's. In
* particular we don't want in_irq() code bleeding over to the protocol side of
* the driver.
* The troublesome functions are the urb enqueue and dequeue functions both of
* which can be called in_irq(). So for these functions we put the urbs into a
* queue and request a tasklet to process them. This means that a spinlock with
* interrupts disabled must be held for insertion and removal but most code is
* is in tasklet or soft irq context. The lock that protects this list is called
* the tasklet lock and serves the purpose of the 'HCD lock' which must be held
* when calling the following functions.
* usb_hcd_link_urb_to_ep()
* usb_hcd_unlink_urb_from_ep()
* usb_hcd_flush_endpoint()
* usb_hcd_check_unlink_urb()
* -----------------------------------------------------------------------------
*/
#include <linux/platform_device.h>
#include <linux/usb.h>
#include <linux/slab.h>
#include <linux/export.h>
#include "linux/usb/hcd.h"
#include <asm/unaligned.h>
#include "ozdbg.h"
#include "ozusbif.h"
#include "ozurbparanoia.h"
#include "ozhcd.h"
/*
* Number of units of buffering to capture for an isochronous IN endpoint before
* allowing data to be indicated up.
*/
#define OZ_IN_BUFFERING_UNITS 100
/* Name of our platform device.
*/
#define OZ_PLAT_DEV_NAME "ozwpan"
/*EP0 timeout before ep0 request is again added to TX queue. (13*8 = 98mSec)
*/
#define EP0_TIMEOUT_COUNTER 13
/* Debounce time HCD driver should wait before unregistering.
*/
#define OZ_HUB_DEBOUNCE_TIMEOUT 1500
/*
* Used to link urbs together and also store some status information for each
* urb.
* A cache of these are kept in a pool to reduce number of calls to kmalloc.
*/
struct oz_urb_link {
struct list_head link;
struct urb *urb;
struct oz_port *port;
u8 req_id;
u8 ep_num;
unsigned submit_counter;
};
static struct kmem_cache *oz_urb_link_cache;
/* Holds state information about a USB endpoint.
*/
#define OZ_EP_BUFFER_SIZE_ISOC (1024 * 24)
#define OZ_EP_BUFFER_SIZE_INT 512
struct oz_endpoint {
struct list_head urb_list; /* List of oz_urb_link items. */
struct list_head link; /* For isoc ep, links in to isoc
lists of oz_port. */
struct timespec timestamp;
int credit;
int credit_ceiling;
u8 ep_num;
u8 attrib;
u8 *buffer;
int buffer_size;
int in_ix;
int out_ix;
int buffered_units;
unsigned flags;
int start_frame;
};
/* Bits in the flags field. */
#define OZ_F_EP_BUFFERING 0x1
#define OZ_F_EP_HAVE_STREAM 0x2
/* Holds state information about a USB interface.
*/
struct oz_interface {
unsigned ep_mask;
u8 alt;
};
/* Holds state information about an hcd port.
*/
#define OZ_NB_ENDPOINTS 16
struct oz_port {
unsigned flags;
unsigned status;
void *hpd;
struct oz_hcd *ozhcd;
spinlock_t port_lock;
u8 bus_addr;
u8 next_req_id;
u8 config_num;
int num_iface;
struct oz_interface *iface;
struct oz_endpoint *out_ep[OZ_NB_ENDPOINTS];
struct oz_endpoint *in_ep[OZ_NB_ENDPOINTS];
struct list_head isoc_out_ep;
struct list_head isoc_in_ep;
};
#define OZ_PORT_F_PRESENT 0x1
#define OZ_PORT_F_CHANGED 0x2
#define OZ_PORT_F_DYING 0x4
/* Data structure in the private context area of struct usb_hcd.
*/
#define OZ_NB_PORTS 8
struct oz_hcd {
spinlock_t hcd_lock;
struct list_head urb_pending_list;
struct list_head urb_cancel_list;
struct list_head orphanage;
int conn_port; /* Port that is currently connecting, -1 if none.*/
struct oz_port ports[OZ_NB_PORTS];
uint flags;
struct usb_hcd *hcd;
};
/* Bits in flags field.
*/
#define OZ_HDC_F_SUSPENDED 0x1
/*
* Static function prototypes.
*/
static int oz_hcd_start(struct usb_hcd *hcd);
static void oz_hcd_stop(struct usb_hcd *hcd);
static void oz_hcd_shutdown(struct usb_hcd *hcd);
static int oz_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
gfp_t mem_flags);
static int oz_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status);
static void oz_hcd_endpoint_disable(struct usb_hcd *hcd,
struct usb_host_endpoint *ep);
static void oz_hcd_endpoint_reset(struct usb_hcd *hcd,
struct usb_host_endpoint *ep);
static int oz_hcd_get_frame_number(struct usb_hcd *hcd);
static int oz_hcd_hub_status_data(struct usb_hcd *hcd, char *buf);
static int oz_hcd_hub_control(struct usb_hcd *hcd, u16 req_type, u16 wvalue,
u16 windex, char *buf, u16 wlength);
static int oz_hcd_bus_suspend(struct usb_hcd *hcd);
static int oz_hcd_bus_resume(struct usb_hcd *hcd);
static int oz_plat_probe(struct platform_device *dev);
static int oz_plat_remove(struct platform_device *dev);
static void oz_plat_shutdown(struct platform_device *dev);
static int oz_plat_suspend(struct platform_device *dev, pm_message_t msg);
static int oz_plat_resume(struct platform_device *dev);
static void oz_urb_process_tasklet(unsigned long unused);
static int oz_build_endpoints_for_config(struct usb_hcd *hcd,
struct oz_port *port, struct usb_host_config *config,
gfp_t mem_flags);
static void oz_clean_endpoints_for_config(struct usb_hcd *hcd,
struct oz_port *port);
static int oz_build_endpoints_for_interface(struct usb_hcd *hcd,
struct oz_port *port,
struct usb_host_interface *intf, gfp_t mem_flags);
static void oz_clean_endpoints_for_interface(struct usb_hcd *hcd,
struct oz_port *port, int if_ix);
static void oz_process_ep0_urb(struct oz_hcd *ozhcd, struct urb *urb,
gfp_t mem_flags);
static struct oz_urb_link *oz_remove_urb(struct oz_endpoint *ep,
struct urb *urb);
static void oz_hcd_clear_orphanage(struct oz_hcd *ozhcd, int status);
/*
* Static external variables.
*/
static struct platform_device *g_plat_dev;
static struct oz_hcd *g_ozhcd;
static DEFINE_SPINLOCK(g_hcdlock); /* Guards g_ozhcd. */
static const char g_hcd_name[] = "Ozmo WPAN";
static DEFINE_SPINLOCK(g_tasklet_lock);
static struct tasklet_struct g_urb_process_tasklet;
static struct tasklet_struct g_urb_cancel_tasklet;
static atomic_t g_pending_urbs = ATOMIC_INIT(0);
static atomic_t g_usb_frame_number = ATOMIC_INIT(0);
static const struct hc_driver g_oz_hc_drv = {
.description = g_hcd_name,
.product_desc = "Ozmo Devices WPAN",
.hcd_priv_size = sizeof(struct oz_hcd),
.flags = HCD_USB11,
.start = oz_hcd_start,
.stop = oz_hcd_stop,
.shutdown = oz_hcd_shutdown,
.urb_enqueue = oz_hcd_urb_enqueue,
.urb_dequeue = oz_hcd_urb_dequeue,
.endpoint_disable = oz_hcd_endpoint_disable,
.endpoint_reset = oz_hcd_endpoint_reset,
.get_frame_number = oz_hcd_get_frame_number,
.hub_status_data = oz_hcd_hub_status_data,
.hub_control = oz_hcd_hub_control,
.bus_suspend = oz_hcd_bus_suspend,
.bus_resume = oz_hcd_bus_resume,
};
static struct platform_driver g_oz_plat_drv = {
.probe = oz_plat_probe,
.remove = oz_plat_remove,
.shutdown = oz_plat_shutdown,
.suspend = oz_plat_suspend,
.resume = oz_plat_resume,
.driver = {
.name = OZ_PLAT_DEV_NAME,
},
};
/*
* Gets our private context area (which is of type struct oz_hcd) from the
* usb_hcd structure.
* Context: any
*/
static inline struct oz_hcd *oz_hcd_private(struct usb_hcd *hcd)
{
return (struct oz_hcd *)hcd->hcd_priv;
}
/*
* Searches list of ports to find the index of the one with a specified USB
* bus address. If none of the ports has the bus address then the connection
* port is returned, if there is one or -1 otherwise.
* Context: any
*/
static int oz_get_port_from_addr(struct oz_hcd *ozhcd, u8 bus_addr)
{
int i;
for (i = 0; i < OZ_NB_PORTS; i++) {
if (ozhcd->ports[i].bus_addr == bus_addr)
return i;
}
return ozhcd->conn_port;
}
/*
* Context: any
*/
static struct oz_urb_link *oz_alloc_urb_link(void)
{
return kmem_cache_alloc(oz_urb_link_cache, GFP_ATOMIC);
}
/*
* Context: any
*/
static void oz_free_urb_link(struct oz_urb_link *urbl)
{
if (!urbl)
return;
kmem_cache_free(oz_urb_link_cache, urbl);
}
/*
* Allocates endpoint structure and optionally a buffer. If a buffer is
* allocated it immediately follows the endpoint structure.
* Context: softirq
*/
static struct oz_endpoint *oz_ep_alloc(int buffer_size, gfp_t mem_flags)
{
struct oz_endpoint *ep;
ep = kzalloc(sizeof(struct oz_endpoint)+buffer_size, mem_flags);
if (!ep)
return NULL;
INIT_LIST_HEAD(&ep->urb_list);
INIT_LIST_HEAD(&ep->link);
ep->credit = -1;
if (buffer_size) {
ep->buffer_size = buffer_size;
ep->buffer = (u8 *)(ep+1);
}
return ep;
}
/*
* Pre-condition: Must be called with g_tasklet_lock held and interrupts
* disabled.
* Context: softirq or process
*/
static struct oz_urb_link *oz_uncancel_urb(struct oz_hcd *ozhcd,
struct urb *urb)
{
struct oz_urb_link *urbl;
list_for_each_entry(urbl, &ozhcd->urb_cancel_list, link) {
if (urb == urbl->urb) {
list_del_init(&urbl->link);
return urbl;
}
}
return NULL;
}
/*
* This is called when we have finished processing an urb. It unlinks it from
* the ep and returns it to the core.
* Context: softirq or process
*/
static void oz_complete_urb(struct usb_hcd *hcd, struct urb *urb,
int status)
{
struct oz_hcd *ozhcd = oz_hcd_private(hcd);
unsigned long irq_state;
struct oz_urb_link *cancel_urbl;
spin_lock_irqsave(&g_tasklet_lock, irq_state);
usb_hcd_unlink_urb_from_ep(hcd, urb);
/* Clear hcpriv which will prevent it being put in the cancel list
* in the event that an attempt is made to cancel it.
*/
urb->hcpriv = NULL;
/* Walk the cancel list in case the urb is already sitting there.
* Since we process the cancel list in a tasklet rather than in
* the dequeue function this could happen.
*/
cancel_urbl = oz_uncancel_urb(ozhcd, urb);
/* Note: we release lock but do not enable local irqs.
* It appears that usb_hcd_giveback_urb() expects irqs to be disabled,
* or at least other host controllers disable interrupts at this point
* so we do the same. We must, however, release the lock otherwise a
* deadlock will occur if an urb is submitted to our driver in the urb
* completion function. Because we disable interrupts it is possible
* that the urb_enqueue function can be called with them disabled.
*/
spin_unlock(&g_tasklet_lock);
if (oz_forget_urb(urb)) {
oz_dbg(ON, "ERROR Unknown URB %p\n", urb);
} else {
atomic_dec(&g_pending_urbs);
usb_hcd_giveback_urb(hcd, urb, status);
}
spin_lock(&g_tasklet_lock);
spin_unlock_irqrestore(&g_tasklet_lock, irq_state);
oz_free_urb_link(cancel_urbl);
}
/*
* Deallocates an endpoint including deallocating any associated stream and
* returning any queued urbs to the core.
* Context: softirq
*/
static void oz_ep_free(struct oz_port *port, struct oz_endpoint *ep)
{
if (port) {
LIST_HEAD(list);
struct oz_hcd *ozhcd = port->ozhcd;
if (ep->flags & OZ_F_EP_HAVE_STREAM)
oz_usb_stream_delete(port->hpd, ep->ep_num);
/* Transfer URBs to the orphanage while we hold the lock. */
spin_lock_bh(&ozhcd->hcd_lock);
/* Note: this works even if ep->urb_list is empty.*/
list_replace_init(&ep->urb_list, &list);
/* Put the URBs in the orphanage. */
list_splice_tail(&list, &ozhcd->orphanage);
spin_unlock_bh(&ozhcd->hcd_lock);
}
oz_dbg(ON, "Freeing endpoint memory\n");
kfree(ep);
}
/*
* Context: softirq
*/
static void oz_complete_buffered_urb(struct oz_port *port,
struct oz_endpoint *ep,
struct urb *urb)
{
int data_len, available_space, copy_len;
data_len = ep->buffer[ep->out_ix];
if (data_len <= urb->transfer_buffer_length)
available_space = data_len;
else
available_space = urb->transfer_buffer_length;
if (++ep->out_ix == ep->buffer_size)
ep->out_ix = 0;
copy_len = ep->buffer_size - ep->out_ix;
if (copy_len >= available_space)
copy_len = available_space;
memcpy(urb->transfer_buffer, &ep->buffer[ep->out_ix], copy_len);
if (copy_len < available_space) {
memcpy((urb->transfer_buffer + copy_len), ep->buffer,
(available_space - copy_len));
ep->out_ix = available_space - copy_len;
} else {
ep->out_ix += copy_len;
}
urb->actual_length = available_space;
if (ep->out_ix == ep->buffer_size)
ep->out_ix = 0;
ep->buffered_units--;
oz_dbg(ON, "Trying to give back buffered frame of size=%d\n",
available_space);
oz_complete_urb(port->ozhcd->hcd, urb, 0);
}
/*
* Context: softirq
*/
static int oz_enqueue_ep_urb(struct oz_port *port, u8 ep_addr, int in_dir,
struct urb *urb, u8 req_id)
{
struct oz_urb_link *urbl;
struct oz_endpoint *ep = NULL;
int err = 0;
if (ep_addr >= OZ_NB_ENDPOINTS) {
oz_dbg(ON, "%s: Invalid endpoint number\n", __func__);
return -EINVAL;
}
urbl = oz_alloc_urb_link();
if (!urbl)
return -ENOMEM;
urbl->submit_counter = 0;
urbl->urb = urb;
urbl->req_id = req_id;
urbl->ep_num = ep_addr;
/* Hold lock while we insert the URB into the list within the
* endpoint structure.
*/
spin_lock_bh(&port->ozhcd->hcd_lock);
/* If the urb has been unlinked while out of any list then
* complete it now.
*/
if (urb->unlinked) {
spin_unlock_bh(&port->ozhcd->hcd_lock);
oz_dbg(ON, "urb %p unlinked so complete immediately\n", urb);
oz_complete_urb(port->ozhcd->hcd, urb, 0);
oz_free_urb_link(urbl);
return 0;
}
if (in_dir)
ep = port->in_ep[ep_addr];
else
ep = port->out_ep[ep_addr];
if (!ep) {
err = -ENOMEM;
goto out;
}
/*For interrupt endpoint check for buffered data
* & complete urb
*/
if (((ep->attrib & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)
&& ep->buffered_units > 0) {
oz_free_urb_link(urbl);
spin_unlock_bh(&port->ozhcd->hcd_lock);
oz_complete_buffered_urb(port, ep, urb);
return 0;
}
if (port->hpd) {
list_add_tail(&urbl->link, &ep->urb_list);
if (!in_dir && ep_addr && (ep->credit < 0)) {
getrawmonotonic(&ep->timestamp);
ep->credit = 0;
}
} else {
err = -EPIPE;
}
out:
spin_unlock_bh(&port->ozhcd->hcd_lock);
if (err)
oz_free_urb_link(urbl);
return err;
}
/*
* Removes an urb from the queue in the endpoint.
* Returns 0 if it is found and -EIDRM otherwise.
* Context: softirq
*/
static int oz_dequeue_ep_urb(struct oz_port *port, u8 ep_addr, int in_dir,
struct urb *urb)
{
struct oz_urb_link *urbl = NULL;
struct oz_endpoint *ep;
spin_lock_bh(&port->ozhcd->hcd_lock);
if (in_dir)
ep = port->in_ep[ep_addr];
else
ep = port->out_ep[ep_addr];
if (ep) {
struct list_head *e;
list_for_each(e, &ep->urb_list) {
urbl = list_entry(e, struct oz_urb_link, link);
if (urbl->urb == urb) {
list_del_init(e);
break;
}
urbl = NULL;
}
}
spin_unlock_bh(&port->ozhcd->hcd_lock);
oz_free_urb_link(urbl);
return urbl ? 0 : -EIDRM;
}
/*
* Finds an urb given its request id.
* Context: softirq
*/
static struct urb *oz_find_urb_by_id(struct oz_port *port, int ep_ix,
u8 req_id)
{
struct oz_hcd *ozhcd = port->ozhcd;
struct urb *urb = NULL;
struct oz_urb_link *urbl;
struct oz_endpoint *ep;
spin_lock_bh(&ozhcd->hcd_lock);
ep = port->out_ep[ep_ix];
if (ep) {
struct list_head *e;
list_for_each(e, &ep->urb_list) {
urbl = list_entry(e, struct oz_urb_link, link);
if (urbl->req_id == req_id) {
urb = urbl->urb;
list_del_init(e);
break;
}
}
}
spin_unlock_bh(&ozhcd->hcd_lock);
/* If urb is non-zero then we we must have an urb link to delete.
*/
if (urb)
oz_free_urb_link(urbl);
return urb;
}
/*
* Pre-condition: Port lock must be held.
* Context: softirq
*/
static void oz_acquire_port(struct oz_port *port, void *hpd)
{
INIT_LIST_HEAD(&port->isoc_out_ep);
INIT_LIST_HEAD(&port->isoc_in_ep);
port->flags |= OZ_PORT_F_PRESENT | OZ_PORT_F_CHANGED;
port->status |= USB_PORT_STAT_CONNECTION |
(USB_PORT_STAT_C_CONNECTION << 16);
oz_usb_get(hpd);
port->hpd = hpd;
}
/*
* Context: softirq
*/
static struct oz_hcd *oz_hcd_claim(void)
{
struct oz_hcd *ozhcd;
spin_lock_bh(&g_hcdlock);
ozhcd = g_ozhcd;
if (ozhcd)
usb_get_hcd(ozhcd->hcd);
spin_unlock_bh(&g_hcdlock);
return ozhcd;
}
/*
* Context: softirq
*/
static inline void oz_hcd_put(struct oz_hcd *ozhcd)
{
if (ozhcd)
usb_put_hcd(ozhcd->hcd);
}
/*
* This is called by the protocol handler to notify that a PD has arrived.
* We allocate a port to associate with the PD and create a structure for
* endpoint 0. This port is made the connection port.
* In the event that one of the other port is already a connection port then
* we fail.
* TODO We should be able to do better than fail and should be able remember
* that this port needs configuring and make it the connection port once the
* current connection port has been assigned an address. Collisions here are
* probably very rare indeed.
* Context: softirq
*/
struct oz_port *oz_hcd_pd_arrived(void *hpd)
{
int i;
struct oz_port *hport;
struct oz_hcd *ozhcd;
struct oz_endpoint *ep;
ozhcd = oz_hcd_claim();
if (!ozhcd)
return NULL;
/* Allocate an endpoint object in advance (before holding hcd lock) to
* use for out endpoint 0.
*/
ep = oz_ep_alloc(0, GFP_ATOMIC);
if (!ep)
goto err_put;
spin_lock_bh(&ozhcd->hcd_lock);
if (ozhcd->conn_port >= 0)
goto err_unlock;
for (i = 0; i < OZ_NB_PORTS; i++) {
struct oz_port *port = &ozhcd->ports[i];
spin_lock(&port->port_lock);
if (!(port->flags & (OZ_PORT_F_PRESENT | OZ_PORT_F_CHANGED))) {
oz_acquire_port(port, hpd);
spin_unlock(&port->port_lock);
break;
}
spin_unlock(&port->port_lock);
}
if (i == OZ_NB_PORTS)
goto err_unlock;
ozhcd->conn_port = i;
hport = &ozhcd->ports[i];
hport->out_ep[0] = ep;
spin_unlock_bh(&ozhcd->hcd_lock);
if (ozhcd->flags & OZ_HDC_F_SUSPENDED)
usb_hcd_resume_root_hub(ozhcd->hcd);
usb_hcd_poll_rh_status(ozhcd->hcd);
oz_hcd_put(ozhcd);
return hport;
err_unlock:
spin_unlock_bh(&ozhcd->hcd_lock);
oz_ep_free(NULL, ep);
err_put:
oz_hcd_put(ozhcd);
return NULL;
}
/*
* This is called by the protocol handler to notify that the PD has gone away.
* We need to deallocate all resources and then request that the root hub is
* polled. We release the reference we hold on the PD.
* Context: softirq
*/
void oz_hcd_pd_departed(struct oz_port *port)
{
struct oz_hcd *ozhcd;
void *hpd;
struct oz_endpoint *ep = NULL;
if (port == NULL) {
oz_dbg(ON, "%s: port = 0\n", __func__);
return;
}
ozhcd = port->ozhcd;
if (ozhcd == NULL)
return;
/* Check if this is the connection port - if so clear it.
*/
spin_lock_bh(&ozhcd->hcd_lock);
if ((ozhcd->conn_port >= 0) &&
(port == &ozhcd->ports[ozhcd->conn_port])) {
oz_dbg(ON, "Clearing conn_port\n");
ozhcd->conn_port = -1;
}
spin_lock(&port->port_lock);
port->flags |= OZ_PORT_F_DYING;
spin_unlock(&port->port_lock);
spin_unlock_bh(&ozhcd->hcd_lock);
oz_clean_endpoints_for_config(ozhcd->hcd, port);
spin_lock_bh(&port->port_lock);
hpd = port->hpd;
port->hpd = NULL;
port->bus_addr = 0xff;
port->config_num = 0;
port->flags &= ~(OZ_PORT_F_PRESENT | OZ_PORT_F_DYING);
port->flags |= OZ_PORT_F_CHANGED;
port->status &= ~(USB_PORT_STAT_CONNECTION | USB_PORT_STAT_ENABLE);
port->status |= (USB_PORT_STAT_C_CONNECTION << 16);
/* If there is an endpont 0 then clear the pointer while we hold
* the spinlock be we deallocate it after releasing the lock.
*/
if (port->out_ep[0]) {
ep = port->out_ep[0];
port->out_ep[0] = NULL;
}
spin_unlock_bh(&port->port_lock);
if (ep)
oz_ep_free(port, ep);
usb_hcd_poll_rh_status(ozhcd->hcd);
oz_usb_put(hpd);
}
/*
* Context: softirq
*/
void oz_hcd_pd_reset(void *hpd, void *hport)
{
/* Cleanup the current configuration and report reset to the core.
*/
struct oz_port *port = hport;
struct oz_hcd *ozhcd = port->ozhcd;
oz_dbg(ON, "PD Reset\n");
spin_lock_bh(&port->port_lock);
port->flags |= OZ_PORT_F_CHANGED;
port->status |= USB_PORT_STAT_RESET;
port->status |= (USB_PORT_STAT_C_RESET << 16);
spin_unlock_bh(&port->port_lock);
oz_clean_endpoints_for_config(ozhcd->hcd, port);
usb_hcd_poll_rh_status(ozhcd->hcd);
}
/*
* Context: softirq
*/
void oz_hcd_get_desc_cnf(void *hport, u8 req_id, u8 status, const u8 *desc,
u8 length, u16 offset, u16 total_size)
{
struct oz_port *port = hport;
struct urb *urb;
int err = 0;
oz_dbg(ON, "oz_hcd_get_desc_cnf length = %d offs = %d tot_size = %d\n",
length, offset, total_size);
urb = oz_find_urb_by_id(port, 0, req_id);
if (!urb)
return;
if (status == 0) {
unsigned int copy_len;
unsigned int required_size = urb->transfer_buffer_length;
if (required_size > total_size)
required_size = total_size;
copy_len = required_size-offset;
if (length <= copy_len)
copy_len = length;
memcpy(urb->transfer_buffer+offset, desc, copy_len);
offset += copy_len;
if (offset < required_size) {
struct usb_ctrlrequest *setup =
(struct usb_ctrlrequest *)urb->setup_packet;
unsigned wvalue = le16_to_cpu(setup->wValue);
if (oz_enqueue_ep_urb(port, 0, 0, urb, req_id))
err = -ENOMEM;
else if (oz_usb_get_desc_req(port->hpd, req_id,
setup->bRequestType, (u8)(wvalue>>8),
(u8)wvalue, setup->wIndex, offset,
required_size-offset)) {
oz_dequeue_ep_urb(port, 0, 0, urb);
err = -ENOMEM;
}
if (err == 0)
return;
}
}
urb->actual_length = total_size;
oz_complete_urb(port->ozhcd->hcd, urb, 0);
}
/*
* Context: softirq
*/
static void oz_display_conf_type(u8 t)
{
switch (t) {
case USB_REQ_GET_STATUS:
oz_dbg(ON, "USB_REQ_GET_STATUS - cnf\n");
break;
case USB_REQ_CLEAR_FEATURE:
oz_dbg(ON, "USB_REQ_CLEAR_FEATURE - cnf\n");
break;
case USB_REQ_SET_FEATURE:
oz_dbg(ON, "USB_REQ_SET_FEATURE - cnf\n");
break;
case USB_REQ_SET_ADDRESS:
oz_dbg(ON, "USB_REQ_SET_ADDRESS - cnf\n");
break;
case USB_REQ_GET_DESCRIPTOR:
oz_dbg(ON, "USB_REQ_GET_DESCRIPTOR - cnf\n");
break;
case USB_REQ_SET_DESCRIPTOR:
oz_dbg(ON, "USB_REQ_SET_DESCRIPTOR - cnf\n");
break;
case USB_REQ_GET_CONFIGURATION:
oz_dbg(ON, "USB_REQ_GET_CONFIGURATION - cnf\n");
break;
case USB_REQ_SET_CONFIGURATION:
oz_dbg(ON, "USB_REQ_SET_CONFIGURATION - cnf\n");
break;
case USB_REQ_GET_INTERFACE:
oz_dbg(ON, "USB_REQ_GET_INTERFACE - cnf\n");
break;
case USB_REQ_SET_INTERFACE:
oz_dbg(ON, "USB_REQ_SET_INTERFACE - cnf\n");
break;
case USB_REQ_SYNCH_FRAME:
oz_dbg(ON, "USB_REQ_SYNCH_FRAME - cnf\n");
break;
}
}
/*
* Context: softirq
*/
static void oz_hcd_complete_set_config(struct oz_port *port, struct urb *urb,
u8 rcode, u8 config_num)
{
int rc = 0;
struct usb_hcd *hcd = port->ozhcd->hcd;
if (rcode == 0) {
port->config_num = config_num;
oz_clean_endpoints_for_config(hcd, port);
if (oz_build_endpoints_for_config(hcd, port,
&urb->dev->config[port->config_num-1], GFP_ATOMIC)) {
rc = -ENOMEM;
}
} else {
rc = -ENOMEM;
}
oz_complete_urb(hcd, urb, rc);
}
/*
* Context: softirq
*/
static void oz_hcd_complete_set_interface(struct oz_port *port, struct urb *urb,
u8 rcode, u8 if_num, u8 alt)
{
struct usb_hcd *hcd = port->ozhcd->hcd;
int rc = 0;
if ((rcode == 0) && (port->config_num > 0)) {
struct usb_host_config *config;
struct usb_host_interface *intf;
oz_dbg(ON, "Set interface %d alt %d\n", if_num, alt);
oz_clean_endpoints_for_interface(hcd, port, if_num);
config = &urb->dev->config[port->config_num-1];
intf = &config->intf_cache[if_num]->altsetting[alt];
if (oz_build_endpoints_for_interface(hcd, port, intf,
GFP_ATOMIC))
rc = -ENOMEM;
else
port->iface[if_num].alt = alt;
} else {
rc = -ENOMEM;
}
oz_complete_urb(hcd, urb, rc);
}
/*
* Context: softirq
*/
void oz_hcd_control_cnf(void *hport, u8 req_id, u8 rcode, const u8 *data,
int data_len)
{
struct oz_port *port = hport;
struct urb *urb;
struct usb_ctrlrequest *setup;
struct usb_hcd *hcd = port->ozhcd->hcd;
unsigned windex;
unsigned wvalue;
oz_dbg(ON, "oz_hcd_control_cnf rcode=%u len=%d\n", rcode, data_len);
urb = oz_find_urb_by_id(port, 0, req_id);
if (!urb) {
oz_dbg(ON, "URB not found\n");
return;
}
setup = (struct usb_ctrlrequest *)urb->setup_packet;
windex = le16_to_cpu(setup->wIndex);
wvalue = le16_to_cpu(setup->wValue);
if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
/* Standard requests */
oz_display_conf_type(setup->bRequest);
switch (setup->bRequest) {
case USB_REQ_SET_CONFIGURATION:
oz_hcd_complete_set_config(port, urb, rcode,
(u8)wvalue);
break;
case USB_REQ_SET_INTERFACE:
oz_hcd_complete_set_interface(port, urb, rcode,
(u8)windex, (u8)wvalue);
break;
default:
oz_complete_urb(hcd, urb, 0);
}
} else {
int copy_len;
oz_dbg(ON, "VENDOR-CLASS - cnf\n");
if (data_len) {
if (data_len <= urb->transfer_buffer_length)
copy_len = data_len;
else
copy_len = urb->transfer_buffer_length;
memcpy(urb->transfer_buffer, data, copy_len);
urb->actual_length = copy_len;
}
oz_complete_urb(hcd, urb, 0);
}
}
/*
* Context: softirq-serialized
*/
static int oz_hcd_buffer_data(struct oz_endpoint *ep, const u8 *data,
int data_len)
{
int space;
int copy_len;
if (!ep->buffer)
return -1;
space = ep->out_ix-ep->in_ix-1;
if (space < 0)
space += ep->buffer_size;
if (space < (data_len+1)) {
oz_dbg(ON, "Buffer full\n");
return -1;
}
ep->buffer[ep->in_ix] = (u8)data_len;
if (++ep->in_ix == ep->buffer_size)
ep->in_ix = 0;
copy_len = ep->buffer_size - ep->in_ix;
if (copy_len > data_len)
copy_len = data_len;
memcpy(&ep->buffer[ep->in_ix], data, copy_len);
if (copy_len < data_len) {
memcpy(ep->buffer, data+copy_len, data_len-copy_len);
ep->in_ix = data_len-copy_len;
} else {
ep->in_ix += copy_len;
}
if (ep->in_ix == ep->buffer_size)
ep->in_ix = 0;
ep->buffered_units++;
return 0;
}
/*
* Context: softirq-serialized
*/
void oz_hcd_data_ind(void *hport, u8 endpoint, const u8 *data, int data_len)
{
struct oz_port *port = (struct oz_port *)hport;
struct oz_endpoint *ep;
struct oz_hcd *ozhcd = port->ozhcd;
spin_lock_bh(&ozhcd->hcd_lock);
ep = port->in_ep[endpoint & USB_ENDPOINT_NUMBER_MASK];
if (ep == NULL)
goto done;
switch (ep->attrib & USB_ENDPOINT_XFERTYPE_MASK) {
case USB_ENDPOINT_XFER_INT:
case USB_ENDPOINT_XFER_BULK:
if (!list_empty(&ep->urb_list)) {
struct oz_urb_link *urbl =
list_first_entry(&ep->urb_list,
struct oz_urb_link, link);
struct urb *urb;
int copy_len;
list_del_init(&urbl->link);
spin_unlock_bh(&ozhcd->hcd_lock);
urb = urbl->urb;
oz_free_urb_link(urbl);
if (data_len <= urb->transfer_buffer_length)
copy_len = data_len;
else
copy_len = urb->transfer_buffer_length;
memcpy(urb->transfer_buffer, data, copy_len);
urb->actual_length = copy_len;
oz_complete_urb(port->ozhcd->hcd, urb, 0);
return;
}
oz_dbg(ON, "buffering frame as URB is not available\n");
oz_hcd_buffer_data(ep, data, data_len);
break;
case USB_ENDPOINT_XFER_ISOC:
oz_hcd_buffer_data(ep, data, data_len);
break;
}
done:
spin_unlock_bh(&ozhcd->hcd_lock);
}
/*
* Context: unknown
*/
static inline int oz_usb_get_frame_number(void)
{
return atomic_inc_return(&g_usb_frame_number);
}
/*
* Context: softirq
*/
int oz_hcd_heartbeat(void *hport)
{
int rc = 0;
struct oz_port *port = hport;
struct oz_hcd *ozhcd = port->ozhcd;
struct oz_urb_link *urbl, *n;
LIST_HEAD(xfr_list);
struct urb *urb;
struct oz_endpoint *ep;
struct timespec ts, delta;
getrawmonotonic(&ts);
/* Check the OUT isoc endpoints to see if any URB data can be sent.
*/
spin_lock_bh(&ozhcd->hcd_lock);
list_for_each_entry(ep, &port->isoc_out_ep, link) {
if (ep->credit < 0)
continue;
delta = timespec_sub(ts, ep->timestamp);
ep->credit += div_u64(timespec_to_ns(&delta), NSEC_PER_MSEC);
if (ep->credit > ep->credit_ceiling)
ep->credit = ep->credit_ceiling;
ep->timestamp = ts;
while (ep->credit && !list_empty(&ep->urb_list)) {
urbl = list_first_entry(&ep->urb_list,
struct oz_urb_link, link);
urb = urbl->urb;
if ((ep->credit + 1) < urb->number_of_packets)
break;
ep->credit -= urb->number_of_packets;
if (ep->credit < 0)
ep->credit = 0;
list_move_tail(&urbl->link, &xfr_list);
}
}
spin_unlock_bh(&ozhcd->hcd_lock);
/* Send to PD and complete URBs.
*/
list_for_each_entry_safe(urbl, n, &xfr_list, link) {
urb = urbl->urb;
list_del_init(&urbl->link);
urb->error_count = 0;
urb->start_frame = oz_usb_get_frame_number();
oz_usb_send_isoc(port->hpd, urbl->ep_num, urb);
oz_free_urb_link(urbl);
oz_complete_urb(port->ozhcd->hcd, urb, 0);
}
/* Check the IN isoc endpoints to see if any URBs can be completed.
*/
spin_lock_bh(&ozhcd->hcd_lock);
list_for_each_entry(ep, &port->isoc_in_ep, link) {
if (ep->flags & OZ_F_EP_BUFFERING) {
if (ep->buffered_units >= OZ_IN_BUFFERING_UNITS) {
ep->flags &= ~OZ_F_EP_BUFFERING;
ep->credit = 0;
ep->timestamp = ts;
ep->start_frame = 0;
}
continue;
}
delta = timespec_sub(ts, ep->timestamp);
ep->credit += div_u64(timespec_to_ns(&delta), NSEC_PER_MSEC);
ep->timestamp = ts;
list_for_each_entry_safe(urbl, n, &ep->urb_list, link) {
struct urb *urb = urbl->urb;
int len = 0;
int copy_len;
int i;
if (ep->credit < urb->number_of_packets)
break;
if (ep->buffered_units < urb->number_of_packets)
break;
urb->actual_length = 0;
for (i = 0; i < urb->number_of_packets; i++) {
len = ep->buffer[ep->out_ix];
if (++ep->out_ix == ep->buffer_size)
ep->out_ix = 0;
copy_len = ep->buffer_size - ep->out_ix;
if (copy_len > len)
copy_len = len;
memcpy(urb->transfer_buffer,
&ep->buffer[ep->out_ix], copy_len);
if (copy_len < len) {
memcpy(urb->transfer_buffer+copy_len,
ep->buffer, len-copy_len);
ep->out_ix = len-copy_len;
} else
ep->out_ix += copy_len;
if (ep->out_ix == ep->buffer_size)
ep->out_ix = 0;
urb->iso_frame_desc[i].offset =
urb->actual_length;
urb->actual_length += len;
urb->iso_frame_desc[i].actual_length = len;
urb->iso_frame_desc[i].status = 0;
}
ep->buffered_units -= urb->number_of_packets;
urb->error_count = 0;
urb->start_frame = ep->start_frame;
ep->start_frame += urb->number_of_packets;
list_move_tail(&urbl->link, &xfr_list);
ep->credit -= urb->number_of_packets;
}
}
if (!list_empty(&port->isoc_out_ep) || !list_empty(&port->isoc_in_ep))
rc = 1;
spin_unlock_bh(&ozhcd->hcd_lock);
/* Complete the filled URBs.
*/
list_for_each_entry_safe(urbl, n, &xfr_list, link) {
urb = urbl->urb;
list_del_init(&urbl->link);
oz_free_urb_link(urbl);
oz_complete_urb(port->ozhcd->hcd, urb, 0);
}
/* Check if there are any ep0 requests that have timed out.
* If so resent to PD.
*/
ep = port->out_ep[0];
if (ep) {
spin_lock_bh(&ozhcd->hcd_lock);
list_for_each_entry_safe(urbl, n, &ep->urb_list, link) {
if (urbl->submit_counter > EP0_TIMEOUT_COUNTER) {
oz_dbg(ON, "Request 0x%p timeout\n", urbl->urb);
list_move_tail(&urbl->link, &xfr_list);
urbl->submit_counter = 0;
} else {
urbl->submit_counter++;
}
}
if (!list_empty(&ep->urb_list))
rc = 1;
spin_unlock_bh(&ozhcd->hcd_lock);
list_for_each_entry_safe(urbl, n, &xfr_list, link) {
oz_dbg(ON, "Resending request to PD\n");
oz_process_ep0_urb(ozhcd, urbl->urb, GFP_ATOMIC);
oz_free_urb_link(urbl);
}
}
return rc;
}
/*
* Context: softirq
*/
static int oz_build_endpoints_for_interface(struct usb_hcd *hcd,
struct oz_port *port,
struct usb_host_interface *intf, gfp_t mem_flags)
{
struct oz_hcd *ozhcd = port->ozhcd;
int i;
int if_ix = intf->desc.bInterfaceNumber;
int request_heartbeat = 0;
oz_dbg(ON, "interface[%d] = %p\n", if_ix, intf);
if (if_ix >= port->num_iface || port->iface == NULL)
return -ENOMEM;
for (i = 0; i < intf->desc.bNumEndpoints; i++) {
struct usb_host_endpoint *hep = &intf->endpoint[i];
u8 ep_addr = hep->desc.bEndpointAddress;
u8 ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK;
struct oz_endpoint *ep;
int buffer_size = 0;
oz_dbg(ON, "%d bEndpointAddress = %x\n", i, ep_addr);
if (ep_addr & USB_ENDPOINT_DIR_MASK) {
switch (hep->desc.bmAttributes &
USB_ENDPOINT_XFERTYPE_MASK) {
case USB_ENDPOINT_XFER_ISOC:
buffer_size = OZ_EP_BUFFER_SIZE_ISOC;
break;
case USB_ENDPOINT_XFER_INT:
buffer_size = OZ_EP_BUFFER_SIZE_INT;
break;
}
}
ep = oz_ep_alloc(buffer_size, mem_flags);
if (!ep) {
oz_clean_endpoints_for_interface(hcd, port, if_ix);
return -ENOMEM;
}
ep->attrib = hep->desc.bmAttributes;
ep->ep_num = ep_num;
if ((ep->attrib & USB_ENDPOINT_XFERTYPE_MASK)
== USB_ENDPOINT_XFER_ISOC) {
oz_dbg(ON, "wMaxPacketSize = %d\n",
usb_endpoint_maxp(&hep->desc));
ep->credit_ceiling = 200;
if (ep_addr & USB_ENDPOINT_DIR_MASK) {
ep->flags |= OZ_F_EP_BUFFERING;
} else {
ep->flags |= OZ_F_EP_HAVE_STREAM;
if (oz_usb_stream_create(port->hpd, ep_num))
ep->flags &= ~OZ_F_EP_HAVE_STREAM;
}
}
spin_lock_bh(&ozhcd->hcd_lock);
if (ep_addr & USB_ENDPOINT_DIR_MASK) {
port->in_ep[ep_num] = ep;
port->iface[if_ix].ep_mask |=
(1<<(ep_num+OZ_NB_ENDPOINTS));
if ((ep->attrib & USB_ENDPOINT_XFERTYPE_MASK)
== USB_ENDPOINT_XFER_ISOC) {
list_add_tail(&ep->link, &port->isoc_in_ep);
request_heartbeat = 1;
}
} else {
port->out_ep[ep_num] = ep;
port->iface[if_ix].ep_mask |= (1<<ep_num);
if ((ep->attrib & USB_ENDPOINT_XFERTYPE_MASK)
== USB_ENDPOINT_XFER_ISOC) {
list_add_tail(&ep->link, &port->isoc_out_ep);
request_heartbeat = 1;
}
}
spin_unlock_bh(&ozhcd->hcd_lock);
if (request_heartbeat && port->hpd)
oz_usb_request_heartbeat(port->hpd);
}
return 0;
}
/*
* Context: softirq
*/
static void oz_clean_endpoints_for_interface(struct usb_hcd *hcd,
struct oz_port *port, int if_ix)
{
struct oz_hcd *ozhcd = port->ozhcd;
unsigned mask;
int i;
LIST_HEAD(ep_list);
struct oz_endpoint *ep, *n;
oz_dbg(ON, "Deleting endpoints for interface %d\n", if_ix);
if (if_ix >= port->num_iface)
return;
spin_lock_bh(&ozhcd->hcd_lock);
mask = port->iface[if_ix].ep_mask;
port->iface[if_ix].ep_mask = 0;
for (i = 0; i < OZ_NB_ENDPOINTS; i++) {
struct list_head *e;
/* Gather OUT endpoints.
*/
if ((mask & (1<<i)) && port->out_ep[i]) {
e = &port->out_ep[i]->link;
port->out_ep[i] = NULL;
/* Remove from isoc list if present.
*/
list_move_tail(e, &ep_list);
}
/* Gather IN endpoints.
*/
if ((mask & (1<<(i+OZ_NB_ENDPOINTS))) && port->in_ep[i]) {
e = &port->in_ep[i]->link;
port->in_ep[i] = NULL;
list_move_tail(e, &ep_list);
}
}
spin_unlock_bh(&ozhcd->hcd_lock);
list_for_each_entry_safe(ep, n, &ep_list, link) {
list_del_init(&ep->link);
oz_ep_free(port, ep);
}
}
/*
* Context: softirq
*/
static int oz_build_endpoints_for_config(struct usb_hcd *hcd,
struct oz_port *port, struct usb_host_config *config,
gfp_t mem_flags)
{
struct oz_hcd *ozhcd = port->ozhcd;
int i;
int num_iface = config->desc.bNumInterfaces;
if (num_iface) {
struct oz_interface *iface;
iface = kmalloc_array(num_iface, sizeof(struct oz_interface),
mem_flags | __GFP_ZERO);
if (!iface)
return -ENOMEM;
spin_lock_bh(&ozhcd->hcd_lock);
port->iface = iface;
port->num_iface = num_iface;
spin_unlock_bh(&ozhcd->hcd_lock);
}
for (i = 0; i < num_iface; i++) {
struct usb_host_interface *intf =
&config->intf_cache[i]->altsetting[0];
if (oz_build_endpoints_for_interface(hcd, port, intf,
mem_flags))
goto fail;
}
return 0;
fail:
oz_clean_endpoints_for_config(hcd, port);
return -1;
}
/*
* Context: softirq
*/
static void oz_clean_endpoints_for_config(struct usb_hcd *hcd,
struct oz_port *port)
{
struct oz_hcd *ozhcd = port->ozhcd;
int i;
oz_dbg(ON, "Deleting endpoints for configuration\n");
for (i = 0; i < port->num_iface; i++)
oz_clean_endpoints_for_interface(hcd, port, i);
spin_lock_bh(&ozhcd->hcd_lock);
if (port->iface) {
oz_dbg(ON, "Freeing interfaces object\n");
kfree(port->iface);
port->iface = NULL;
}
port->num_iface = 0;
spin_unlock_bh(&ozhcd->hcd_lock);
}
/*
* Context: tasklet
*/
static void *oz_claim_hpd(struct oz_port *port)
{
void *hpd;
struct oz_hcd *ozhcd = port->ozhcd;
spin_lock_bh(&ozhcd->hcd_lock);
hpd = port->hpd;
if (hpd)
oz_usb_get(hpd);
spin_unlock_bh(&ozhcd->hcd_lock);
return hpd;
}
/*
* Context: tasklet
*/
static void oz_process_ep0_urb(struct oz_hcd *ozhcd, struct urb *urb,
gfp_t mem_flags)
{
struct usb_ctrlrequest *setup;
unsigned windex;
unsigned wvalue;
unsigned wlength;
void *hpd;
u8 req_id;
int rc = 0;
unsigned complete = 0;
int port_ix = -1;
struct oz_port *port = NULL;
oz_dbg(URB, "[%s]:(%p)\n", __func__, urb);
port_ix = oz_get_port_from_addr(ozhcd, urb->dev->devnum);
if (port_ix < 0) {
rc = -EPIPE;
goto out;
}
port = &ozhcd->ports[port_ix];
if (((port->flags & OZ_PORT_F_PRESENT) == 0)
|| (port->flags & OZ_PORT_F_DYING)) {
oz_dbg(ON, "Refusing URB port_ix = %d devnum = %d\n",
port_ix, urb->dev->devnum);
rc = -EPIPE;
goto out;
}
/* Store port in private context data.
*/
urb->hcpriv = port;
setup = (struct usb_ctrlrequest *)urb->setup_packet;
windex = le16_to_cpu(setup->wIndex);
wvalue = le16_to_cpu(setup->wValue);
wlength = le16_to_cpu(setup->wLength);
oz_dbg(CTRL_DETAIL, "bRequestType = %x\n", setup->bRequestType);
oz_dbg(CTRL_DETAIL, "bRequest = %x\n", setup->bRequest);
oz_dbg(CTRL_DETAIL, "wValue = %x\n", wvalue);
oz_dbg(CTRL_DETAIL, "wIndex = %x\n", windex);
oz_dbg(CTRL_DETAIL, "wLength = %x\n", wlength);
req_id = port->next_req_id++;
hpd = oz_claim_hpd(port);
if (hpd == NULL) {
oz_dbg(ON, "Cannot claim port\n");
rc = -EPIPE;
goto out;
}
if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
/* Standard requests
*/
switch (setup->bRequest) {
case USB_REQ_GET_DESCRIPTOR:
oz_dbg(ON, "USB_REQ_GET_DESCRIPTOR - req\n");
break;
case USB_REQ_SET_ADDRESS:
oz_dbg(ON, "USB_REQ_SET_ADDRESS - req\n");
oz_dbg(ON, "Port %d address is 0x%x\n",
ozhcd->conn_port,
(u8)le16_to_cpu(setup->wValue));
spin_lock_bh(&ozhcd->hcd_lock);
if (ozhcd->conn_port >= 0) {
ozhcd->ports[ozhcd->conn_port].bus_addr =
(u8)le16_to_cpu(setup->wValue);
oz_dbg(ON, "Clearing conn_port\n");
ozhcd->conn_port = -1;
}
spin_unlock_bh(&ozhcd->hcd_lock);
complete = 1;
break;
case USB_REQ_SET_CONFIGURATION:
oz_dbg(ON, "USB_REQ_SET_CONFIGURATION - req\n");
break;
case USB_REQ_GET_CONFIGURATION:
/* We short circuit this case and reply directly since
* we have the selected configuration number cached.
*/
oz_dbg(ON, "USB_REQ_GET_CONFIGURATION - reply now\n");
if (urb->transfer_buffer_length >= 1) {
urb->actual_length = 1;
*((u8 *)urb->transfer_buffer) =
port->config_num;
complete = 1;
} else {
rc = -EPIPE;
}
break;
case USB_REQ_GET_INTERFACE:
/* We short circuit this case and reply directly since
* we have the selected interface alternative cached.
*/
oz_dbg(ON, "USB_REQ_GET_INTERFACE - reply now\n");
if (urb->transfer_buffer_length >= 1) {
urb->actual_length = 1;
*((u8 *)urb->transfer_buffer) =
port->iface[(u8)windex].alt;
oz_dbg(ON, "interface = %d alt = %d\n",
windex, port->iface[(u8)windex].alt);
complete = 1;
} else {
rc = -EPIPE;
}
break;
case USB_REQ_SET_INTERFACE:
oz_dbg(ON, "USB_REQ_SET_INTERFACE - req\n");
break;
}
}
if (!rc && !complete) {
int data_len = 0;
if ((setup->bRequestType & USB_DIR_IN) == 0)
data_len = wlength;
urb->actual_length = data_len;
if (oz_usb_control_req(port->hpd, req_id, setup,
urb->transfer_buffer, data_len)) {
rc = -ENOMEM;
} else {
/* Note: we are queuing the request after we have
* submitted it to be transmitted. If the request were
* to complete before we queued it then it would not
* be found in the queue. It seems impossible for
* this to happen but if it did the request would
* be resubmitted so the problem would hopefully
* resolve itself. Putting the request into the
* queue before it has been sent is worse since the
* urb could be cancelled while we are using it
* to build the request.
*/
if (oz_enqueue_ep_urb(port, 0, 0, urb, req_id))
rc = -ENOMEM;
}
}
oz_usb_put(hpd);
out:
if (rc || complete) {
oz_dbg(ON, "Completing request locally\n");
oz_complete_urb(ozhcd->hcd, urb, rc);
} else {
oz_usb_request_heartbeat(port->hpd);
}
}
/*
* Context: tasklet
*/
static int oz_urb_process(struct oz_hcd *ozhcd, struct urb *urb)
{
int rc = 0;
struct oz_port *port = urb->hcpriv;
u8 ep_addr;
/* When we are paranoid we keep a list of urbs which we check against
* before handing one back. This is just for debugging during
* development and should be turned off in the released driver.
*/
oz_remember_urb(urb);
/* Check buffer is valid.
*/
if (!urb->transfer_buffer && urb->transfer_buffer_length)
return -EINVAL;
/* Check if there is a device at the port - refuse if not.
*/
if ((port->flags & OZ_PORT_F_PRESENT) == 0)
return -EPIPE;
ep_addr = usb_pipeendpoint(urb->pipe);
if (ep_addr) {
/* If the request is not for EP0 then queue it.
*/
if (oz_enqueue_ep_urb(port, ep_addr, usb_pipein(urb->pipe),
urb, 0))
rc = -EPIPE;
} else {
oz_process_ep0_urb(ozhcd, urb, GFP_ATOMIC);
}
return rc;
}
/*
* Context: tasklet
*/
static void oz_urb_process_tasklet(unsigned long unused)
{
unsigned long irq_state;
struct urb *urb;
struct oz_hcd *ozhcd = oz_hcd_claim();
struct oz_urb_link *urbl, *n;
int rc = 0;
if (ozhcd == NULL)
return;
/* This is called from a tasklet so is in softirq context but the urb
* list is filled from any context so we need to lock
* appropriately while removing urbs.
*/
spin_lock_irqsave(&g_tasklet_lock, irq_state);
list_for_each_entry_safe(urbl, n, &ozhcd->urb_pending_list, link) {
list_del_init(&urbl->link);
spin_unlock_irqrestore(&g_tasklet_lock, irq_state);
urb = urbl->urb;
oz_free_urb_link(urbl);
rc = oz_urb_process(ozhcd, urb);
if (rc)
oz_complete_urb(ozhcd->hcd, urb, rc);
spin_lock_irqsave(&g_tasklet_lock, irq_state);
}
spin_unlock_irqrestore(&g_tasklet_lock, irq_state);
oz_hcd_put(ozhcd);
}
/*
* This function searches for the urb in any of the lists it could be in.
* If it is found it is removed from the list and completed. If the urb is
* being processed then it won't be in a list so won't be found. However, the
* call to usb_hcd_check_unlink_urb() will set the value of the unlinked field
* to a non-zero value. When an attempt is made to put the urb back in a list
* the unlinked field will be checked and the urb will then be completed.
* Context: tasklet
*/
static void oz_urb_cancel(struct oz_port *port, u8 ep_num, struct urb *urb)
{
struct oz_urb_link *urbl = NULL;
struct list_head *e;
struct oz_hcd *ozhcd;
unsigned long irq_state;
u8 ix;
if (port == NULL) {
oz_dbg(ON, "%s: ERROR: (%p) port is null\n", __func__, urb);
return;
}
ozhcd = port->ozhcd;
if (ozhcd == NULL) {
oz_dbg(ON, "%s; ERROR: (%p) ozhcd is null\n", __func__, urb);
return;
}
/* Look in the tasklet queue.
*/
spin_lock_irqsave(&g_tasklet_lock, irq_state);
list_for_each(e, &ozhcd->urb_cancel_list) {
urbl = list_entry(e, struct oz_urb_link, link);
if (urb == urbl->urb) {
list_del_init(e);
spin_unlock_irqrestore(&g_tasklet_lock, irq_state);
goto out2;
}
}
spin_unlock_irqrestore(&g_tasklet_lock, irq_state);
urbl = NULL;
/* Look in the orphanage.
*/
spin_lock_irqsave(&ozhcd->hcd_lock, irq_state);
list_for_each(e, &ozhcd->orphanage) {
urbl = list_entry(e, struct oz_urb_link, link);
if (urbl->urb == urb) {
list_del(e);
oz_dbg(ON, "Found urb in orphanage\n");
goto out;
}
}
ix = (ep_num & 0xf);
urbl = NULL;
if ((ep_num & USB_DIR_IN) && ix)
urbl = oz_remove_urb(port->in_ep[ix], urb);
else
urbl = oz_remove_urb(port->out_ep[ix], urb);
out:
spin_unlock_irqrestore(&ozhcd->hcd_lock, irq_state);
out2:
if (urbl) {
urb->actual_length = 0;
oz_free_urb_link(urbl);
oz_complete_urb(ozhcd->hcd, urb, -EPIPE);
}
}
/*
* Context: tasklet
*/
static void oz_urb_cancel_tasklet(unsigned long unused)
{
unsigned long irq_state;
struct urb *urb;
struct oz_urb_link *urbl, *n;
struct oz_hcd *ozhcd = oz_hcd_claim();
if (ozhcd == NULL)
return;
spin_lock_irqsave(&g_tasklet_lock, irq_state);
list_for_each_entry_safe(urbl, n, &ozhcd->urb_cancel_list, link) {
list_del_init(&urbl->link);
spin_unlock_irqrestore(&g_tasklet_lock, irq_state);
urb = urbl->urb;
if (urb->unlinked)
oz_urb_cancel(urbl->port, urbl->ep_num, urb);
oz_free_urb_link(urbl);
spin_lock_irqsave(&g_tasklet_lock, irq_state);
}
spin_unlock_irqrestore(&g_tasklet_lock, irq_state);
oz_hcd_put(ozhcd);
}
/*
* Context: unknown
*/
static void oz_hcd_clear_orphanage(struct oz_hcd *ozhcd, int status)
{
if (ozhcd) {
struct oz_urb_link *urbl, *n;
list_for_each_entry_safe(urbl, n, &ozhcd->orphanage, link) {
list_del(&urbl->link);
oz_complete_urb(ozhcd->hcd, urbl->urb, status);
oz_free_urb_link(urbl);
}
}
}
/*
* Context: unknown
*/
static int oz_hcd_start(struct usb_hcd *hcd)
{
hcd->power_budget = 200;
hcd->state = HC_STATE_RUNNING;
hcd->uses_new_polling = 1;
return 0;
}
/*
* Context: unknown
*/
static void oz_hcd_stop(struct usb_hcd *hcd)
{
}
/*
* Context: unknown
*/
static void oz_hcd_shutdown(struct usb_hcd *hcd)
{
}
/*
* Called to queue an urb for the device.
* This function should return a non-zero error code if it fails the urb but
* should not call usb_hcd_giveback_urb().
* Context: any
*/
static int oz_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
gfp_t mem_flags)
{
struct oz_hcd *ozhcd = oz_hcd_private(hcd);
int rc;
int port_ix;
struct oz_port *port;
unsigned long irq_state;
struct oz_urb_link *urbl;
oz_dbg(URB, "%s: (%p)\n", __func__, urb);
if (unlikely(ozhcd == NULL)) {
oz_dbg(URB, "Refused urb(%p) not ozhcd\n", urb);
return -EPIPE;
}
if (unlikely(hcd->state != HC_STATE_RUNNING)) {
oz_dbg(URB, "Refused urb(%p) not running\n", urb);
return -EPIPE;
}
port_ix = oz_get_port_from_addr(ozhcd, urb->dev->devnum);
if (port_ix < 0)
return -EPIPE;
port = &ozhcd->ports[port_ix];
if (port == NULL)
return -EPIPE;
if (!(port->flags & OZ_PORT_F_PRESENT) ||
(port->flags & OZ_PORT_F_CHANGED)) {
oz_dbg(ON, "Refusing URB port_ix = %d devnum = %d\n",
port_ix, urb->dev->devnum);
return -EPIPE;
}
urb->hcpriv = port;
/* Put request in queue for processing by tasklet.
*/
urbl = oz_alloc_urb_link();
if (unlikely(urbl == NULL))
return -ENOMEM;
urbl->urb = urb;
spin_lock_irqsave(&g_tasklet_lock, irq_state);
rc = usb_hcd_link_urb_to_ep(hcd, urb);
if (unlikely(rc)) {
spin_unlock_irqrestore(&g_tasklet_lock, irq_state);
oz_free_urb_link(urbl);
return rc;
}
list_add_tail(&urbl->link, &ozhcd->urb_pending_list);
spin_unlock_irqrestore(&g_tasklet_lock, irq_state);
tasklet_schedule(&g_urb_process_tasklet);
atomic_inc(&g_pending_urbs);
return 0;
}
/*
* Context: tasklet
*/
static struct oz_urb_link *oz_remove_urb(struct oz_endpoint *ep,
struct urb *urb)
{
struct oz_urb_link *urbl;
if (unlikely(ep == NULL))
return NULL;
list_for_each_entry(urbl, &ep->urb_list, link) {
if (urbl->urb == urb) {
list_del_init(&urbl->link);
if (usb_pipeisoc(urb->pipe)) {
ep->credit -= urb->number_of_packets;
if (ep->credit < 0)
ep->credit = 0;
}
return urbl;
}
}
return NULL;
}
/*
* Called to dequeue a previously submitted urb for the device.
* Context: any
*/
static int oz_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
{
struct oz_hcd *ozhcd = oz_hcd_private(hcd);
struct oz_urb_link *urbl;
int rc;
unsigned long irq_state;
oz_dbg(URB, "%s: (%p)\n", __func__, urb);
urbl = oz_alloc_urb_link();
if (unlikely(urbl == NULL))
return -ENOMEM;
spin_lock_irqsave(&g_tasklet_lock, irq_state);
/* The following function checks the urb is still in the queue
* maintained by the core and that the unlinked field is zero.
* If both are true the function sets the unlinked field and returns
* zero. Otherwise it returns an error.
*/
rc = usb_hcd_check_unlink_urb(hcd, urb, status);
/* We have to check we haven't completed the urb or are about
* to complete it. When we do we set hcpriv to 0 so if this has
* already happened we don't put the urb in the cancel queue.
*/
if ((rc == 0) && urb->hcpriv) {
urbl->urb = urb;
urbl->port = (struct oz_port *)urb->hcpriv;
urbl->ep_num = usb_pipeendpoint(urb->pipe);
if (usb_pipein(urb->pipe))
urbl->ep_num |= USB_DIR_IN;
list_add_tail(&urbl->link, &ozhcd->urb_cancel_list);
spin_unlock_irqrestore(&g_tasklet_lock, irq_state);
tasklet_schedule(&g_urb_cancel_tasklet);
} else {
spin_unlock_irqrestore(&g_tasklet_lock, irq_state);
oz_free_urb_link(urbl);
}
return rc;
}
/*
* Context: unknown
*/
static void oz_hcd_endpoint_disable(struct usb_hcd *hcd,
struct usb_host_endpoint *ep)
{
}
/*
* Context: unknown
*/
static void oz_hcd_endpoint_reset(struct usb_hcd *hcd,
struct usb_host_endpoint *ep)
{
}
/*
* Context: unknown
*/
static int oz_hcd_get_frame_number(struct usb_hcd *hcd)
{
oz_dbg(ON, "oz_hcd_get_frame_number\n");
return oz_usb_get_frame_number();
}
/*
* Context: softirq
* This is called as a consquence of us calling usb_hcd_poll_rh_status() and we
* always do that in softirq context.
*/
static int oz_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
{
struct oz_hcd *ozhcd = oz_hcd_private(hcd);
int i;
buf[0] = 0;
buf[1] = 0;
spin_lock_bh(&ozhcd->hcd_lock);
for (i = 0; i < OZ_NB_PORTS; i++) {
if (ozhcd->ports[i].flags & OZ_PORT_F_CHANGED) {
oz_dbg(HUB, "Port %d changed\n", i);
ozhcd->ports[i].flags &= ~OZ_PORT_F_CHANGED;
if (i < 7)
buf[0] |= 1 << (i + 1);
else
buf[1] |= 1 << (i - 7);
}
}
spin_unlock_bh(&ozhcd->hcd_lock);
if (buf[0] != 0 || buf[1] != 0)
return 2;
return 0;
}
/*
* Context: process
*/
static void oz_get_hub_descriptor(struct usb_hcd *hcd,
struct usb_hub_descriptor *desc)
{
memset(desc, 0, sizeof(*desc));
desc->bDescriptorType = 0x29;
desc->bDescLength = 9;
desc->wHubCharacteristics = cpu_to_le16(0x0001);
desc->bNbrPorts = OZ_NB_PORTS;
}
/*
* Context: process
*/
static int oz_set_port_feature(struct usb_hcd *hcd, u16 wvalue, u16 windex)
{
struct oz_port *port;
u8 port_id = (u8)windex;
struct oz_hcd *ozhcd = oz_hcd_private(hcd);
unsigned set_bits = 0;
unsigned clear_bits = 0;
if ((port_id < 1) || (port_id > OZ_NB_PORTS))
return -EPIPE;
port = &ozhcd->ports[port_id-1];
switch (wvalue) {
case USB_PORT_FEAT_CONNECTION:
oz_dbg(HUB, "USB_PORT_FEAT_CONNECTION\n");
break;
case USB_PORT_FEAT_ENABLE:
oz_dbg(HUB, "USB_PORT_FEAT_ENABLE\n");
break;
case USB_PORT_FEAT_SUSPEND:
oz_dbg(HUB, "USB_PORT_FEAT_SUSPEND\n");
break;
case USB_PORT_FEAT_OVER_CURRENT:
oz_dbg(HUB, "USB_PORT_FEAT_OVER_CURRENT\n");
break;
case USB_PORT_FEAT_RESET:
oz_dbg(HUB, "USB_PORT_FEAT_RESET\n");
set_bits = USB_PORT_STAT_ENABLE | (USB_PORT_STAT_C_RESET<<16);
clear_bits = USB_PORT_STAT_RESET;
ozhcd->ports[port_id-1].bus_addr = 0;
break;
case USB_PORT_FEAT_POWER:
oz_dbg(HUB, "USB_PORT_FEAT_POWER\n");
set_bits |= USB_PORT_STAT_POWER;
break;
case USB_PORT_FEAT_LOWSPEED:
oz_dbg(HUB, "USB_PORT_FEAT_LOWSPEED\n");
break;
case USB_PORT_FEAT_C_CONNECTION:
oz_dbg(HUB, "USB_PORT_FEAT_C_CONNECTION\n");
break;
case USB_PORT_FEAT_C_ENABLE:
oz_dbg(HUB, "USB_PORT_FEAT_C_ENABLE\n");
break;
case USB_PORT_FEAT_C_SUSPEND:
oz_dbg(HUB, "USB_PORT_FEAT_C_SUSPEND\n");
break;
case USB_PORT_FEAT_C_OVER_CURRENT:
oz_dbg(HUB, "USB_PORT_FEAT_C_OVER_CURRENT\n");
break;
case USB_PORT_FEAT_C_RESET:
oz_dbg(HUB, "USB_PORT_FEAT_C_RESET\n");
break;
case USB_PORT_FEAT_TEST:
oz_dbg(HUB, "USB_PORT_FEAT_TEST\n");
break;
case USB_PORT_FEAT_INDICATOR:
oz_dbg(HUB, "USB_PORT_FEAT_INDICATOR\n");
break;
default:
oz_dbg(HUB, "Other %d\n", wvalue);
break;
}
if (set_bits || clear_bits) {
spin_lock_bh(&port->port_lock);
port->status &= ~clear_bits;
port->status |= set_bits;
spin_unlock_bh(&port->port_lock);
}
oz_dbg(HUB, "Port[%d] status = 0x%x\n", port_id, port->status);
return 0;
}
/*
* Context: process
*/
static int oz_clear_port_feature(struct usb_hcd *hcd, u16 wvalue, u16 windex)
{
struct oz_port *port;
u8 port_id = (u8)windex;
struct oz_hcd *ozhcd = oz_hcd_private(hcd);
unsigned clear_bits = 0;
if ((port_id < 1) || (port_id > OZ_NB_PORTS))
return -EPIPE;
port = &ozhcd->ports[port_id-1];
switch (wvalue) {
case USB_PORT_FEAT_CONNECTION:
oz_dbg(HUB, "USB_PORT_FEAT_CONNECTION\n");
break;
case USB_PORT_FEAT_ENABLE:
oz_dbg(HUB, "USB_PORT_FEAT_ENABLE\n");
clear_bits = USB_PORT_STAT_ENABLE;
break;
case USB_PORT_FEAT_SUSPEND:
oz_dbg(HUB, "USB_PORT_FEAT_SUSPEND\n");
break;
case USB_PORT_FEAT_OVER_CURRENT:
oz_dbg(HUB, "USB_PORT_FEAT_OVER_CURRENT\n");
break;
case USB_PORT_FEAT_RESET:
oz_dbg(HUB, "USB_PORT_FEAT_RESET\n");
break;
case USB_PORT_FEAT_POWER:
oz_dbg(HUB, "USB_PORT_FEAT_POWER\n");
clear_bits |= USB_PORT_STAT_POWER;
break;
case USB_PORT_FEAT_LOWSPEED:
oz_dbg(HUB, "USB_PORT_FEAT_LOWSPEED\n");
break;
case USB_PORT_FEAT_C_CONNECTION:
oz_dbg(HUB, "USB_PORT_FEAT_C_CONNECTION\n");
clear_bits = USB_PORT_STAT_C_CONNECTION << 16;
break;
case USB_PORT_FEAT_C_ENABLE:
oz_dbg(HUB, "USB_PORT_FEAT_C_ENABLE\n");
clear_bits = USB_PORT_STAT_C_ENABLE << 16;
break;
case USB_PORT_FEAT_C_SUSPEND:
oz_dbg(HUB, "USB_PORT_FEAT_C_SUSPEND\n");
break;
case USB_PORT_FEAT_C_OVER_CURRENT:
oz_dbg(HUB, "USB_PORT_FEAT_C_OVER_CURRENT\n");
break;
case USB_PORT_FEAT_C_RESET:
oz_dbg(HUB, "USB_PORT_FEAT_C_RESET\n");
clear_bits = USB_PORT_FEAT_C_RESET << 16;
break;
case USB_PORT_FEAT_TEST:
oz_dbg(HUB, "USB_PORT_FEAT_TEST\n");
break;
case USB_PORT_FEAT_INDICATOR:
oz_dbg(HUB, "USB_PORT_FEAT_INDICATOR\n");
break;
default:
oz_dbg(HUB, "Other %d\n", wvalue);
break;
}
if (clear_bits) {
spin_lock_bh(&port->port_lock);
port->status &= ~clear_bits;
spin_unlock_bh(&port->port_lock);
}
oz_dbg(HUB, "Port[%d] status = 0x%x\n",
port_id, ozhcd->ports[port_id-1].status);
return 0;
}
/*
* Context: process
*/
static int oz_get_port_status(struct usb_hcd *hcd, u16 windex, char *buf)
{
struct oz_hcd *ozhcd;
u32 status;
if ((windex < 1) || (windex > OZ_NB_PORTS))
return -EPIPE;
ozhcd = oz_hcd_private(hcd);
oz_dbg(HUB, "GetPortStatus windex = %d\n", windex);
status = ozhcd->ports[windex-1].status;
put_unaligned(cpu_to_le32(status), (__le32 *)buf);
oz_dbg(HUB, "Port[%d] status = %x\n", windex, status);
return 0;
}
/*
* Context: process
*/
static int oz_hcd_hub_control(struct usb_hcd *hcd, u16 req_type, u16 wvalue,
u16 windex, char *buf, u16 wlength)
{
int err = 0;
switch (req_type) {
case ClearHubFeature:
oz_dbg(HUB, "ClearHubFeature: %d\n", req_type);
break;
case ClearPortFeature:
err = oz_clear_port_feature(hcd, wvalue, windex);
break;
case GetHubDescriptor:
oz_get_hub_descriptor(hcd, (struct usb_hub_descriptor *)buf);
break;
case GetHubStatus:
oz_dbg(HUB, "GetHubStatus: req_type = 0x%x\n", req_type);
put_unaligned(cpu_to_le32(0), (__le32 *)buf);
break;
case GetPortStatus:
err = oz_get_port_status(hcd, windex, buf);
break;
case SetHubFeature:
oz_dbg(HUB, "SetHubFeature: %d\n", req_type);
break;
case SetPortFeature:
err = oz_set_port_feature(hcd, wvalue, windex);
break;
default:
oz_dbg(HUB, "Other: %d\n", req_type);
break;
}
return err;
}
/*
* Context: process
*/
static int oz_hcd_bus_suspend(struct usb_hcd *hcd)
{
struct oz_hcd *ozhcd;
ozhcd = oz_hcd_private(hcd);
spin_lock_bh(&ozhcd->hcd_lock);
hcd->state = HC_STATE_SUSPENDED;
ozhcd->flags |= OZ_HDC_F_SUSPENDED;
spin_unlock_bh(&ozhcd->hcd_lock);
return 0;
}
/*
* Context: process
*/
static int oz_hcd_bus_resume(struct usb_hcd *hcd)
{
struct oz_hcd *ozhcd;
ozhcd = oz_hcd_private(hcd);
spin_lock_bh(&ozhcd->hcd_lock);
ozhcd->flags &= ~OZ_HDC_F_SUSPENDED;
hcd->state = HC_STATE_RUNNING;
spin_unlock_bh(&ozhcd->hcd_lock);
return 0;
}
static void oz_plat_shutdown(struct platform_device *dev)
{
}
/*
* Context: process
*/
static int oz_plat_probe(struct platform_device *dev)
{
int i;
int err;
struct usb_hcd *hcd;
struct oz_hcd *ozhcd;
hcd = usb_create_hcd(&g_oz_hc_drv, &dev->dev, dev_name(&dev->dev));
if (hcd == NULL) {
oz_dbg(ON, "Failed to created hcd object OK\n");
return -ENOMEM;
}
ozhcd = oz_hcd_private(hcd);
memset(ozhcd, 0, sizeof(*ozhcd));
INIT_LIST_HEAD(&ozhcd->urb_pending_list);
INIT_LIST_HEAD(&ozhcd->urb_cancel_list);
INIT_LIST_HEAD(&ozhcd->orphanage);
ozhcd->hcd = hcd;
ozhcd->conn_port = -1;
spin_lock_init(&ozhcd->hcd_lock);
for (i = 0; i < OZ_NB_PORTS; i++) {
struct oz_port *port = &ozhcd->ports[i];
port->ozhcd = ozhcd;
port->flags = 0;
port->status = 0;
port->bus_addr = 0xff;
spin_lock_init(&port->port_lock);
}
err = usb_add_hcd(hcd, 0, 0);
if (err) {
oz_dbg(ON, "Failed to add hcd object OK\n");
usb_put_hcd(hcd);
return -1;
}
device_wakeup_enable(hcd->self.controller);
spin_lock_bh(&g_hcdlock);
g_ozhcd = ozhcd;
spin_unlock_bh(&g_hcdlock);
return 0;
}
/*
* Context: unknown
*/
static int oz_plat_remove(struct platform_device *dev)
{
struct usb_hcd *hcd = platform_get_drvdata(dev);
struct oz_hcd *ozhcd;
if (hcd == NULL)
return -1;
ozhcd = oz_hcd_private(hcd);
spin_lock_bh(&g_hcdlock);
if (ozhcd == g_ozhcd)
g_ozhcd = NULL;
spin_unlock_bh(&g_hcdlock);
oz_dbg(ON, "Clearing orphanage\n");
oz_hcd_clear_orphanage(ozhcd, -EPIPE);
oz_dbg(ON, "Removing hcd\n");
usb_remove_hcd(hcd);
usb_put_hcd(hcd);
return 0;
}
/*
* Context: unknown
*/
static int oz_plat_suspend(struct platform_device *dev, pm_message_t msg)
{
return 0;
}
/*
* Context: unknown
*/
static int oz_plat_resume(struct platform_device *dev)
{
return 0;
}
/*
* Context: process
*/
int oz_hcd_init(void)
{
int err;
if (usb_disabled())
return -ENODEV;
oz_urb_link_cache = KMEM_CACHE(oz_urb_link, 0);
if (!oz_urb_link_cache)
return -ENOMEM;
tasklet_init(&g_urb_process_tasklet, oz_urb_process_tasklet, 0);
tasklet_init(&g_urb_cancel_tasklet, oz_urb_cancel_tasklet, 0);
err = platform_driver_register(&g_oz_plat_drv);
oz_dbg(ON, "platform_driver_register() returned %d\n", err);
if (err)
goto error;
g_plat_dev = platform_device_alloc(OZ_PLAT_DEV_NAME, -1);
if (g_plat_dev == NULL) {
err = -ENOMEM;
goto error1;
}
oz_dbg(ON, "platform_device_alloc() succeeded\n");
err = platform_device_add(g_plat_dev);
if (err)
goto error2;
oz_dbg(ON, "platform_device_add() succeeded\n");
return 0;
error2:
platform_device_put(g_plat_dev);
error1:
platform_driver_unregister(&g_oz_plat_drv);
error:
tasklet_disable(&g_urb_process_tasklet);
tasklet_disable(&g_urb_cancel_tasklet);
oz_dbg(ON, "oz_hcd_init() failed %d\n", err);
return err;
}
/*
* Context: process
*/
void oz_hcd_term(void)
{
msleep(OZ_HUB_DEBOUNCE_TIMEOUT);
tasklet_kill(&g_urb_process_tasklet);
tasklet_kill(&g_urb_cancel_tasklet);
platform_device_unregister(g_plat_dev);
platform_driver_unregister(&g_oz_plat_drv);
oz_dbg(ON, "Pending urbs:%d\n", atomic_read(&g_pending_urbs));
kmem_cache_destroy(oz_urb_link_cache);
}